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A B S T R A C T

With this study, we respond to the ongoing debate on the legal protection of wetlands, and the concurrent need to understand the societal benefits created by them.
Using updated meta-data on wetland valuation, we illustrate how a state-of-the-art meta-regression framework that is consistent with economic theory can be
adapted to generate benefit transfer predictions for incremental changes in wetland acreage over space and time. We apply this framework to estimate losses in
benefits for realistic changes in wetland acreage for some sub-watersheds, as can be expected under the proposed re-definition of the “Waters of the United States” to
be protected under the Clean Water Act.

1. Introduction

In 2015, the U.S. Environmental Protection Agency (EPA) and
Department of the Army (“the agencies”) issued the Clean Water Rule:
Definition of “Waters of the United States” (CWR), which revised the
definition of “Waters of the United States” (WOTUS), a foundational
term establishing the jurisdictional scope of the Clean Water Act
(CWA). The CWR extends CWA jurisdiction to include headwater
streams and wetlands to fall under the CWA if they form a “significant
nexus to downstream traditional navigable waters,” which is inter-
preted as generally aiding in the CWA's objective to “restore and
maintain the chemical, physical, and biological integrity of the Nation's
waters” (U.S. Environmental Protection Agency and Department of the
Army, 2015). On a case-by-case basis, this may also include isolated
wetlands and bogs, such as prairie potholes, pocosins (peat bogs), and
vernal pools (Wittenberg, 2017, 2018). In practice, coverage under the
CWA implies that economic activities aiming to drain or fill wetlands
require a permit and, potentially, compensatory mitigation efforts, for
example by restoring an existing or constructing a new wetland at an-
other suitable location (U.S. Environmental Protection Agency,
2018a,b).

However, in 2017, the agencies proposed a repeal of the CWR (U.S.
Environmental Protection Agency and U.S. Department of the Army,
2017a). If the proposed rule is finalized, some of these newly non-jur-
isdictional wetland acres may be disturbed or developed without any

corresponding wetland mitigation to offset the losses, particularly in
situations where states do not maintain the previous levels of protec-
tion. The loss of these wetlands, in turn, will likely result in the loss of
environmental benefits to the public at large that they would have
provided.

In the 2017 proposal to recodify the definition of WOTUS, the
agencies chose not to present the monetized benefits of wetland miti-
gation reported in their 2015 analysis due to a perceived significant
uncertainty surrounding willingness to pay (wtp) to avoid wetland
losses, largely related to the dated nature of the data and methods
underlying the benefit estimation for wetlands given in the 2015 ana-
lysis (Boyle et al., 2017; U.S. Environmental Protection Agency and U.S.
Department of the Army, 2017a).

In response, this paper provides an illustration of how recent ad-
vances in meta-analytic methods could be applied to value changes in
wetland acreage regionally or nationally. Specifically, we compile an
updated meta-data set on willingness to pay (wtp) to preserve or restore
wetlands in the United States, drawing from 17 primary valuation
studies as current as 2016. We also take advantage of recent advances
in meta-regression modeling and computation of predicted benefits via
the econometric framework proposed in Moeltner (2019) within the
context of valuing surface water quality changes via benefit transfer
(BT). Importantly, the Bayesian Nonlinear Meta-Regression Model
(BNL-MRM) developed in that study satisfies fundamental theoretical
properties, such as sensitivity to scope and adding-up (AU).

https://doi.org/10.1016/j.ecolecon.2019.05.016
Received 14 December 2018; Received in revised form 14 May 2019; Accepted 20 May 2019

☆ This research was partially funded under U.S. EPA contracts EP-C-13-039, EP-C-16-020, and 68HE0C18D0001. The findings, conclusions, and views expressed in
this paper are those of the author and do not necessarily represent those of the U.S. EPA. No agency endorsement should be inferred.

* Corresponding author.
E-mail addresses: moeltner@vt.edu (K. Moeltner), jessica.balukas@icf.com (J.A. Balukas), elena.besedin@icf.com (E. Besedin),

Ben_Holland@abtassoc.com (B. Holland).

Ecological Economics 164 (2019) 106336

Available online 17 June 2019
0921-8009/ © 2019 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09218009
https://www.elsevier.com/locate/ecolecon
https://doi.org/10.1016/j.ecolecon.2019.05.016
https://doi.org/10.1016/j.ecolecon.2019.05.016
mailto:moeltner@vt.edu
mailto:jessica.balukas@icf.com
mailto:elena.besedin@icf.com
mailto:Ben_Holland@abtassoc.com
https://doi.org/10.1016/j.ecolecon.2019.05.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecolecon.2019.05.016&domain=pdf


The first condition stipulates that wtp should increase with the size
of the resource or quality change, here “wetland acres.” The AU con-
dition, in turn, requires that total wtp to achieve target quality or
acreage should be the same as the sum of incremental wtp values from
reaching the environmental goal in sequential steps. The AU condition
has been of central focus to MRM modelers and BT practitioners in
recent years, given that many environmental policies are implemented
gradually, and that the practical importance of AU is often overlooked
in existing MRMs (Newbold et al., 2018; Kling and Phaneuf, 2018;
Moeltner, 2019). Newbold et al. (2018) provide several examples that
illustrate the importance of AU in a water quality context. In their
concluding comments, the authors argue that: “In our judgment, severe
failures to comply with the adding-up condition would render a benefit
transfer function unsuitable for applied policy evaluation work” (p. 549).

In the current context, AU is an important property for any model
used to predict wetland benefits, as changes in wetland acreage for a
given geographic area of interest (e.g. state, county, watershed),
brought forth for example by a changing legal landscape, would likely
occur in increments over both space and time. Furthermore, U.S.
Environmental Protection Agency and U.S. Department of the Army
(2017b) issue doubts on the “theoretical consistency” of the BT exercise
underlying the 2015 wetland benefit estimates as one of the main
reasons for not explicitly considering these estimates in their 2017
analysis. For these reasons, we place primary emphasis on satisfying
AU, at least for our benchmark model, as discussed below in more
detail.

Aside from compliance with AU, the Moeltner (2019) framework
brings additional computational advantages that come with a Bayesian
estimation approach, such as a data-driven search algorithm to de-
termine “optimal scope,” i.e. which portions of the meta-data should be
utilized for a given BT context, and to which extent. Specifically, we
employ the nonlinear Stochastic Search Variable Selection (SSVS) al-
gorithm proposed in Moeltner (2019) to examine if and to what extent
the coastal/salt marsh portion of our meta-data should be allowed to
influence BT results for a freshwater wetland, which is the wetland type
affected by definitional changes of WOTUS and therefore the type of
primary focus for this study. We find that for this data set and in con-
trast to Moeltner’s (2019) water quality application, using only the
context-specific portion of the data (here: freshwater wetlands) pro-
duces the most efficient BT predictions.

Furthermore, we exploit an additional advantage of a Bayesian es-
timation framework not utilized in Moeltner (2019), by comparing a set
of non-nested MRMs that differ in their functional incorporation of
acreage, as well as in their statistical error structure via rigorous,
probability-driven criteria, to determine which of these specifications
best fit the underlying data. We then use the two most promising spe-
cifications to determine optimal scope and to generate benefit predic-
tions. We illustrate how this framework could be applied in an actual
BT setting via a stylized, but realistic example.

In a nutshell, we add to the BT and valuation literature by providing
the first application of a utility-theoretic, nonlinear MRM to a wetland
context, using newly compiled and updated meta-data. On the econo-
metric side, we illustrate how the Moeltner (2019) framework lends
itself naturally to a probabilistic comparison of non-nested candidate
MRMs, even before addressing the question of optimal scope within a
given MRM.

2. Meta-data

As stated in the economic analysis for the proposed re-codification
of WOTUS (U.S. Environmental Protection Agency and U.S. Department
of the Army, 2017b, p. 8), the CWA wetland benefits in the 2015 eco-
nomic analysis were derived using 22 estimates from 10 studies, pub-
lished between 1986 and 2000. Given the agencies' concern regarding
the dated nature of some of these sources, our primary objective in
study selection was therefore to find otherwise valid contributions

published since 2000. Our primary aim in terms of contributing to the
existing body of wetland meta-analyses is to provide a modeling fra-
mework that satisfies the AU condition.1

Our meta-data are drawn from primary valuation studies, conducted
in the U.S., that estimate willingness-to-pay (wtp) for changes in the
acreage of wetlands that support a variety of ecosystem services in-
cluding wildlife support, recreational uses (such as water fowl hunting),
flood risk, and nonuse values. We ex ante included both freshwater and
saltwater (coastal marshes) wetland studies, given the potential for
information spillovers from saltwater to freshwater for some or all
model parameters in the BT step of our analysis. Similar spillovers, or
“partial pooling patterns,” were observed within the context of water
quality changes for rivers and lakes by Moeltner (2019), across re-
creational activities by Moeltner and Rosenberger (2014), and across
different welfare measures by Johnston and Moeltner (2014).

The search for suitable source studies covered existing meta-ana-
lyses of wetland valuation studies (Brouwer et al., 1999; Woodward and
Wui, 2001; Boyer and Polasky, 2004; Brander et al., 2006; Moeltner and
Woodward, 2009), table-of-contents of environmental economics jour-
nals, keyword searches in Google and Google Scholar, and the ex-
amination of valuation databases such as the Environmental Valuation
Reference Inventory (EVRI) administered by Environment and Climate
Change Canada (Environment and Climate Change Canada, 2018),
Oregon State University's recreation use values database (Oregan State
University, 2018), and the Marine Ecosystem Services Partnership
(MESP)’s valuation library (Marine Ecosystem Services Partnership,
2018).

This yielded an initial set of 24 candidate studies to provide data for
the wetland meta-analysis. All studies were screened to ensure applic-
ability and completeness of information needed to compile meta-data,
such as the baseline wetland area, the extent of wetland area change,
and key methodological attributes. This screening led to the exclusion
of seven studies that did not provide a clear link between estimated wtp
and wetland acreage (baseline and/or change). Four of the remaining
17 studies (Bauer et al., 2004; Eastern Research Group, 2016; Johnston
et al., 2002; Newell and Swallow, 2013) only provided marginal wtp
(“inclusive prices”) for specific wetland attributes. However, all of these
studies included the necessary information to derive total wtp estimates
corresponding to a specific change in wetland acres as given in the
respective choice experiment via separate estimation. Similarly, sepa-
rate estimation steps were employed to derive policy-scenario-specific
wtp estimates for Poor (1999), since the original paper aggregates
welfare measures over all policy acres given in the survey. In a final
step, we eliminated three observations associated with oyster reefs and
mangrove habitats given in Interis and Petrolia (2016), as they were not
considered relevant to this analysis.

The final meta-data includes 38 observations from 17 studies, in-
cluding 58% of observations from sources published post-2000.
Multiple wtp estimates are available from nine studies due to within-
study variations in such attributes as wetland type (e.g., forested vs. not
forested), the extent of wetland area change, and ecosystem services
provided. Table 1 gives an overview of these source studies. All
monetary values are adjusted to 2017 dollars.

All studies with the single exception of Awondo et al. (2011), who
employ a contingent behavior travel cost model, are based on con-
tingent valuation (yes/no decisions to obtain or avoid a “packaged”
resource change at a specified bid amount) and choice experiments
(first-best choice out of several specific attribute bundles, including a
“price tag”).2 The data include a mix of published sources (11 journal

1We refer readers to Vedogbeton and Johnston (2019) for a current and
comprehensive discussion of the existing meta-literature with focus on wetland
valuation.

2 Awondo et al. (2011) use a contingent behavior approach to estimate in-
creased demand to a local beach under improved water conditions, with the
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articles, one book chapter) and unpublished contributions (two dis-
sertations, two technical reports, and one conference paper). Eight of
the 17 studies have a state-wide focus in terms of their surveyed po-
pulation (Bauer et al., 2004; Beran, 1995; Blomquist and Whitehead,
1998; Johnston et al., 2002; Kim and Petrolia, 2013; Mullarkey and
Bishop, 1999; Loomis et al., 1991; Poor, 1999; Whitehead and
Blomquist, 1991), two of them target multi-state regions (Eastern
Research Group, 2016; Interis and Petrolia, 2016), five have a regional
or local focus at the sub-state level (Awondo et al., 2011; de Zoysa,
1995; MacDonald et al., 1998; Newell and Swallow, 2013; Whitehead
et al., 2009), and one contribution has a national scope in terms of the
surveyed population (Petrolia et al., 2013).

The meta-data include 21 observations associated with freshwater
wetlands. The remaining 17 cases target salt marshes or, more broadly,
“coastal wetlands.” Of the freshwater wetlands, 11 observations are
characterized as “forested.”

Based on the stipulated policy scenario to be considered by re-
spondents, the studies in our meta-data can be grouped as follows: The
first group deals with “preservation” scenarios, where existing wetlands

are threatened by development, and respondents are asked about their
wtp to avoid these losses in wetland acreage (Bauer et al., 2004; Beran,
1995; Blomquist and Whitehead, 1998; Kim and Petrolia, 2013;
Johnston et al., 2002; Mullarkey and Bishop, 1999; Newell and
Swallow, 2013; Petrolia et al., 2013; Whitehead et al., 2009; Whitehead
and Blomquist, 1991). For these cases, we label the status quo, that is
the higher acreage, as “policy acres,” and the acreage under losses the
“baseline acres,” for compatibility with our econometric model, which
requires a lower starting point and a higher end point for acreage.

The second group, in contrast, elicits respondents' wtp to restore
areas that used to be wetlands, but have been drained to serve other
current uses, to the original wetland habitat status (Awondo et al.,
2011; de Zoysa, 1995; Poor, 1999; Eastern Research Group, 2016).
Loomis et al. (1991) propose one restoration, and one preservation
scenario to their sample of Californian households. For the restoration
case, we interpret the status quo as “baseline acres,” and the new status
with the added (restored) wetlands as “policy acres.”

The third group proposes to construct entirely new wetlands to
perform various ecosystem services (Interis and Petrolia, 2016;
MacDonald et al., 1998). We treat these cases analogously to the “re-
storation” segment in terms of defining baseline and policy acres. Also,
in absence of any specific guidance from the source studies, we assume
that a lack of preservation would lead to a complete and permanent loss
of all ecosystem services currently flowing from the targeted wetlands.
Conversely, for the restoration scenarios, we assume that the areas
targeted for restoration provide zero wetland-specific ecosystem ser-
vices in their altered state. Thus, the resulting wtp figures have to be

Table 1
Overview of source studies.

Author Year Type Target population Wetland type BA PA WTP

Awondo et al. 2011 J Maumee Bay SP, OH, visitors Freshwater, unspec. 0 2499 $193
Bauer et al. 2004 J All RI HHs Salt marsh 11,374 11,407 $28
Bauer et al. 2004 J All RI HHs Salt marsh 11,343 11,407 $33
Bauer et al. 2004 J All RI HHs Salt marsh 11,306 11,407 $39
Bauer et al. 2004 J All RI HHs Salt marsh 11,272 11,407 $47
Beran, L.J. 1995 D All SC HHs Freshwater, forested 6000 8500 $36
Beran, L.J. 1995 D All SC HHs Freshwater, forested 6000 8500 $27
Beran, L.J. 1995 D All SC HHs Freshwater, forested 6000 8500 $33
Blomquist & Whitehead 1998 J All KY HHs Freshwater 3468 3968 $3
Blomquist & Whitehead 1998 J All KY HHs Freshwater, forested 69,580 70,080 $8
Blomquist & Whitehead 1998 J All KY HHs Freshwater, forested 21,716 22,216 $6
Blomquist & Whitehead 1998 J All KY HHs Freshwater, forested 908 1408 $19
deZoysa 1995 D Selected MSAs, OH Freshwater, unspec. 10,000 13,000 $109
Eastern Research Group 2016 TR MSAs in NJ, PA, DE, MD Salt marsh 23,860 24,860 $165
Eastern Research Group 2016 TR MSAs in NJ, PA, DE, MD Salt marsh 23,860 26,860 $180
Eastern Research Group 2016 TR MSAs in NJ, PA, DE, MD Salt marsh 23,860 28,860 $195
Interis & Petrolia 2016 J All AL and LA HHs Salt marsh 32,362 33,862 $179
Interis & Petrolia 2016 J All AL and LA HHs Salt marsh 522,667 524,167 $596
Johnston et al. 2002 J All RI HHs Salt marsh 11,404 11,407 $233
Johnston et al. 2002 J All RI HHs Salt marsh 11,402 11,407 $246
Johnston et al. 2002 J All RI HHs Salt marsh 11,400 11,407 $259
Johnston et al. 2002 J All RI HHs Salt marsh 11,398 11,407 $272
Johnston et al. 2002 J All RI HHs Salt marsh 11,395 11,407 $295
Kim & Petrolia 2013 J All LA HHs Coastal, unspec. 1,381,022 1,829,022 $658
Loomis et al. 1991 BC All CA HHs Freshwater, unspec. 27,000 85,000 $258
Loomis et al. 1991 BC All CA HHs Freshwater, unspec. 85,000 125,000 $426
MacDonald et al. 1998 J Atlanta region, GA Freshwater, unspec. 212,378 212,708 $108
Mullarkey & Bishop 1999 CP All WI HHs Freshwater, forested 219,890 220,000 $64
Newell & Swallow 2013 J Two townships, RI Freshwater, forested 5838 5867 $9
Newell & Swallow 2013 J Two townships, RI Freshwater, forested 5822 5867 $12
Newell & Swallow 2013 J Two townships, RI Freshwater, forested 5807 5867 $16
Petrolia et al. 2013 TR All U.S. HHs Coastal, unspec. 2,131,000 2,382,000 $1922
Petrolia et al. 2013 TR All U.S. HHs Coastal, unspec. 2,131,000 2,382,000 $998
Poor 1999 J All NE HHs Freshwater, unspec. 34,000 50,000 $47
Poor 1999 J All NE HHs Freshwater, unspec. 34,000 75,000 $42
Poor 1999 J All NE HHs Freshwater, unspec. 34,000 100,000 $47
Whitehead et al. 2009 J Selected counties, MI Freshwater, unspec. 9000 10,125 $73
Whitehead & Blomquist 1991 J All KY HHs Freshwater, forested 36,000 41,000 $19

BC=book chapter, CP= conference paper, D=dissertation, J= journal article, TR= technical report,
HHs=households, BA=baseline acres, PA=policy acres.

(footnote continued)
improvement directly related to the restoration of adjacent wetlands. Thus, the
change in welfare flowing from increased/enhanced beach visits can be fully
attributed to the water purification (“regulating”) ecosystem function provided
by the wetlands. Thus, the estimated welfare measure is not a use value for the
wetlands themselves, but rather an indirect measure of their regulating bene-
fits.
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interpreted as “all-or-nothing” values, as opposed to economic benefits
associated with partial or diminished services. Six studies did not pro-
vide clear numerical information on baseline or policy acres. For these
cases, we used external sources and/or GIS methods to impute the
missing acreage.3

Wetland acreages are captured in Table 1 under the “BA” (baseline)
and “PA” (policy acreage) columns, respectively. The meta-data span a
wide spectrum of size changes in wetland acres, from fewer than
10 acres (Johnston et al., 2002) to close to half a million (Kim and
Petrolia, 2013), with commensurate large differences in baseline fig-
ures. The largest entries for both baseline and policy acreage are gen-
erally associated with studies valuing salt marshes.

The last column of the table depicts wtp estimates per household, in
2017 dollars. Nine of the included studies specify lump sum payments
to obtain or prevent the stipulated change in acres, while seven others
ask respondents for ongoing annual payments over an unspecified time
horizon. One study, Kim and Petrolia (2013), stipulate a specific pay-
ment horizon (10 years) over which annual contributions were to be
collected. Of the 17 studies, 11 used increased taxes, fees, or prices as
payment vehicle, while five others proposed voluntary contributions.
Newell and Swallow (2013) actually collected these voluntary con-
tributions via real checks sent to a university-managed conservation
trust fund. The wtp figure derived from Awondo et al. (2011) is to be
interpreted as annual consumer surplus from additional trips taken to
the area under consideration under improved environmental condi-
tions.

Total wtp figures cover a wide range, as would be expected given
the large variation in wetland acreage. At the low end, wtp is less than
$20 (Blomquist and Whitehead, 1998; Newell and Swallow, 2013),
while it amounts to several hundreds of dollars for other studies, most
of which propose large size changes in wetland acreage over a large
geographic area (e.g. Kim and Petrolia, 2013; Loomis et al., 1991;
Petrolia et al., 2013). On a per-acre basis, Johnston et al. (2002) pro-
duce by far the largest values for their valuation study of coastal mar-
shes, between $25 and $78 per acre, while all other observations re-
main well below $1/acre restored or preserved. However, given our
primary focus on freshwater wetlands, and to avoid a further reduction
in our already modest sample size, we opt to retain these observations
in our combined freshwater/saltwater model below.4

Table 2 lists the variables included in our analysis and provides
summary statistics by wetland type (freshwater and coastal), and for
the sample at large. We use the natural log of wtp, in 2017 dollars, as
dependent variable in all our specifications. As in Moeltner (2019), we
group the explanatory variables into two categories: “moderators,” and
“context-specific.” “Moderators” include variables that characterize the
payment mechanism, such as volunt and lumpsum, elicitation format
(ce for “choice experiment”), publication type (nrev for “not peer-
reviewed”), and median, capturing if wtp is reported as a sample

median, rather than a mean (18% of observations). Although these
variables are not directly relevant for the policy context, they need to be
included in the meta-model to avoid omitted variable problems (see e.g.
Johnston et al., 2017, 2006b; Moeltner et al., 2007).

In contrast, “context-specific” variables are those that would gen-
erally receive a specific value for a given policy site in a BT context. As
is evident from the table, this group includes lnyear, the log of the
year data were collected for a given study, relative to the oldest data
collection year in the data (1988).5 This time index, also used, inter
alia, in Johnston et al. (2017), Newbold et al. (2018) and Johnston et al.
(2019) in the context of valuing changes in water quality, captures a
potential trend in preferences and/or advances in (unobserved) survey
methodology. We also include in this category lnincome, the log of
income for a specific study's target population in 2017 dollars. For some
studies, income had to be imputed using census information due to the
absence of reported sample-specific figures. As is clear from the table,
freshwater studies tend to be slightly older than coastal applications,
but income figures are comparable across the two groups.

Geographic indicators include “South-Atlantic/Gulf States” sa-
gulf, “New England/Mid-Atlantic States” nema, and “North/Mid-
western States” nmw, each of which refers to the states shown in the
second column of the table. Thus, the implicit geographic benchmark
absorbed by the constant term of the regression is the national study by
Petrolia et al. (2013) and the California study by Loomis et al. (1991).
Since local residents may place a greater value on nearby wetlands than
a broader constituency, we also add spatial variable local to flag
observations associated with a local or sub-state target population. This
variable serves as a proxy to what has been labeled as “distance decay”
of wtp in the existing literature (e.g. Bateman et al., 2006; Schaafsma,
2015; Johnston et al., 2017). The importance of this spatial distinction
is confirmed by our empirical estimates, discussed below.

In general, the geographic scope and the extent of the market un-
derlying the coastal studies differ from the freshwater wetland studies.
Specifically, coastal studies tend to be primarily located in the New
England/Mid-Atlantic region, and all of them target a broader, regional
population. In contrast, freshwater wetland studies are more diverse
geographically and target both local and regional populations.

Wetland service indicators include prov, for “provisioning” (e.g.
fishing, hunting), reg, for “regulating” (e.g. water filtration, flood
control), and cult, for “cultural” (e.g. non-extractive recreation). The
fourth typical wetland service of “supporting” (e.g. habitat, nursery)
applies to all but one observation in the meta-data, and can thus not be
explicitly included in the regression model.6 As is evident from the
table, “provisioning” is a more predominant function for coastal ap-
plications (82% of observations) than freshwater wetlands (24% of
observations). The nature of provisioning services provided by salt
marshes and freshwater wetlands also differs. Salt water marshes sup-
port shellfishing, hunting, and fishing, while freshwater wetlands are
primarily used for waterfowl hunting.

The binary indicator forest specifies if the wetland was described
to respondents as “forested.” There are no forested coastal wetlands
included in our final meta-data. Our settings for baseline (q0) and
policy acres (q1) round off the context-specific group of explanatory
variables. As pointed out earlier, coastal applications generally show
figures for baseline and policy acres that exceed those for freshwater
studies by an order of magnitude. As we show below, these significant
differences in context-specific attributes between coastal and fresh-
water studies make it problematic to pool the two data segments for
joint analysis.

Given the small sample size and sparse composition of our data, not

3 For Awondo et al. (2011), the sketched map of the research area given in
that paper was used to estimate policy acres. For Bauer et al. (2004), the ap-
proximate acreage for salt marshes in RI at the time of data collection extracted
form the National Land Cover Database (NLCD) was uses as policy endpoint,
and that figure minus the stipulated acres to be preserved as the baseline. The
same applies to Johnston et al. (2002). For Kim and Petrolia (2013), we im-
puted the total acres of saltwater wetlands in coastal parishes as policy acres,
and that minus the stipulated acres at stake as baseline. For Newell and Swallow
(2013), the estimated acreage of vegetated wetlands for the two townships
considered in that study was used as policy endpoint, and that figure minus the
proposed acreage subject to preservation as baseline. Similarly, the total esti-
mated acreage of freshwater wetlands in the watershed considered by
MacDonald et al. (1998) was used as baseline wetland area.

4 As a robustness check, we estimate our combined meta-model (labeled
“SSVS model” below) without the five Johnston et al. (2002) observations. This
largely leaves results for key parameters unchanged, but poses considerable
identification problems due to the diminished sample size.

5 We add “1” to this number to avoid taking a log of zero for the oldest study
in our data.

6 The single exception is Whitehead et al. (2009), who did not incorporate a
description of wetland services in their survey.
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all coefficients for the variables listed in Table 2 are identified in a
single regression model. While there are many different subsets of
identified regressors, we use the following guidelines for the choice of
variables to be included in the MRM: (i) use as many relevant context-
specific variables as possible, and (ii), of the moderator variables, give
priority to volunt and lumpsum, as these two are likely to have the
strongest effect on wtp among this group (e.g. Johnston et al., 2017).

The resulting identified coefficients are listed in Table 3, for the full
meta-data, the freshwater-only data, and the salt/coastal wetland-only

portion, respectively. While all variables described above have identi-
fied coefficients for the full model, we have to restrict the set of mod-
erator variables to volunt and lumpsum for the freshwater subset. For
the saltwater portion, only the context-specific coefficients for the
spatial indicator nema and the wetland service indicator cult are
identified, in addition to year, income, and acres. Similarly, only
coefficients of lumpsum and nrev are identified in the moderator
group.

These restrictions will affect our ability to borrow from the salt
marsh/coastal portion to inform freshwater BT predictions. While we
can ex ante allow for saltwater-specific interaction terms for the six
identified context-specific coefficients, we have to implicitly assume
pooling of fresh- and saltwater data on the remaining six coefficients. As
discussed below in more detail, this leads to a sub-optimal performance
of a partially pooled model compared to the freshwater-only model.

3. Econometric model

3.1. Nonlinear meta-regression models

As a starting point for our analysis, we adopt the Bayesian Nonlinear
Meta-regression Model (BNL-MRM) developed in Moeltner (2019). This
model has the desirable property of satisfying AU by design with a
relatively sparse and simple specification. In other words, BT predic-
tions flowing from this model for, say, a change from the baseline
quantity (of acres) q0 to target or “policy” quantity q1 will always be
numerically equal, regardless of the number of increments with which
the overall change may be implemented in reality.

Within this “adding-up compliant” family of models, we consider
three sub-specifications that differ in how we model the variance of the
unobservable model components (“error term”). For observation i re-
ported in study s, our most general version of the BNL-MRM, used in
Moeltner (2019) and henceforth referred to as model M1a, can be
written as:

Table 2
Variable description and sample statistics.

Freshwater Coastal All

Description Mean Min Max Mean Min Max Mean Min Max

Dependent variable
lnwtp log(total wtp in 2017 dollars) 3.56 1.05 6.06 5.31 3.32 7.56 4.34 1.05 7.56

Context-specific
lnyear log(year of data collection - oldest year +1) 1.57 0.00 2.89 2.78 2.20 3.30 2.11 0.00 3.30
lninc log(income in 2017 dollars) 10.97 10.64 11.48 11.04 10.73 11.42 11.00 10.64 11.48
sagulf 1 = S-Atlantic/Gulf (AL,GA,SC,LA) 0.19 0.00 1.00 0.18 0.00 1.00 0.18 0.00 1.00
nema 1 = NE/mid-Atlantic,(DE,MD,NJ,PA,RI) 0.14 0.00 1.00 0.71 0.00 1.00 0.39 0.00 1.00
nmw N/Mid-West (KY,MI,NE,OH,WI) 0.57 0.00 1.00 0.00 0.00 0.00 0.32 0.00 1.00
local 1 = target population at sub-state level 0.33 0.00 1.00 0.00 0.00 0.00 0.18 0.00 1.00
prov 1 = provisioning function affected 0.24 0.00 1.00 0.82 0.00 1.00 0.50 0.00 1.00
reg 1 = regulating function affected 0.52 0.00 1.00 0.76 0.00 1.00 0.63 0.00 1.00
cult 1 = cultural function affected 0.76 0.00 1.00 0.76 0.00 1.00 0.76 0.00 1.00
Forest 1 = forested wetland 0.52 0.00 1.00 0.00 0.00 0.00 0.29 0.00 1.00
q0 Baseline acres (1000s) 40 0 220 375 11 2131 190 0 2131
q1 Policy acres (1000s) 51 1 220 431 11 2382 221 1 2382
q0,alt Alternative baseline acres (1000s) 29 0 220 371 0 2131 182 0 2131
q1,alt Alternative policy acres (1000s) 40 0 220 428 0 2382 214 0.003 2382

Moderators
volunt 1= payment mechanism=voluntary contribution 0.43 0.00 1.00 0.00 0.00 0.00 0.24 0.00 1.00
Lumpsum 1=payment frequency= lump sum (single payment) 0.43 0.00 1.00 0.47 0.00 1.00 0.45 0.00 1.00
ce 1= elicitation method= choice experiment 0.14 0.00 1.00 0.88 0.00 1.00 0.47 0.00 1.00
nrev 1= study was not peer-reviewed 0.24 0.00 1.00 0.24 0.00 1.00 0.24 0.00 1.00
Median 1=wtp estimate=median 0.33 0.00 1.00 0.00 0.00 0.00 0.18 0.00 1.00

Std= standard deviation, Min=minimum, Max=maximum
NE=New England, N=North.

Table 3
Parameter identification.

Identified parameters

Full Fresh Salt

Context-specific
lnyear x x x
lninc x x x
sagulf x x –
nema x x x
nmw x x –
Local x x –
prov x x –
reg x x –
cult x x x
Forest x x –
q0 x x x
q1 x x x
Moderators
volunt x x –
Lumpsum x x x
ce x – –
nrev x – x
Median x – –
Observations 38 21 17
Studies 17 11 6

Full = full meta-data.
Fresh= freshwater wetlands only.
Salt= salt marshes/coastal wetlands only.
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That is, logged wtp, yis, is a linear function of observation and/or
study-specific regressors xis, including a constant term and logged in-
come, a nonlinear component involving baseline and target (policy)
wetland acres with corresponding quantity parameter γ, a study-spe-
cific, normally distributed random effect us, and an observation-level
error term ϵis.

As shown in Eq. (1), the idiosyncratic error ϵis is normally dis-
tributed with observation-specific variance σ ωisϵ

2 , where weight ωis

follows an inverse-gamma density with shape and scale equal to ν
2
.7

Thus, in addition to allowing for nonlinearity in quality, our specifi-
cation follows recommended practices in meta-regression modeling by
leaving room for unobserved study-level heterogeneity and observa-
tion-level heteroskedasticity (e.g. Rosenberger and Loomis, 2000;
Johnston et al., 2006a; Moeltner et al., 2007; Johnston and
Rosenberger, 2010).

At the study-panel level, the M1a model can be expressed as:
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where ns is the panel size for study s, is is a vector of ones of length ns, I
is an identity matrix of dimension s, and the q vectors collect acreage
settings for all ns observations.

Model M1b differs from M1 by eliminating the heteroskedastic
property of the error term, while preserving random study effects. At
the study-panel level it is given as:
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Our third model, model M1c, drops the within-study effect and
stipulates spherical idiosyncratic errors, as is typical for standard re-
gression models. It thus reduces to:
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3.2. Linear meta-regression models

The majority of existing meta-analyses of wetland valuation (or
related contexts with changes in quality or acreage) have used linear
MRMs (e.g. Brouwer et al., 1999; Brander et al., 2007; Moeltner and
Woodward, 2009; Vedogbeton and Johnston, 2019). To compare per-
formance of linear and nonlinear MRMs, we also consider two linear-in-
acreage MRMs for both estimation and BT predictions. The first, labeled
MRM1-linlin in Moeltner (2019), is shown in that study to exhibit the
best fit with the underlying meta-data, but produces severe AU-viola-
tions for welfare estimates. In contrast, the second linear model, re-
ferred to as MRM2 in Moeltner (2019), emerges as less probable to have
generated the underlying data, but performs well in terms of AU

properties in the prediction stage.
Using notation from above, the MRM1-linlin at the panel level and

with the most general error structure is given as:

= + + − + +β ϵγ γ uy X q q q i( ) ,s s s s s s s s0 0, Δ 1, 0, (5)

where the error component properties are as for the BNL-MRM. Thus, it
relates logged wtp to both baseline size and change in acreage, with
both terms entering in linear fashion on the right hand side.

The MRM2, in turn, is given as:
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thus relating logged per-acre-wtp over the range of the stipulated
change to the midpoint of this range on the right hand side.

For each linear model, we ex ante consider all three error versions,
as described above for the BNL-MRM. For consistent labeling, we will
henceforth refer to the MRM1-linlin framework as “M2”, with sub-
models M2a (heteroskedasticity and random effects), M2b (random
effects only), and M2c (idiosyncratic error). Analogously, we will label
the three sub-specifications of the MRM2 as M3a through M3c in the
remainder of this text.

3.3. Model comparison

As mentioned above, one advantage of our Bayesian estimation
framework is that it allows for a rigorous, probability-based comparison
of these non-nested models via posterior model probabilities and Bayes
Factors (BFs) (Kass and Raftery, 1995). While the specifications with
the most complete specification for error components follow best
practices in meta-modeling, it is possible that the less complex versions
might receive higher posterior probability due to their sparser set of
parameters, especially given our small sample size.

As discussed in Kass and Raftery (1995), Koop (2003), and Koop
(2007), among others, BFs are relative posterior probabilities of one
model over another. They signal the relative fit with actual data of two
competing models, with respect to both their stipulated priors and
chosen likelihood function. They are widely considered a probability-
theoretic and rigorous form of model comparison. Our strategy is to
first compare the three sub-specifications within each general modeling
framework (M1, M2, M3), and then peg the “winners” of each set
against each other (i.e. best of M1, best of M2, best of M3).

All nine models are estimated via Bayesian posterior simulation
based on Gibbs Sampling. We choose the same prior distributions as
Moeltner (2019), that is normal for β and γ, inverse-gamma for σϵ

2 and
σu

2, and gamma for ν. Moeltner (2019) also gives details on the like-
lihood function, the resulting kernel of the joint posterior distribution,
and the Gibbs Sampler (GS) to estimate models M1a, M2a, and M3a.
The respective GS's for models M1b, M2b, and M3b follow this pattern,
with omitted steps for draws of ν. Models M1c, M2c, and M3c ad-
ditionally drop steps for draws of σu

2 and the random effects us,s=1…S.

3.4. Stochastic search pooling model for benefit transfer

Given our primary focus on freshwater wetlands, we first estimate
all model versions using the freshwater-only data to obtain coefficients
suitable for a freshwater-specific BT scenario.

However, this requires discarding the 11 salt marsh/coastal wetland
data points, a loss of 29% of the overall data. As argued in Moeltner and
Rosenberger (2008), Moeltner and Rosenberger (2014), Johnston and
Moeltner (2014), and Moeltner (2019), this would be akin to discarding
relevant information if the two contexts, here freshwater wetlands and
saltwater wetlands, share pooled coefficients for all or a sub-set of re-
gressors. In our case, for example, it is ex ante feasible that the lnyear
and/or lnincome effects are similar for both wetland types, as public
preferences for wetland conservation may be trending in similar fashion
for both wetland habitats. The marginal effect of income on wtp, which

7 As discussed in Geweke (1993), this hierarchical specification of the var-
iance of ϵis is equivalent to drawing the error term from a t-location-scale dis-
tribution with mean zero, scale σϵ

2, and ν degrees of freedom (implying a var-
iance of −σ ν

νϵ
2

2 ). This allows for a higher probability of larger error variances
than would be expected for a basic normal model, a likely occurrence in any
meta-regression context with a diverse set of underlying source studies.
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is directly related to the marginal utility of income as shown in
Moeltner (2019), should also be largely invariant to wetland type.

The studies cited above propose various Bayesian search algorithms
to determine if such pooling patterns exist, and if exploiting these
patters enhances the efficiency of BT predictions. Here, we adopt the
Stochastic Search Variable Selection (SSVS) algorithm originally de-
veloped by George and McCulloch (1993) and used in Moeltner (2019),
as it is the most compatible with the nonlinear specification of the meta-
regression for our M1-family of models.

As shown in Moeltner (2019), the SSVS procedure is implemented
by allowing for interaction terms of context-specific variables with an
indicator for the ancillary context, here “saltwater wetlands.” Specifi-
cally, using our M1a specification as an example, we re-write the model
in Eq. (2) as:

= + +
+ + + − +
+ +
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γ δ γ δ γ δ
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d d q d q

i
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where data matrix X1s collects all context-specific variables shown in
Table 3, while Ms includes the moderator variables that are identified
for the freshwater context, i.e. lumpsum and volunt. Matrix Zs in Eq.
(7) comprises all identified interactions of the variables in X1s with the
saltwater context, i.e. lnyear, lninc, nema, cult, q0, and q1, as
discussed above. Similarly, we allow for a deviation δγ for the quality
parameter for saltwater contexts, characterized by indicator vector ds,
in the nonlinear portion of the model, as is evident from the second line
in Eq. (7).

At every iteration of the GS, the SSVS algorithm decides if an ele-
ment of the deviation vector δ is essentially zero – indicating that
freshwater and saltwater contexts pool along that particular dimension
– or not. The same holds for quality deviation parameter δγ. As shown in
Moeltner (2019), this is accomplished via a mixture prior for all de-
viation terms, and a corresponding indicator vector for nonzero inter-
actions that is updated at every iteration of the GS. Upon convergence
of the sampler, the analyst can then inspect how often a given deviation
term was deemed “important” or “superfluous” by the algorithm, and
draw corresponding modeling inference. As shown in Moeltner (2019),
this “controlled” pooling strategy via SSVS can lead to substantial ef-
ficiency gains for the welfare predictions of interest.

The SSVS method proceeds in analogous fashion for models M1b
and M1c by imposing the error structure as given in Eq. (3) for M1b,
and in Eq. (4) for M1c. The SSVS framework is conceptually the same
for the linear models (M2, M3 families), though there is no need to
estimate a separate deviation term for the acreage parameter, as acre-
related variables are incorporated in the linear data portion X1s, with
corresponding interaction terms collected in Zs.

3.5. BT predictions

To obtain BT predictions for both the freshwater wetlands-only and
the SSVS model (using the full meta-data and saltwater interaction
terms), we first compute logged wtp yp for a given draw of βx and βm
from the GS and specific policy setting, as reflected by policy-specific
regressor vector xp and quality settings q0,p and q1,p, respectively. Using
again model M1a as example, this implies:

∑= ′ + − + ′ + +−

=

β βŷ γ γq γq w ux mlog ( ( exp ( ) exp ( ))) ϵ,p p x p p
t

T

t m
1
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where u and ϵ are drawn from their respective distributions, as ap-
plicable depending on model. To neutralize the effect of moderator
variables, which are de facto “nuisance terms” with respect to policy-
focused predictions, we follow Moeltner et al. (2007), Moeltner and
Rosenberger (2008), and Moeltner (2019) and average our predictions

over all T permissible combinations of moderator vector m, with each
combination receiving equal weight of w=1/T.

We compute ŷp for each draw of model parameters flowing from the
GS, and then exponentiate these draws to obtain the dollar-valued
posterior predictive distribution (PPD) of wtp for a specific change in
wetland acreage. We then examine these PPDs for a sequence of step-
wise size changes to illustrate compliance with the adding-up property.
Benefit transfer predictions for all other models are obtained in ana-
logous fashion by adjusting the error components and/or the functional
form of the predictive equation accordingly.

4. Estimation results

Following Moeltner (2019), we set all normal priors to have a mean
of zero and a variance of ten, and all inverse-gamma priors to have
shape and scale equal to 1/2. The scale parameter for the gamma prior
of ν, ν0, is set to ten as well. These are extremely vague priors that place
the bulk of informational burden on the data, as desired.

As discussed in Moeltner (2019) draws of ν (for all models with
heteroskedasticity) and γ (for all nonlinear models) require Metropolis-
Hastings (MH) steps within the Bayesian posterior simulator (GS). We
chose all corresponding tuning parameters to achieve an acceptance
rate in the 40–50 % range, as recommended in Gelman et al. (2004).
For all nonlinear models, we use one million burn-ins and an equal
amount of “keepers” to assure that the sampler achieved convergence to
the joint posterior. We then choose every tenth draw for inference to
reduce autocorrelation across retained draws. For linear models, we
found it sufficient to use 10,000 burn-ins and 100,000 retained draws,
as autocorrelation and thus the need for thinning the posterior sequence
was not a first-order concern for those specifications.

In all cases, we use Geweke's (1992) split-mean diagnostics to assess
convergence. Bayes Factors for model comparison are derived using the
methods described in Chib and Jeliazkov (2001) for all models with MH
steps, and the approach outlined in Chib (1995) for all other specifi-
cations.

4.1. Freshwater-only model

Results for the freshwater-only meta-regression for all nine model
specifications, grouped by model type, are given in the online appendix.
As shown there, within the M1 group, the simplest version M1c (with
idiosyncratic errors) receives the strongest support as measured via BFs.
In contrast, the most general version M2a exhibits the highest posterior
probability within the M2 group. For the M3-type models, BFs favored
again the simplest version, M3c. It should be noted that M1c and M3c
also receive the highest model probabilities in absolute terms across all
nine models.

Results for the most promising version within each model category
are given in Table 4. For each model, the table gives the posterior mean,
posterior standard deviation, and the proportion of the posterior dis-
tribution to the right of zero (p>0). The latter statistic provides an at-
a-glance assessment if a given variable's effect on outcome is pre-
dominantly positive (p>0 is close to 1), negative (p>0 is close to 0),
or ambiguous (p>0 is close to 0.5). The more posterior mass to one or
other side of zero, the clearer is the signal for the direction of the
marginal effect of the corresponding coefficient.

The bottom of Table 4 shows the logged marginal likelihood, a
Bayesian measure of model fit, and the BF of the overall best-fitting
specification, here M3c, over the other two versions. Mathematically,
these BFs are computed as the exponentiated difference of the corre-
sponding logged marginal likelihoods. Based on these statistics it is
immediately obvious that the nonlinear model M1c and the linear
model M3c are essentially equally likely to have generated the under-
lying data, with a pairwise BF of close to one, while linear model M2a
with both baseline acreage and change in size captured on the right
hand side is far less probable to fit these specific meta-data (BF (M3c/
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M2a)=9.4). It also exhibits a much larger combined error variance
(1.9 vs. 0.47). In other words, the by far best-fitting model in Moeltner
(2019) is clearly inferior to the best nonlinear-in-acres version (M1c)
and the best version with the log of average wtp as the dependent
variable (M3c) for our application. This stresses the importance of
viewing these model comparisons as strictly application-specific, with
potentially large changes in relative model probabilities for competing
versions across different contexts and data sets. Due to its poor fit with
the underlying data relative to the other two specifications, we will rule
out M2a (and thus the entire M2-group) as a viable candidate for BT,
and henceforth consider only the two remaining models M1c and M3c.

Since M1c and M3c also generate close to identical posterior results
for shared parameters, we will focus our discussion of parameter esti-
mates on the nonlinear version M1c, shown in the first set of columns in
Table 4. Based on the p(> 0) metric, among context-specific regressors
the strongest signals for an unambiguously signed effect on wtp are
issued by local, reg, forest, and prov, all of which have over 90%
of probability mass on one side of zero. They also exhibit the largest
posterior means, in absolute terms. Specifically, wetland values elicited
within a local context exceed non-local values by a factor of 21.9 (exp
(3.130)− 1= 21.9). Similarly, wetlands that offer regulatory services
(water purification, flood control) are valued over four times more (exp
(1.632)− 1= 4.1) than wetlands that do not fulfill these functions.
Similarly, benefits provided by forested wetlands, captured by indicator
forest, generate wtp values that exceed those associated with non-
forested wetlands by a factor of 2.1 (exp(1.118)− 1=2.1). In contrast,
the negative effect of prov is somewhat unexpected. Taking the pos-
terior mean of −2.273 at face value, it implies that wetlands that also
provide extractive recreational opportunities (fishing, hunting) gen-
erate wtp that is close to 90% lower (exp(−2.273)− 1=−0.9) than
wtp for wetlands without extractive services. While this may well be an
artifact of our small sample, potentially masking an unobserved con-
founding effect, it may be possible that respondents prefer to preserve

or restore wetlands as a place for “nature to do its work,” without any
human harvesting of resources.8

Other context-specific variables with at least 70% of probability
mass on either side of zero include lnyear, lninc, nema, and nmw.
Thus, our results provide indication of modest strength that wetland
values have declined slightly over time at a rate of 0.4% per year since
1988. As expected, income has a positive effect on wtp with an elasti-
city of approximately 0.2%. In terms of regional effects, compared to
our implicit default category (national plus California), wtp is ap-
proximately 54% (exp(−0.784)− 1=−0.54) lower in the New
England/Mid-Atlantic region, and 66% (exp(−1.073)− 1=−0.66)
lower in the North/Mid-western states region. To some extent this may
point at the increased spatial density of wetlands, and thus available
substitutes, in those regions compared to the default geographic loca-
tions.

The freshwater model also produces a significant moderator vari-
able, lumpsum. Specifically, hypothetical contributions collected via a
single payment are, on average 340% higher (exp(1.486)− 1= 3.4),
than for funding scenarios that stipulate recurring annual payments.
This is consistent with economic theory, as respondents can be expected
to compare the stipulated lump sum bid to the net present value of all
future services flowing from the proposed wetland preservation or re-
storation project. Given positive discounting, this should be a larger
figure than the corresponding annualized service values.

Table 4
Estimation results for top models, freshwater data.

M1c M2a M3c

Mean Std. p(> 0) Mean Std. p(> 0) Mean Std. p(> 0)

Constant −0.546 3.097 0.430 −0.166 3.128 0.478 −0.527 3.107 0.432

Context-specific
lnyear −0.359 0.667 0.281 0.425 0.950 0.685 −0.344 0.675 0.292
lninc 0.211 0.363 0.723 0.345 0.367 0.828 0.205 0.365 0.714
sagulf −0.406 1.743 0.405 −0.390 1.961 0.418 −0.395 1.741 0.408
nema −0.784 1.538 0.295 −3.922 2.020 0.036 −0.756 1.556 0.303
nmw −1.073 1.556 0.244 −0.518 1.737 0.379 −1.059 1.558 0.248
Local 3.130 0.895 0.999 0.333 1.311 0.606 3.100 0.916 0.999
prov −2.273 0.876 0.009 0.456 1.397 0.640 −2.256 0.883 0.009
reg 1.632 0.850 0.970 −0.947 1.234 0.208 1.617 0.851 0.969
cult −0.317 1.563 0.413 1.100 1.713 0.746 −0.278 1.580 0.425
Forest 1.118 0.726 0.937 0.824 0.728 0.883 1.107 0.730 0.934

Moderators
volunt −0.016 1.038 0.495 −1.666 1.347 0.104 −0.015 1.035 0.496
Lumpsum 1.486 0.771 0.968 −0.170 1.142 0.440 1.472 0.774 0.967
γ 0.008 0.007 0.883 – – – – – –
q0 – – – 0.002 0.008 0.600 – – –
q1-q0 – – – 0.001 0.016 0.516 – – –
(q0+q1)/2 – – – – – – 0.009 0.007 0.884

σϵ
2 0.474 0.260 1.000 0.287 0.183 1.000 0.474 0.260 1.000

σμ
2 – – – 1.562 2.279 1.000 – – –

ν – – – 13.741 10.424 1.000 – – –
Combined variance – – – 1.898 0.474
log mlh −49.342 −51.586 −49.249
BF(M3c/other) 1.098 9.429

Mean= posterior mean, Std.= posterior standard deviation.
prob(> 0)= share of posterior density to the right of zero.
log mlh= log marginal likelihood.
BF=Bayes Factor.

8 Naturally, a richer model based on a larger sample would allow for inter-
action terms across wetland services, as it is well possible that respondents
value these services in bundles, rather than in isolation. Along the same lines,
an interaction of prov with local might be revealing, as local constituents
may place a larger value on extractive use at nearby wetlands than a broader
community of primarily non-users. However, this is not possible with our sparse
data as it includes only a single observation that takes a value of one for such an
interaction term.
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The posterior distribution of the acreage parameter γ for M1c is
largely positive, implying a convex wtp function (see Moeltner, 2019),
albeit with slight curvature given the small numerical magnitude of this
parameter. The same holds for M3c, where a positive midpoint para-
meter (here 0.009) also implies convexity. As discussed in Moeltner
(2019), convexity of the wtp function is not ruled out by economic
theory. In our case, for example, it is possible that certain wetland
services (e.g. flood risk reduction and supporting services) only “kick
in” or compound synergistically with increasing acreage, leading in
turn to marginally increasing values. However, as we discuss below in
more detail, we find that due to this convexity property predictions
flowing from either model become unreasonably large (and increasingly
imprecise) if either baseline or policy acres lie far outside the acreage
range of the underlying meta-data. Aside from this practical caveat re-
lated to curvature, both models satisfy sensitivity to scope (M1c for any
value of γ, M3c for > − −γ q q2/( )1 0 ). As shown below, both also satisfy
AU, M1c by construction, and M3c on empirical grounds.

4.2. SSVS model

SSVS results for the two best-fitting models M1c and M3c are given
in the online appendix. Recall that these data-augmented models al-
ways include all variables identified for the freshwater context (see
Table 3), but determine heuristically if the (identified) interaction
terms for the saltwater context should be included or not at each
iteration of the GS. Importantly, only the variables identified for
freshwater wetlands, including all context-specific regressors listed in
Table 3, plus moderators volunt and lumpsum, will be used to gen-
erate predictions for the actual BT exercise. The primary role of the
saltwater interaction terms is to modify the freshwater coefficients
when the interaction terms are deemed important enough to be in-
cluded by the search algorithm. If this happens often enough, it will
probably be inefficient to “drag along” the saltwater data, as this pro-
vides evidence that coefficients do not pool along the identified inter-
active dimensions. In other words, if interaction terms receive high
posterior inclusion probabilities, it will likely be more efficient to base
BT predictions on the freshwater data alone, using the results from
Table 4. On the contrary, if posterior inclusion probabilities are low, the
output from the SSVS routine may generate tighter BT results due to the
increased sample size, as clearly illustrated in Moeltner (2019) for the
case of water quality changes at rivers and lakes.

A serious shortcoming for using the SSVS approach for the current
application and across all considered models is that only a limited
number of context-specific interaction terms are identified (i.e.
lnyear, lninc, nema, cult, and baseline and policy acreage). For the
remaining variables (i.e. sagulf, nmw, local, prov, reg, and
forest), perfect pooling of freshwater and saltwater coefficients has to
be assumed by default. This “forced pooling” may be unwarranted and
will produce misleading results if the true impact of these regressors
differs across the two wetland types.

As can be seen from Table 4 of the online appendix, all non-acre
related saltwater interactions for both versions exhibit posterior inclu-
sion probabilities that exceed the prior of 0.5, for some cases by a large
margin. In comparison, inclusion probabilities for interaction terms
range from 5 to 30 % in Moeltner (2019), where the SSVS approach
produced more efficient benefit estimates. This raises strong doubt that
these interactions are negligible and that the data can be pooled across
the two wetland types along these dimensions. Furthermore, the pos-
terior means for the interactions are of considerable numerical mag-
nitude, and there is only limited ambiguity as to the direction of their
marginal effect on wtp based on the p>0 statistic, providing further
evidence that pooling, or even partial information spillovers, are un-
likely. This is not surprising given the substantial differences in most
wetland and study characteristics across the coastal and freshwater
groups.

The only interaction term with low inclusion probability for model

M1c is the nonlinear deviation term for acreage, δγ, which was only
chosen to be important 3.2% of the time across all iterations of the GS.
While this result suggests that the marginal effect of acreage on wtp is
similar across the two wetland regimes, any efficiency gains due to
information-borrowing along this single dimension are unlikely to
outbalance the efficiency losses introduced by the many significant
interactions associated with the linear context-specific variables. A si-
milar conclusion holds for the (small) deviation for the midpoint
coefficient, +q q( )/21 0 , in model M3c.

On a final comparative note, the error variance σ2, captured in the
last row of the online table more than quadruples for the SSVS approach
compared to the freshwater-only MRM for both model versions. This
suggests that adding the saltwater data not only dilutes coefficient ef-
fects, but also introduces a substantial amount of error noise into the
model. This conclusion is also supported by the larger posterior stan-
dard deviations for most context-specific coefficients compared to the
corresponding freshwater only version.

Based on these results, we would not expect the SSVS model to
produce measurable efficiency gains, if any, for BT predictions com-
pared to the freshwater model. We therefore limit our BT example
below to the freshwater-only case, but with continued comparison
across our preferred models M1c and M3c.9

5. Benefit transfer example

To illustrate the application of our best-fitting MRMs (M1c and
M3c) to BT, we simulate an increase in wetland acreage from a baseline
of 10,000 acres (the sample median for the freshwater data) to a target
level of 10,050 acres. This setting for q0 corresponds reasonably well to
realistic baseline wetland acreages for actual sub-watersheds, such as
Hydrologic Unit Code (HUC) 0509 (Middle Ohio — 12,000 non-abut-
ting wetland acres under baseline conditions), HUC 0510 (Kentucky-
Licking — 3000 non-abutting acres), and HUC 1306 (Upper Pecos —
18,000 non-abutting acres). The target change of 50 acres per year, in
turn, reflects preliminary estimates of potential annual losses in wet-
land areas from reduced mitigation requirements for non-jurisdictional
wetlands for the typical affected hydrologic subregion (four-digit HUC).
In some subregions, cumulative losses may reach several hundred acres
over a period of 20 years. To verify that the predictions satisfy the
adding-up condition, we implement this change in two increments,
from 10,000 to 10,030, and from 10,030 to 10,050, in addition to the
one-step scenario.

Settings for the remaining context-specific variables are chosen as
follows: lnyear=3.4 (log of (2018–1988), plus 1), lninc=11
(sample mean), region= South-Atlantic/Gulf, and the only wetland
service in addition to “supporting” is “cultural” (i.e. recreation). For
comparison purposes, we generate predicted benefits for all four com-
binations of local and forested, given the documented importance
of these variables in our meta-regression (see Table 4).

In terms of moderator variables, we set lumpsum to zero to allow
our BT predictions to be interpreted as per-year values, which is typi-
cally reported in benefit cost analysis of resource management pro-
grams. In contrast, we average our predictions over both possible set-
tings (“0” and “1”) for indicator volunt, giving equal weight to each.

For all four local/forest scenarios, we report mean wtp, based
on posterior predictive distributions that include error term effects in

9We also implement the BT example using the SSVS output for both speci-
fications. Results are given in Table 5 of the online appendix. As expected, BT
predictions flowing from the SSVS model show much larger posterior variability
and exhibit unrealistically large posterior means and medians, especially for
M1c. This directly reflects the inflated error variance of the SSVS model com-
pared to its freshwater-only counterpart, as well as presence of “information-
deficient” nuisance parameters in form of the interaction terms that had to be
carried along during estimation.
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the log-linear model before exponentiating to obtain actual dollar va-
lues, and median wtp, which sets error effects in the log-linear model to
zero before taking exponents. For M3c, we add −q qlog ( )1 0 to both
sides of the predictive equation before exponentiating to obtain wtp for
the full change in acres as opposed to average wtp per acre. As men-
tioned above, all wtp estimates are best interpreted as annual benefits
per household.

Table 5 presents results of our example BT application for both M1c
and M3c. For each version, the table shows the posterior mean of the
predictive construct (mean or median), as well as the lower and upper
bound of the corresponding highest posterior density interval.10

While not explicitly captured in the table, adding up errors are zero
to the third decimal for all scenarios and both model specifications.
While this is as expected for M1c due to its structurally built-in AU
compliance, it is noteworthy for M3c. As shown in Moeltner (2019), AU
compliance for M3-type models hinges largely on the magnitude of the
estimated quality parameter for the midpoint variable, given as γ in Eq.
(6) above. The closer γ is to zero, the more likely AU will hold. As can
be seen from Table 4, the estimated posterior mean for γ is indeed small
(0.009), with an equally small posterior standard deviation (0.007).
Apparently, for our data this is small enough to virtually eliminate AU
errors.

As can also be seen from Table 5, BT predictions are also very si-
milar between the two models, for both the “ mean” and “median”
implementation of the predictive algorithm. As expected, given our
original estimation results for the freshwater model, forested and/or
local wetlands are valued considerably higher than non-forested and/or
non-local types, by a factor of close to four for forested, and a factor of
over seven for local, for both mean and median wtp compared to the
non-forested, non-local scenario. At the upper end, the addition of
50 acres of local, forested wetland generates expected mean benefits per
household and year of $13– $15, or $0.26– $0.29/acre, as can be seen

from the last row of the table. In contrast, 50 added acres of non-
forested wetland that is not in near proximity of the target population
are valued, on average, at a more modest $0.4, or approximately $0.01/
acre, per household and year.11

While HPDI bounds are comparable across the two models for the
“median” estimates, they are two to three times tighter for M3c com-
pared to M1c for the “mean” estimates. Evidently, M1c, with its non-
linear component, tends to generate more extreme wtp values during
the exponentiation process than the fully linear M3c. To the extent that
mean estimates (with incorporated error effects) are required, and
upper HPDI bounds are informative for policy decisions, this would
favor M3c over M1c for the application at hand. However, as for model
fit based on BFs, compliance with AU for linear models such as M3c has
to be assessed on a case-by-case basis across different empirical con-
texts.12

Table 5
BT predictions (annual $s per household).

M1c M3c

Mean Median Mean Median

Scenario (acres, 1000s) Low Mean High Low Mean High Low Mean High Low Mean High

Non-forested, Non-local Non-forested, Non-local
10 to 10.03 0.00 0.24 5.28 0.00 0.15 0.61 0.00 0.23 1.30 0.00 0.16 0.60
10.03 to 10.05 0.00 0.16 3.52 0.00 0.10 0.40 0.00 0.16 0.87 0.00 0.11 0.40
10 to 10.05 0.00 0.40 8.81 0.00 0.25 1.01 0.00 0.39 2.17 0.00 0.27 1.00

Forested, Non-local Forested, Non-local

10 to 10.03 0.00 0.90 18.04 0.00 0.56 2.71 0.00 0.79 5.97 0.00 0.53 1.72
10.03 to 10.05 0.00 0.60 12.03 0.00 0.37 1.81 0.00 0.53 3.98 0.00 0.36 1.15
10 to 10.05 0.00 1.51 30.07 0.00 0.93 4.53 0.00 1.32 9.96 0.00 0.89 2.87

Non-forested, Local Non-forested, Local

10 to 10.03 0.00 1.76 12.31 0.00 1.24 4.04 0.00 1.73 6.14 0.00 1.26 4.25
10.03 to 10.05 0.00 1.17 8.21 0.00 0.83 2.70 0.00 1.15 4.10 0.00 0.84 2.83
10 to 10.05 0.00 2.93 20.52 0.00 2.06 6.73 0.00 2.88 10.23 0.00 2.10 7.08

Forested, Local Forested, Local

10 to 10.03 0.00 8.56 148.59 0.00 5.70 23.51 0.00 7.66 42.10 0.00 5.52 19.53
10.03 to 10.05 0.00 5.71 99.08 0.00 3.80 15.68 0.00 5.11 28.08 0.00 3.68 13.03
10 to 10.05 0.00 14.26 247.67 0.00 9.50 39.18 0.00 12.77 70.18 0.00 9.20 32.55

Mean= posterior mean.
Low (High)= lower (upper) bound of 95% highest posterior density interval.

10 As described inter alia in Koop (2003), the α-% HPDI is the smallest in-
terval over the range of a given distribution that includes α % of the density
mass. It is a common Bayesian statistic used to describe the spread of a given
distribution, and/or confidence bounds for a given parameter of predictive
construct of interest.

11 As pointed out by a reviewer for the nonlinear model M1c, for small
changes in q, such as considered in this application, the corresponding segment
of the underlying wtp function will be approximately linear, especially given
the small values for the acreage/curvature parameter γ (0.008). This translates
into approximately linear estimates per acre along the entire policy range. This
pseudo-linearity per-acre does not hold for larger changes, as is evident from
Moeltner’s (2019) large-step example in a water quality context. As can be seen
from Table 5, approximate linearity per-acre can also be observed for M3c, for
analogous reasons.

12 At the suggestion of a reviewer, we also performed a leave-one-out cross-
validation convergence validity test (LCV test) to further assess the relative out-
of-sample predictive ability of our two preferred specifications. Details are
given in the online appendix. Results are again almost identical across both
models, with average absolute percentage errors (APEs) based on mean pre-
dictions (allowing for error noise) of approximately 120%, and average APEs
based on median predictions (ignoring error noise) of 76–77 %. These LCV
results for median predictions (which most closely reflect standard practice in
the literature) are generally in line with the existing meta-literature. For ex-
ample, Vedogbeton and Johnston (2019) report a mean APE of 72% for their
coastal wetland application. Similarly, Brander et al. (2007) find a mean APE of
74% for their wetland meta-analysis. Mean APE figures of 65–80 % also seem to
be the norm in non-wetland meta-applications, such as Johnston et al. (2017)
and Johnston et al. (2019). This consistency with existing contributions is
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On a final note, we would like to reiterate that due to the AU
property – structurally satisfied for M1c, and empirically satisfied for
M3c – the total change in acreage, here 50, could in theory be achieved
with any desired number of (potentially annual) incremental steps
without changing the total wtp estimate (e.g., 2.5 acres per year over
20 years). Furthermore, at every point along the way, the model will
produce correct estimates of the benefits that have already been created
(or lost), and the benefits that are still “on the table” (or at risk). As
stated at the onset, this is a an important feature of these models, as real
policy changes in wetland areas at any given location (e.g., wetland
losses from reduced mitigation requirements due to definitional
changes of WOTUS) will likely occur incrementally over prolonged time
horizons.

6. Conclusion

With this study, we respond to the ongoing debate on the legal
protection of wetlands, and the concurrent need to understand the so-
cietal benefits created by them, by illustrating how a recently in-
troduced MRM framework that is consistent with economic theory can
be adapted to generate BT predictions for incremental changes in
wetland acreage in a given spatial location over a long time horizon.

Compiling a new meta-data set of wetland valuation that includes
studies as current as 2016, and following best practices in study se-
lection and data preparation as recommended by Stanley et al. (2013),
we show how Bayesian model comparison tools can be used to identify
promising statistical models for parameter estimation and, subse-
quently, BT application. From an econometric perspective, this adds
over Moeltner (2019) who uses only the equivalent to our models M1a,
M2a, and M3a, that is specifications with a relatively complex error
structure. For our sparser data set, it turns out that more parsimonious
specifications that abstract from within-study random effects and error
heteroskedasticity perform best (e.g. M1c, M3c).

Starting from these models, we then employ the SSVS algorithm
proposed in Moeltner (2019) to examine if and to what extent the
coastal/salt marsh portion of our meta-data should be allowed to in-
fluence BT results for a freshwater context. We find that for this data set
and in contrast to Moeltner’s (2019) water quality application, using
only the context-specific portion of the data (here: freshwater wetlands)
produces the most efficient BT predictions.

We then illustrate how this econometric framework could be used to
derive BT predictions for actual watersheds. As noted above, careful
consideration is needed in selecting BT transfer setting for acreage due
to the convexity of the wtp function for both of our preferred models
(M1c, M3c) implied by the estimates for the corresponding curvature
parameter. To avoid unreasonably inflated predictions, as would result
from using baseline acreage for a large region or an entire state, we use
stylized, sample-informed settings for acreage. Conveniently, these
figures are comparable to wetland coverage in real-world sub-water-
sheds (e.g., HUC4 or HUC8). We find that a forested, local version of
our wetland scenario generates by far the highest benefits, stressing the
importance of controlling for these two important context-specific
variables.

To benefit transfer practitioners, we thus recommend (i) estimating
wtp on a watershed by watershed basis or use sample-informed settings
for baseline and policy acres to ensure acreage magnitudes lie within
the meta-data range, and (ii) allowing for distinct predictions along the
forested/non-forested and local/non-local dimensions.

From a modeling perspective, we not only confirm the “tolerable”
AU properties of M3-type linear models reported in Moeltner (2019),
but in fact find that for our application the linear model M3c satisfies

AU to any policy-relevant precision. It also outperforms the nonlinear
M1c based on predictive efficiency, at least for BT scenarios that fully
incorporate error noise. This may not always be the case for a given BT
context and meta-data, but at least suggests leaving the door open for
linear models that may not satisfy AU by construction, but may do so
“ex post”, that is empirically, given parameter estimates for the quality
variable under consideration.

Ultimately, it is our hope that these new meta-data and refined
econometric tools will be helpful in informing the current discussion on
the economic importance of different kinds of wetlands, and how they
should be incorporated into the Clean Water Act.
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(footnote continued)
encouraging, especially considering that our sample size is substantially lower
than that of all of these other studies.
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