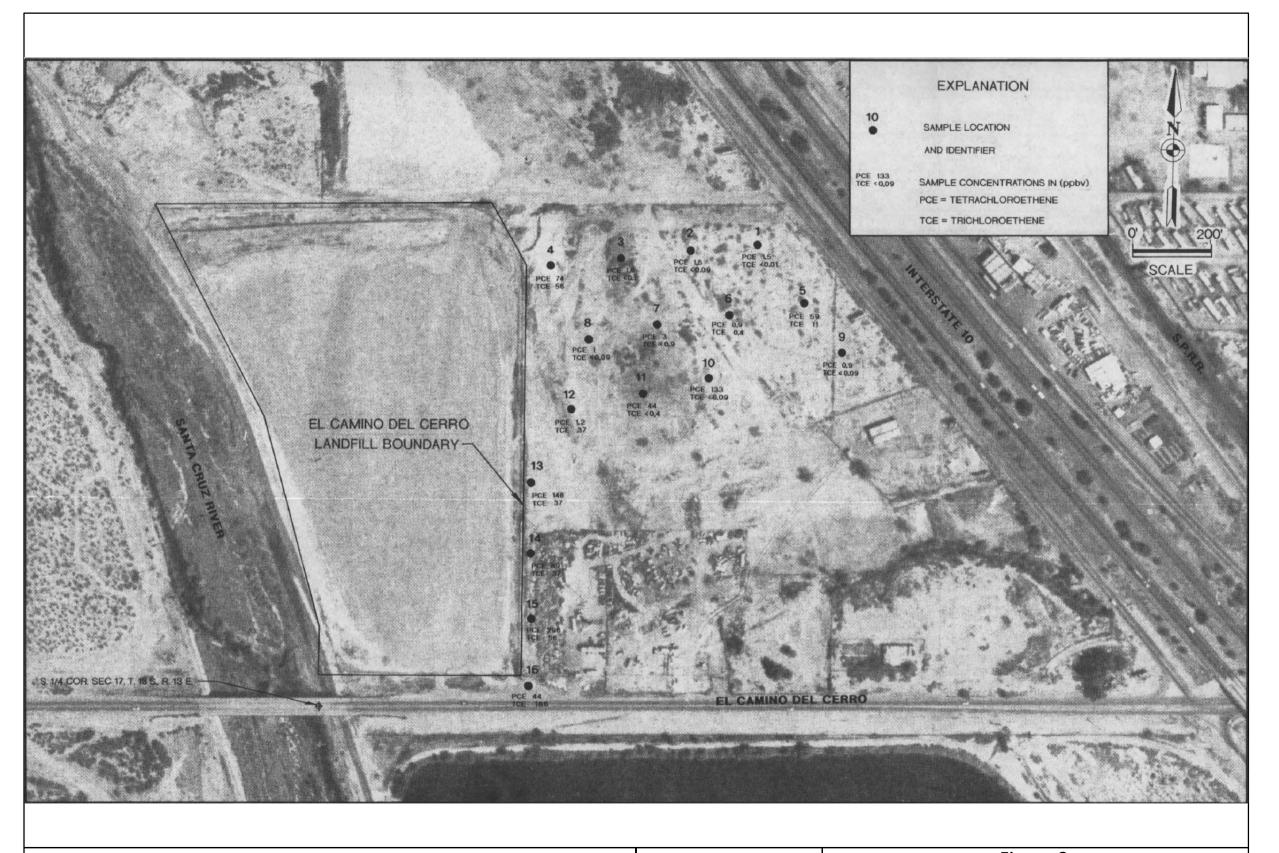

APPENDIX Q SUPPLEMENTAL FIGURES



From: Landfill Environmental Studies Program – Phase 3, El Camino Del Cerro Landfill, Harding and Lawson Associates, June 1984

Original figure from: Existing Data Report, Malcolm Pirnie, 1996

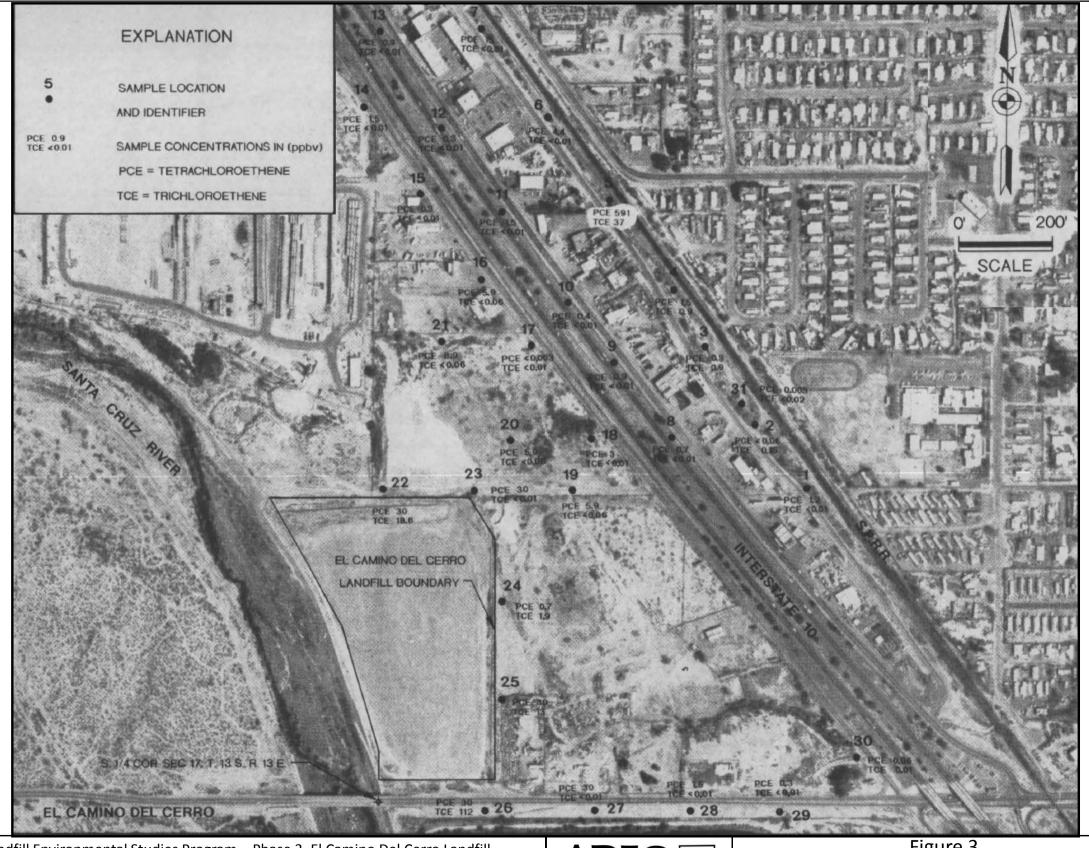
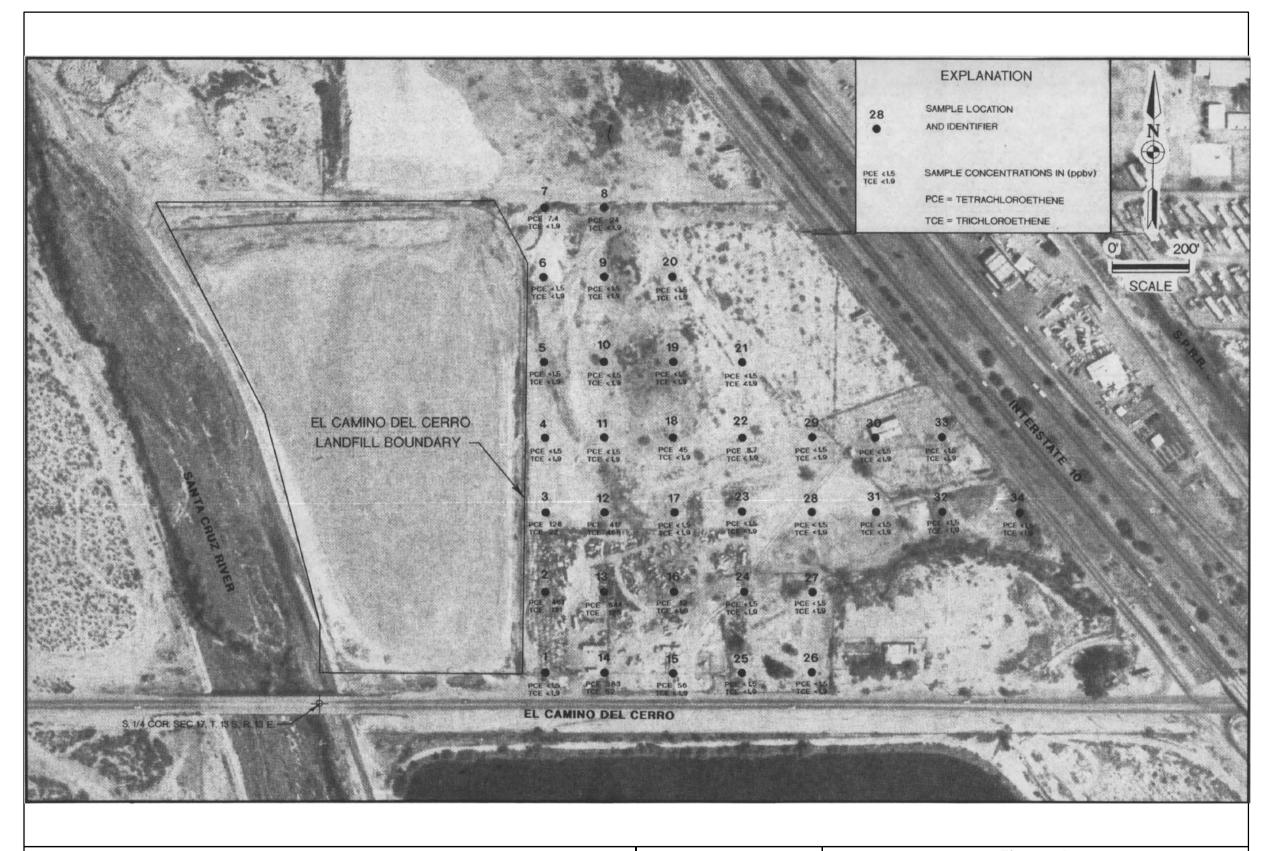


Figure 1
1984 PCE and TCE concentrations in near-landfill soil gas
Appendix Q

From: Landfill Environmental Studies Program – Phase 3, El Camino Del Cerro Landfill, Harding and Lawson Associates, March 1986



From: Landfill Environmental Studies Program – Phase 3, El Camino Del Cerro Landfill, Tracer Research Corporation, September 1990

Original figure from: Existing Data Report, Malcolm Pirnie, 1996

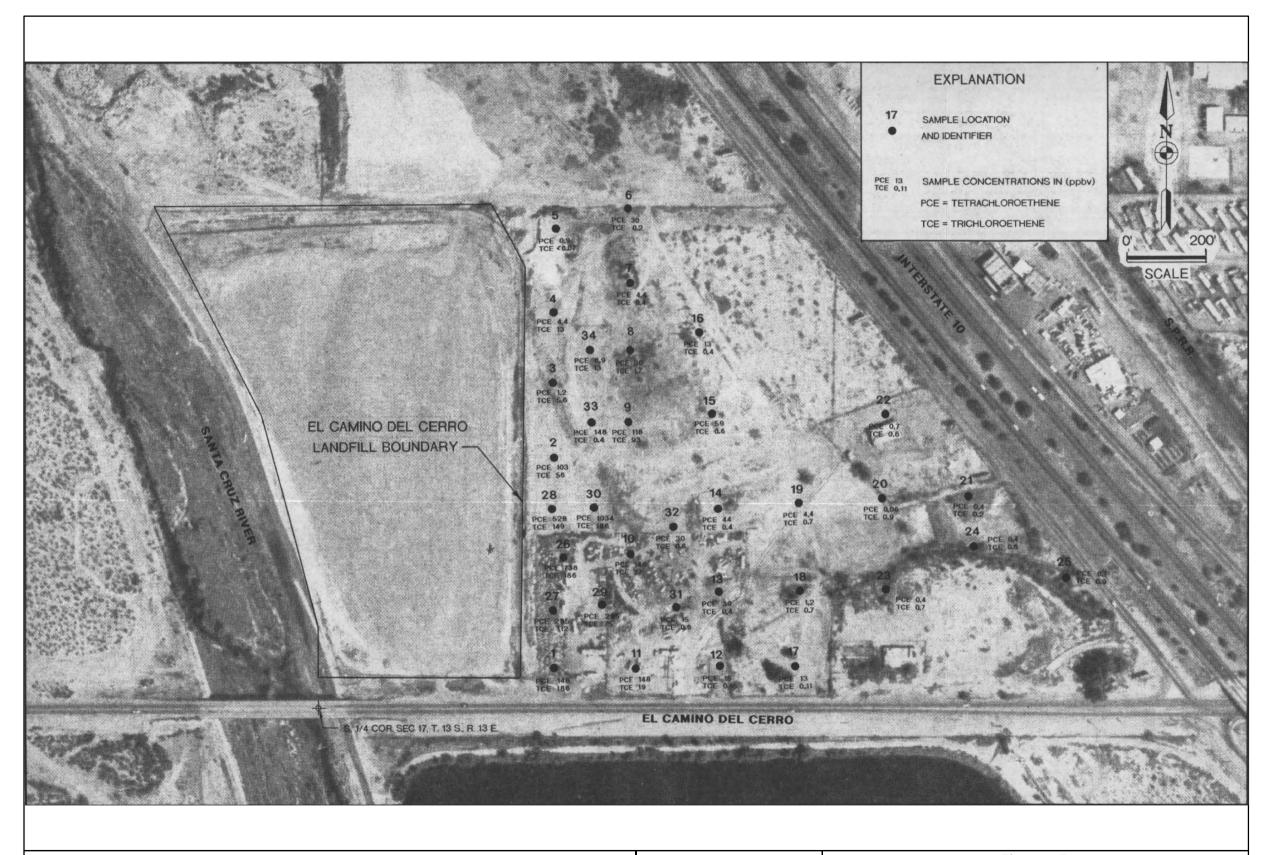


Figure 3
1990 PCE and TCE concentrations in near-landfill soil gas
Appendix Q

From: Landfill Environmental Studies Program – Phase 3, El Camino Del Cerro Landfill, Hydro Geo Chem, March 1991

From: Landfill Environmental Studies Program – Phase 3, El Camino Del Cerro Landfill, Tracer Research Corporation, August 1992

Sample Location	PC		TC	Œ	total 1,2	2-DCE	1,1-	DCE	Vinyl C	Chloride	TC	Ά	Met	hane
	μg/l	_ppbv	μ g/l	ppbv	μg/l	ppbv	μ g/l	ppbv	μg/l	ppbv	μg/l	ppbv	μg/l	percent
1A-5'	1	148	0.9	168	0.7	177	0.05	13	210	82,320	< 0.0003	< 0.06	33,000	5.1 %
1B-6'	2	296	2	373	2	506	0.05	13	31	12,152	0.9	165	54,000	83 %
1C-13'	1	148	1 1	186	1	253	< 0.05	<13	28	10,976	<0.0003	< 0.06	46,000	7.0 %
2A-5'	0.01	1.5	<0.004	< 0.7	< 0.05	<13	< 0.05	<13	<0.6	<235	< 0.0003	< 0.06	<100	<0.01 %
2B-5'	0.008	1.2	<0.004	<0.7	< 0.05	<13	< 0.05	<13	<0.6	<235	<0.0003	< 0.06	<100	<0.01 %
2C-11'	0.7	103	0.3	56	0.7	177	< 0.05	<13	2	784	<0.0003	< 0.06	67,000	10.3 %
3A-6.5'	0.02	3.0	0.2	37	0.3	76	0.02	5.1	16	6,272	<0.0003	< 0.06	48,000	7.4 %
3B-13'	0.008	1.2	0.03	5.6	< 0.05	<13	< 0.05	<13	37	14,504	<0.0003	< 0.06	71,000	10.9 %
3C-19'	2	296	4	746	5	1,264	0.3	76	36	14,112	<0.0003	< 0.06	73,000	11.2 %
4A-6'	0.009	1.3	0.04	7.5	< 0.05	<13	< 0.005	<1.3	1	392	0.0007	0.13	21,000	3.2 %
4B-10'	0.03	4.4	0.07	13	0.07	18	< 0.005	<1.3	0.9	353	<0.0003	< 0.06	51,000	7.8 %
5-7'	0.006	0.9	<0.0004	< 0.07	< 0.05	<13	< 0.005	<1.3	<0.6	<235	<0.0003	< 0.06	<100	<0.01 %
6-13	0.2	30	0.001	0.2	< 0.05	<13	<0.005	<1.3	<0.6	<235	0.002	0.4	<100	<0.01 %
7-12'	0.03	4.4	0.002	0.4	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	560	0.09 %
8-12'	0.2	30	0.009	1.7	< 0.05	<13	< 0.005	<1.3	0.5	196	0.004	0.7	<100	<0.01 %
9-13'	0.8	118	0.5	93	< 0.05	<13	0.01	2.5	<0.6	<235	0.0005	0.09	25,000	3.8 %
10-13'	1	148	0.2	37	1	253	0.005	1.3	<0.6	<235	<0.0003	< 0.06	16,000	25 %
11-13'	1	148	0.1	19	0.04	10	0.04	10	<0.6	<235	0.001	0.2	1,900	0.3 %
12-6'	0.1	15	0.0008	0.15	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
13-10'	0.2	30	0.002	0.4	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
14-13'	0.3	44	0.002	0.4	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.005	0.9	<100	<0.01 %
15-13'	0.4	59	0.003	0.6	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.002	0.4	<100	<0.01 %
16-11'	0.09	13	0.002	0.4	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
17-12'	0.09	13	0.0006	0.11	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.002	0.4	<100	<0.01 %
18-12'	0.008	1.2	0.004	0.7	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
19-11'	0.03	4.4	0.004	0.7	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.0009	0.2	<100	<0.01 %
20-11'	0.0004	0.06	0.005	0.9	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
21-12'	0.003	0.4	0.001	0.2	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.0007	0.13	<100	<0.01 %
22-13'	0.005	0.7	0.003	0.6	< 0.05	<13	<0.005	<1.3	<0.6	<235	0.0007	0.13	<100	<0.01 %
23-11'	0.003	0.4	0.004	0.7	< 0.05	<13	<0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
24-9'	0.003	0.4	0.003	0.6	< 0.05	<13	<0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
25-6'	0.0008	0.1	0.005	0.9	< 0.05	<13	<0.005	<1.3	<0.6	<235	0.0007	0.13	<100	<0.01 %
26-11'	5	738	1	186	0.6	152	<0.005	<1.3	1	392	<0.003	<0.6	80,000	123 %
27-13'	2	295	0.6	112	0.4	101	0.005	1.3	1	392	0.0006	0.11	110,000	16.8 %
28-12'	4	591	0.8	149	3	759	0.2	51	3	1,176	0.0006	0.11	110,000	16.8 %
29-12'	2	295	0.4	75	< 0.05	<13	<0.005	<1.3	<0.6	<235	0.001	0.2	63,000	9.6 %
30-12'	7	1,034	1 1	186	2	506	< 0.005	<1.3	1	392	<0.003	<0.6	58,000	8.9 %
31-11'	0.1	15	0.003	0.6	< 0.05	<13	< 0.005	<1.3	<0.6	<235	0.001	0.2	<100	<0.01 %
32-13'	0.2	30	0.003	0.6	<0.05	<13	<0.005	<1.3	<0.6	<235	0.0003	0.06	<100	<0.01 %
33-3'	1	148	0.002	0.4	<0.05	<13	<0.005	<1.3	<0.6	<235	0.002	0.4	<100	<0.01 %
34-12'	0.06	8.9	0.07	13	0.1	25	0.005	1.3	0.9	352	0.0009	0.2	40,000	6.1 %

From: Landfill Environmental Studies Program – Phase 3, El Camino Del Cerro Landfill, Tracer Research Corporation, August 1992

Shallow (30 – 40 ft bgs) landfill monitoring wells

COMPOUND				MON	ITOR WEI	L			
	GS-1	GS-2	GS-3	GS-4-PP ^a	GS-4	GS-5	P-1	P-2	P-3
Acetone	550	370	<10	420	400	350	<10	5500	510
Benzene	500	47	120	290	280	69	<2	50	41
Chlorobenzene	46	17	<1	430	390	15	21	12	24
Chloroethane	240	38	57	95	95	120	220	450	<2
1,1-Dichloroethane	42	<1	19	13	12	91	11	<1	<1
1,1-Dichloroethene	<2	<2	<2	<2	<3	<2	<2	<2	<2
cis-1,2-Dichloroethene	240	18	210	250	240	330	28	50	43
trans-1,2-Dichloroethene	<2	<2	<2	50	48	28	17	<2	<2
Dichloromethane	20	<10	<10	<10	<10	30	<10	<10	<10
Ethylbenzene	55	<2	<2	<2	<2	<2	<2	<2	<2
Tetrachloroethene (PCE)	<1	<1	47	130	120	940	16	47	5
Toluene	210	34	29	64	58	27	29	27	37
1,1,1-Trichloroethane (TCA)	<2	<2	90	<2	110	<2	<2	<1	<2
Trichloroethene (TCE)	37	<1	110	130	130	190	8	41	10
Vinyl Chloride	210	170	1200	5600	4700	1700	450	370	930
Total Xylenes	37	8	<2	22	21	<2	<2	<2	<2

NOTE: * Prepurge Sample

Deep (70 – 90 ft bgs) landfill monitoring wells

	• `						
COMPOUND			M	ONITOR V	VELL		
	GD-1	GD-2	GD-3	$GD-3^a$	GD-4-PPb	GD-4	GD-5
Acetone	800	80	200	140	140	180	130
Benzene	500	85	28	25	20	20	53
Chlorobenzene	3.3	<1	<1	<1	<1	<1	15
Chloroethane	64	<2	<2	<2	<2	<2	<2
1,1-Dichloroethane	3.7	<1	94	74	22	27	350
1,1-Dichloroethene	< 0.2	<2	<2	<2	12	18	17
cis-1,2-Dichloroethene	< 0.2	<2	280	280	53	71	1600
trans-1,2-Dichloroethene	< 0.2	<2	<2	<2	<2	<2	53
Dichloromethane	10	<10	320	260	20	20	580
Ethylbenzene	5.8	<2	<2	<2	<2	<2	<2
Tetrachloroethene (PCE)	< 0.1	<2	81	83	270	290	2100
Toluene	250	69	29	32	100	80	56
1,1,1-Trichloroethane (TCA)	< 0.2	<2	<2	<2	<2	<2	<2
Trichloroethene (TCE)	< 0.1	<1	95	100	84	99	350
Trichlorofluoromethane	25	12	<2	<2	<2	<2	96
Trichlorotrifluoroethane	< 0.2	<2	<2	<2	9	16	13
Vinyl Chloride	93	<2	510	380	610	790	4300
Total Xylenes	23	<2	<2	<2	<2	<2	5

NOTE: ^a Duplicate Sample

b Prepurge Sample

From: LESP Phase 3: Landfill Gas Monitor Well Construction, Malcolm Pirnie 1995

Figure 7

1995 VOC Concentrations in Landfill gas monitoring wells Appendix Q

Chemical		LFC	SP-1		LFGP-2						
	10 ft	25 ft	40 ft	60 ft	10 ft	25 ft	40 ft	60 ft			
Benzene	20	280	180	41	530	380	<20	50			
Toluene	20	24	21	17	85	180	120	70			
Ethylbenzene	7	3	<2	<2	41	<20	<20	<20			
Xylenes	28	46	20	<2	670	1,200	<20	<20			
Chloromethane	46	190	230	220	230	210	<20	<20			
1,1-Dichloroethane	<1	74	180	720	37	190	1,200	1,100			
cis-1,2-Dichloroethene	<2	450	1,300	2,800	14	<20	1,800	1,100			
Dichloromethane	<10	20	90	600	<10	<100	1,300	1,700			
Tetrachloroethene	<1	410	1,500	7,100	38	<10	6,500	2,900			
Trichloroethene	<1	87	300	860	<2	80	890	410			
Vinyl Chloride	61	1,100	2,700	6,500	400	1,200	6,100	3,800			

Chemical		LFG	P-3			LFGP-4						
	10 ft	25 ft	40 ft	60 ft	20 ft	35 ft	50 ft	65 ft				
Benzene	560	310	ns	<20	300	240	<20	<20				
Toluene	480	70	ns	<20	140	120	180	110				
Ethylbenzene	5,800	100	ns	<20	<20	3,700	780	120				
Xylenes	12,000	120	ns	<20	740	1,500	230	<20				
Chloromethane	460	440	ns	<20	<20	<20	<20	<20				
1,1-Dichloroethane	<10	240	ns	1,000	<10	<10	520	960				
cis-1,2-Dichloroethene	<20	190	ns	530	<20	<20	3,500	5,500				
Dichloromethane	<100	<100	ns	1,900	<100	<100	500	1,000				
Tetrachloroethene	100	270	ns	1,900	<10	80	1,300	1,800				
Trichloroethene	14	130	ns	330	<10	18	200	200				
Vinyl Chloride	980	3,400	ns	3,600	1,100	3,300	15,000	20,000				

Chemical	LFGP-5										
	15 ft	30 ft	45 ft	60 ft	75 ft						
Benzene	250	220	700	<2	100						
Toluene	1,400	610	<20	<2	2,200						
Ethylbenzene	3,900	3,500	78,000	9	10,000						
Xylenes	5,300	2,800	200,000	44	35,000						
Chloromethane	<20	<20	<20	<2	<20						
1,1-Dichloroethane	<10	<10	<10	<1	20						
cis-1,2-Dichloroethene	<20	<20	<20	<2	500						
Dichloromethane	<100	<100	<100	<10	<100						
Tetrachloroethene	<10	<10	<10	<1	<10						
Trichloroethene	<10	<10	<10	<1	<10						
Vinyl Chloride	<20	<20	<20	<2	700						

		LFGP-6		
15 ft	30 ft	45 ft	60 ft	75 ft
380	300	ns	300	200
2,700	9,600	ns	16,000	14,000
3,200	7,600	ns	15,000	8,300
9,500	32,000	ns	81,000	44,000
<20	<20	ns	<20	600
<10	<10	ns	<10	<10
<20	200	ns	400	400
<100	<100	ns	<100	<100
30	100	ns	200	600
<10	40	ns	40	90
70	<20	ns	200	600

Chemical			LFGP-7		
	15 ft	30 ft	45 ft	60 ft	75 ft
Benzene	380	440	280	340	<20
Toluene	880	740	290	290	<20
Ethylbenzene	1,800	1,200	480	740	70
Xylenes	1,800	1,700	850	900	<20
Chloromethane	630	1,100	<20	2,200	290
1,1-Dichloroethane	<10	<10	<10	250	370
cis-1,2-Dichloroethene	190	660	2,100	4,500	5,000
Dichloromethane	<100	<100	<100	<100	<100
Tetrachloroethene	80	240	380	1,600	2,100
Trichloroethene	<10	71	120	690	1,400
Vinyl Chloride	2,000	2,600	2,800	7,000	7,900

ns - Not sampled

From: LESP Phase 3: Landfill Gas mitigation pilot test report Malcolm Pirnie 1995

Figure 8

1995 VOC Concentrations in Landfill gas monitoring wells

Appendix Q

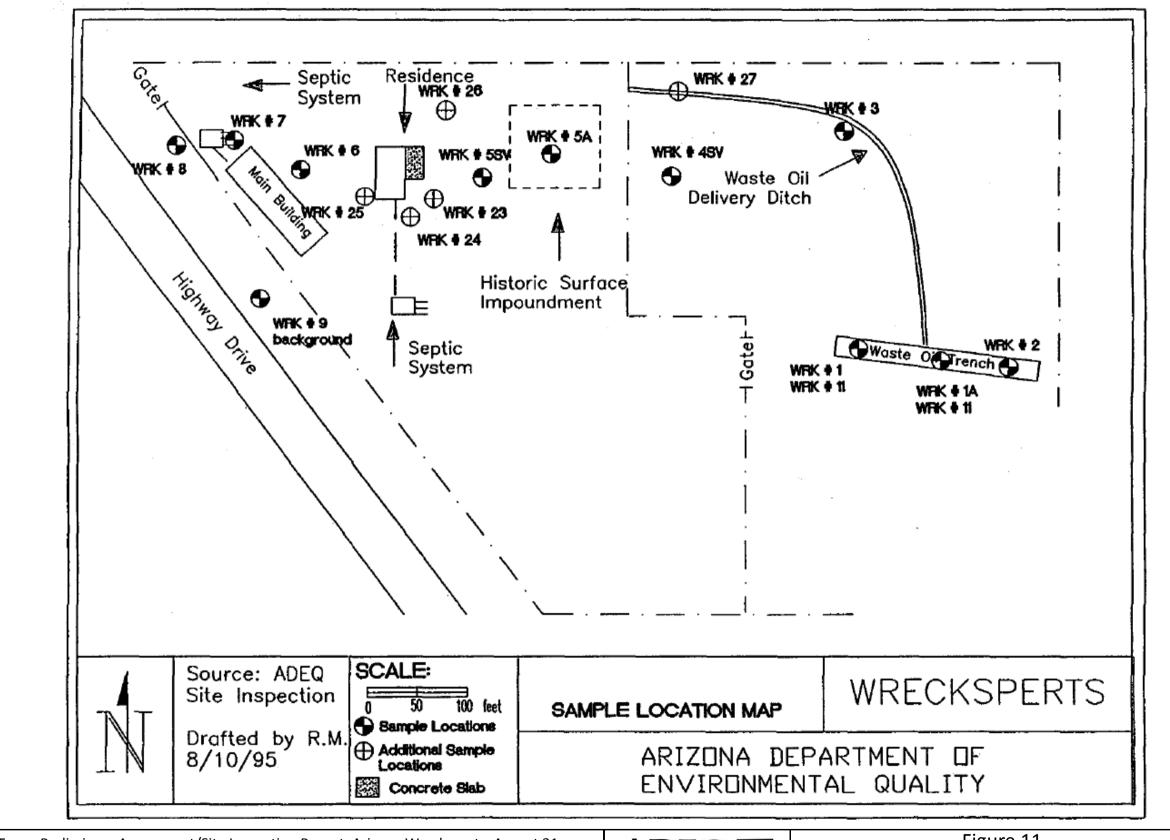
Monitor	Vi	nyl Chlori	de	1,1-D	ichloroet	hane	c-1,2-	2-1,2-Dichloroethene		Tric	chloroeth	ene	Tetra	achloroet	hene
Well	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum	Average	Minimum	Maximum	Average
Identifier	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)
GD-1	<0.5	120	106	<0.2	3.7	3.7	<0.2	<2.0	<2	<0.1	<2.0	<2	< 0.1	<10.0	<10
GD-2	<0.5	200	200	<0.2	<2.0	<2	<0.2	<5.0	<5	<0.1	<2.0	<2	<0.5	31	31
GD-3	38	1,100	711	21	140	84	66	660	355	<10.0	180	112	25	160	102
GD-4	610	2,200	1,250	22	120	72	53	350	206	84	450	253	270	1,300	774
GD-5	2,500	7,900	4,402	32	1,000	515	1,300	5,600	2,960	350	1,000	538	2,100	6,500	3,485
GS-1	<20.0	560	385	<20.0	42	35	<20.0	300	270	<1.0	37	37	<1.0	4	4
GS-2	<20.0	440	305	<2.0	<20.0	<20	<20.0	48	33	<1.0	8	4	<1.0	<10.0	<10
GS-3	790	1,700	1,198	17	23	21	<20.0	350	280	<10.0	300	173	<10.0	130	99
GS-4	4,400	7,900	5,400	<5.0	59	26	190	450	296	<10.0	240	173	120	320	218
GS-5	790	1,700	1,298	<1.0	91	80	300	480	390	190	240	218	940	1,400	1,210
P-1	180	450	337	<5.0	11	9	<5.0	28	28	8	19	14	7	16	12
P-2	<10.0	980	675	<1.0	<2.0	<2	<5.0	50	50	<5.0	58	46	<10.0	78	63
P-3	410	930	742	<1.0	<2.0	<2	<5.0	66	58	<2.0	39	27	<5.0	40	27
LFGP-1	61	6,500	2,590	<1.0	720	325	<2.0	2,800	1,517	<1.0	860	416	<1.0	7,100	3,000
LFGP-2	400	3,800	2,875	37	1,100	632	14	1,100	971	<1.0	489	460	38	2,900	1,500
LFGP-3	980	3,600	2,660	<10.0	1,000	620	<20.0	530	360	14	330	158	100	1,900	757
LFGP-4	1,100	20,000	9,850	<10.0	960	480	<20.0	5,500	4,500	<10.0	200	139	<10.0	1,800	1,060
<u>L</u> FGP-5	<20.0	700	700	<10.0	200	200	<20.0	500	500	<10.0	<100	<100	<10.0	<100	<100
LFGP-6	70	600	290	<10.0	<10.0	<10	<20.0	900	333	<10.0	90	57	<10.0	600	233
LFGP-7	2,000	7,900	4,460	<10.0	370	310	190	5,000	2,490	<10.0	1,400	570	80	2,100	880

Notes: ppbv - parts per billion volume

The ranges of VOC concentrations in samples from monitor wells (GD-, GS-, and P-) are based on four sampling events.

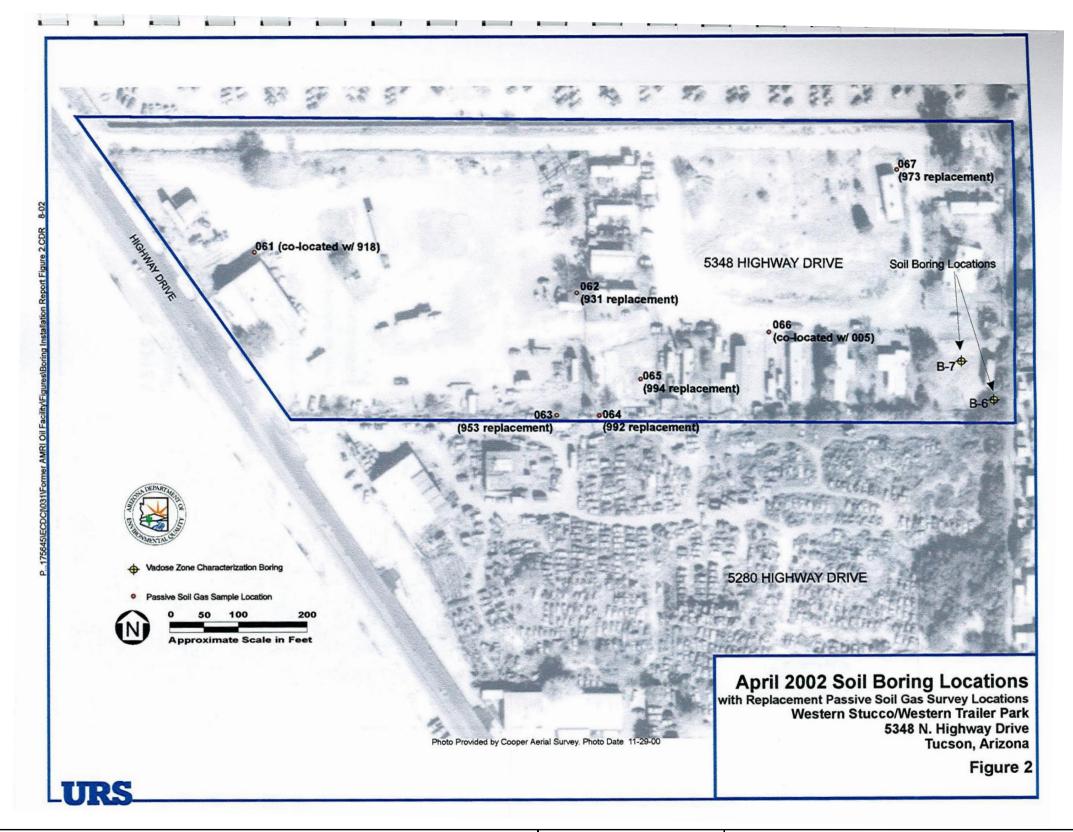
The ranges of VOC concentrations in samples from monitor probes (LFGP-) are based on one sampling event at four to five depths.

Averages are of detected values.



Appendix Q

Analytical Results for Volatile Organic Compounds in Landfill Gas Effluent from GW-2D by EPA Methods 8010/8020


Date	PCE	TCE	68=1,2:DCE	Vinyl Chloride	Ethylbenzene	Toluene	Xylene
Sampled	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)	(ppbv)
July 10	8,800	2,000	8,900	<3,800	3,700	8,300	8,200
July 11	9,300	2,700	9,900	<3,800	3,700	11,000	7,900
July 12	11,000	3,500	11,000	<3,800	4,100	13,000	9,000
July 13	11,000	4,200	12,000	12,000	4,100	13,000	8,800
July 14	12,000	4,600	13,000	14,000	4,300	13,000	9,400
July 15	14,000	4,600	13,000	18,000	4,300	14,000	9,200
July 16	16,000	4,800	13,000	17,000	4,500	14,000	9,400
July 17	17,000	5,500	16,000	16,000	5,200	16,000	11,000
July 18	17,000	4,900	13,000	17,000	4,800	15,000	11,000
July 19	14,000	4,600	15,000	<15,000	4,500	14,000	9,900

From: Preliminary Assessment/Site Inspection Report, Arizona Wrecksperts, August 31, 1995

From: Draft Boring Installation Report for the Western Stucco/Western Trailer Park Facility in support of Early Response Actions, former AMRI Oil Facility, URS, September 3, 2002

TABLE 2
VADOSE ZONE SOIL GAS SAMPLING ANALYTICAL RESULTS (ppbv)

Boring #	Depth (Feet bgs)	1,2,4 Trichlorobenzene	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Benzene	Chloroform	Chloromethane	Ethylbenzene	m & p Xylenes	o Xylene	Styrene	Tetrachloroethene	Toluene
B-6	30	<4.0	0.52	<0.5	2.9	<0.5	0.71	0.55	1.7	0.85	<0.5	< 0.5	4.2
İ	60	<4.0	28	6.8	4.6	<2.0	<2.0	13	54	<2.0	9	<2.0	49
)	90	<4.0	6.4	<2.0	3.9	<2.0	<2.0	15	43	<2.0	13	<2.0	98
	90D	<4.0	33	8.1	10	<2.0	<2.0	19	79	<2.0	13	<8.0	98
L	120	<4.0	7.6	<2.0	5.1	7.6	<2.0	18	47	<2.0	23	14	87
B-7	30	5.1	<2.0	<2.0	11	<2.0	<2.0	8.6	25	<2.0	14	2.6	49
	60	<4.0	<2.0	<2.0	3.4	<2.0	<2.0	<2.0	<4.0	<2.0	<2.0	<2.0	3.2
	90	<4.0	<2.0	<2.0	2.2	2.3	<2.0	<2.0	<4.0	<2.0	<2.0	4.9	4.8
	120	<4.0	14	3.9	2.6	9.5	<2.0	3.1	15	6.9	8	<2.0	8.4

Table 2 SUMMARY

Laboratory Analytical Results VOC - Method 8260B - Soil Sampling (mg/kg)

Former AMRI Facility - Wrecksperts Tucson, Arizona

Soil Boring ID	Depth (ft. bgs)	Date Sampled	1,2,4-trimethyl- benzene	1,2-dichloro- benzene	1,3,5-trimethyl- benzene	1,4-dichloro- benzene	4-isopropyl- toluene	4-methyl-2- pentanone	ethyl- benzene	m,p-xylene	n-propyl- benzene	o-xylene	sec-butyl- benzene	tetrachloro- ethene	toluene	trichloro- ethene
WS-SB3	5-6.5		0.12	< 0.043	<0.043	< 0.043	<0.043	<0.22	< 0.043	<0.087	< 0.043	<0.043	<0.043	0.058	<0.043	<0.043
W3-3B3	10-11.5	8/23/2007	0.1	<0.048	<0.048	<0.048	<0.048	<0.24	<0.048	<0.097	<0.048	<0.048	<0.048	<0.048	<0.048	<0.048
WS-SB4	5-6.5		5.0	0.33	1.4	0.11	0.22	0.47	0.68	2.6	0.63	1.3	0.22	3.5	0.82	< 0.050
WS-SB5	0-1.5		<0.049	< 0.049	<0.049	< 0.049	<0.049	<0.25	< 0.049	<0.099	< 0.049	<0.049	< 0.049	0.1	<0.049	< 0.049
WS-SB7	20-21.5		0.27	<0.046	0.061	<0.046	0.051	<0.23	< 0.046	<0.092	< 0.046	<0.046	<0.046	<0.046	<0.046	<0.046
	5-6.5		0.70	< 0.047	0.18	< 0.047	0.10	<0.24	< 0.047	<0.095	0.051	0.059	<0.047	<0.047	<0.047	0.052
	10-11.5]	2.9	<0.041	0.75	<0.041	0.44	<0.20	0.079	0.22	0.20	0.22	0.16	<0.041	< 0.041	0.12
WS-SB9	15-16.5	8/24/2007	5.3	< 0.050	1.4	< 0.050	0.78	<0.25	0.17	0.43	0.39	0.44	0.29	<0.050	<0.050	0.37
	20-21.5		3.7	< 0.047	1.0	< 0.047	0.59	<0.23	0.13	0.31	0.28	0.30	0.21	<0.047	<0.047	0.28
	25-26.5		0.1	<0.044	<0.044	<0.044	<0.044	<0.22	< 0.044	<0.088	< 0.044	<0.044	<0.044	<0.044	<0.044	<0.044
WS-SB-10	5-6.5		1.0	< 0.045	0.24	< 0.045	0.30	<0.23	0.052	<0.090	0.11	0.090	0.12	<0.045	<0.045	0.057
W3-3B-10	10-11.5		0.057	< 0.047	<0.047	< 0.047	0.095	<0.24	< 0.047	<0.094	< 0.047	<0.047	< 0.047	<0.047	<0.047	< 0.047
The state of the s	ential SRL 10 Carcinogen					3.5	NE	NE						0.51		3.0
Mark to the world be the property of	ential SRL 10 Carcinogen	BURNES CONTRACTOR				35	NE	NE						5.1		30
Residentia	I SRL Non - C	Carcinogen	52	600*	21		NE	NE	400*	270	240*	270	220*		650*	17
Non	-Residential	SRL	170	600*	70	79	NE	NE	400*	420*	240*	420*	220*	13	650*	65

ADEQ May 2007 Soil Remediation Standards (SRLs)

Volatile Organic Compounds (VOC) Analyzed by EPA Method 8260B (mg/Kg)

Carcinogen 10-6 Risk = Residential SRL (mg/kg) for Carcinogen (child care facility or school)

Carcinogen 10⁻⁵ Risk = Residential SRL (mg/kg) for Carcinogen

Compound Detected

BOLD Exceeds SRL

Sample Collection Depth Measured in Feet below ground surface (bgs).

NE = Not Established

* = Indicates SRL is based on the chemical-specific saturation level in soil for volatile organic chemicals only.

WESTERN STUCCO, MARCH 2003, SOIL GAS TESTING RESULTS FOR MONITORING WELL W-32 EL CAMINO DEL CERRO EARLY RESPONSE ACTION EVALUATION

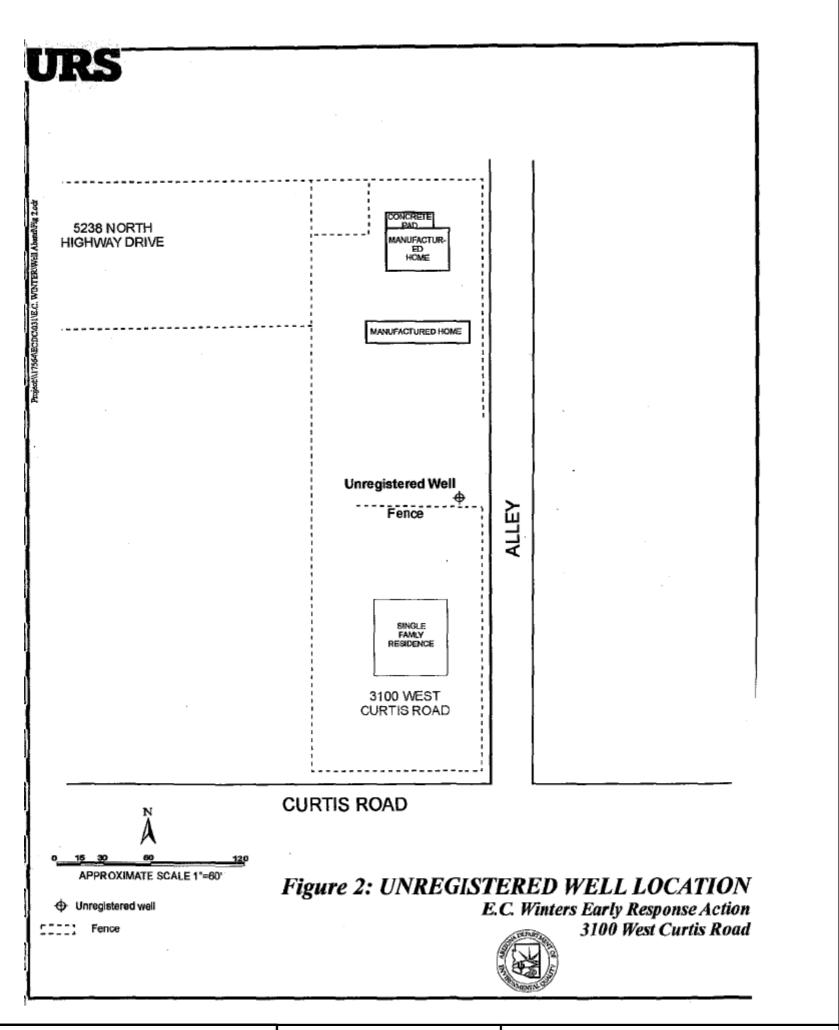
Analyte	WS/WT Soil Gas W-32-30' (ppbv) March 2003	WS/WT Soil Gas W-32-60' (ppbv) March 2003	WS/WT Soil Gas W-32-90' (ppbv) March 2003	WS/WT Soil Gas W-32-120' (ppbv) March 2003
1,2,4-Trichlorobenzene				
1,2,4-Trimethylbenzene				
1,3,5-Trimethylbenzene				
Benzene	22	11	110	12
Chloroform				
Chloromethane				
Ethylbenzene	2.7			
m&p-Xylene				
o-Xylene				
Styrene				
Tetrachloroethene	3.6	24		5.8
Toluene	110		76	9.9
Trichloroethene	7.3	50	19	

ECDC – WRECKPERTS VAPOR WELL SAMPLING ANALYTICAL RESULTS NOVEMBER 2006

	SW8260 Analytes (ppbv)																											
Sample Location Identification	Fetrachloroethene	Trichloroethene	1,1 - Dichloroethene	Trichlorofluoromethane	Benzene	Dichlorodifluoromethane	Toluene	Carbon Disulfide	Hexane	Propene (Propylene)	Trichlorotrifluoroethane	1,2,4 - Trimethylbenzene	Chloroform	Нертапе	1,3,5 - Trimethylbenzene	4 - Ethyltoluene	Acetone	Ethyl Acetate	Ethylbenzene	m & p Xylene	o-Xylene	2 - Butanone	Bromomethane	Chloromethane	cis - 1,2 - Dichloroethene	2,2,4 - Trimethylpentane	Cyclohexane	Tetrahydrofuran
SV1-33	220.0	15.0	<2.5	<2.5	<2.5	<2.5	<2.5	10.0	9.00	13,0	9.90	<2.5	<2.5	<2.5	<2.5	<2.5	<25	<2.5	<2.5	<5.0	<2.5	<5.0	<2.5	<2.5	<2.5	<2.5	<2.5	<10
SV1-53	110.0	46.0	<1.0	<1.0	<1.0	<1.0	1.2	4.2	13.0	1.10	1.70	2.00	1.20	5.00	<1.0	<1.0	<10	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0
SV1-73	52.0	9.8	0.57	1.30	0.83	<0.50	1.7	2.6	4.30	<0.50	3.60	4.20	0.94	2.00	1.20	1,20	9.20	0.97	0.82	3.00	1.20	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<2.0
SV1-93	43.0	33.0	<10	<10	<10	48.0	<10	14.0	35.0	450	12.0	<40	<10	11.0	<10	<10	<100	<10	<10	<20_	<10	<20	<10	<10	<10	<10	<10	<40
SV2-33	24.0	53.0	<0.50	0.63	<0.50	<0.50	1.6	2.6	2.40	<0.50	<0.50	3.90	<0.50	1.00	1.50	2.60	16.0	<0.50	1.00	3.20	1.50	1.90	0.57	1.80	2.00	<0.50	<0.50	<2.0
SV2-53	12.0	32.0	<10	<10	<10	<10	<10	<10	26.0	370	<10	<10	<10	<10	<10	<10	<100	<10	<10	<20	<10	<20	<10	<10	100.0	32.0	14.0	<40
SV2-73	11.0	18,0	<5.0	<5.0	<5.0	<5.0	<5.0	24.0	8.00	160	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	15.0	6.1	<5.0	<20
SV2-93	12,0	24.0	<5.0	<5.0	<5.0	<5.0	<5.0	32.0	13.0	110	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	7.5	<5.0	<5.0	<20
SV3-33	73.0	2.3	<1.0	<1.0	<1.0	<1.0	<1.0	1.7	1.00	<1.0	<1.0	1.80	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0
SV3-53	32.0	4.7	<0.50	1.2	<0.50	<0.50	1.7	3.5	2,40	<0.50	<0.50	2.20	<0.50	0.84	0.66	1.20	8.80	0.64	0.82	1.90	0,69	<1.0	<0.50	<0.50	<0.50	4.6	<0.50	4.8
SV3-73	28.0	6.1	2.3	1.5	<0.50	<0.50	2.1	1.8	2.60	<0.50	<0.50	2.30	<0.50	1.40	0.69	1.20	15.00	1.60	0.65	1.20	0.75	<1.0	< 0.50	<0.50	<0.50	3.8	<0.50	2.8
SV3-93	23.0	6.4	<0.50	1.5	<0.50	<0.50	3.4	2.8	2.30	<0.50	<0.50	1.80	<0.50	<0.50	<0.50	0.78	8.80	1.20	0.52	<1.0	0.70	<1.0	<0.50	2.4	<0.50	2.7	<0.50	<2.0
All remaining 8	260 ana	lytes b	elow lal	boratory	detecti	on limit	s																					

All remaining 8260 analytes below laboratory detection limits

ppbv parts per billion by volume <2.5 results below laboratory detection limit of 2.5



Vapor Well Sampling **Analytical Results** February 2007

5			_					_		_		_		ECDC-	Soil Va	por We	ells (2/7/2	2007 - V	apor Ai	nalysis)							- T							64	\neg
5																	_	Analyte		-															
Ţ																																			
Sample	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	1,4-Dichlorobenzene	2,2,4-Trimethylpentane	2-Butanone (MEK)	2-Propanol	4-Ethyltoluene	Acetone	Benzene	Carbon disulfide	Chlorobenzene	Chloroform	Chloromethane	cis-1,2-Dichloroethene	Cyclohexane	Dichlorodifluoromethane (F-12)	Dichlorotetrafluoroethane (F-114)	Ethyl Acetate	Ethylbenzene	Heptane	Hexane	m&p-Xylene	Methyl tert-butyl ether	Methylene chloride	o-Xylene	Propene (Propylene)	Tetrachloroethene	Toluene	Trichloroethene	Trichlorofluoromethane (F-11)	Trichlorotrifluoroethane (F-113)	Vinyl chloride
SV1-33	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 5.0		< 2.5	< 25	< 2.5	7.8	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	14	< 2.5	< 2.5	< 2.5	< 5.0	< 5.0	< 2.5	< 2.5	< 2.5	180	3.0	12	< 2.5	7.3	< 2.5
SV1-53	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 5.0	_	< 2.5	< 25	< 2.5	5.3	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 5.0	< 5.0	< 2.5	< 2.5	< 2.5	84	< 2.5	38	< 2.5	_	< 2.5
SV1-73	< 1.0	< 1.0	3.7	1.7	< 1.0	< 1.0	< 1.0	< 2.0		< 1.0	< 10	1.9	38	< 1.0	< 1.0	43	< 1.0	< 1.0	6.3	< 1.0	< 1.0	< 1.0	4.7	< 1.0	4.2	<2.0	< 1.0	2.0	10	40	4.8	25	5.0	7.6	< 1.0
SV1-93	< 1.0	< 1.0	< 1.0	1.4	< 1.0	< 1.0	< 1.0	< 2.0	_	< 1.0	< 10	< 1.0	4.0	< 1.0	32	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.1	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	64	1.0	12	5.3	3.3	< 1.0
SV2-33	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 4.0	< 1.0	< 10	< 1.0	4.9	< 1.0	< 1.0	1.4	< 1.0	< 1.0	< 1.0	< 1.0	1.9	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	1.2	13	1.2	28	< 1.0	< 1.0	< 1.0
SV2-53	< 0.50		< 0.50	0.83	< 0.50	1.0	2.7	1.4	< 2.0	< 0.50	10	< 0.50	4.2	< 0.50	< 0.50	0.64	5.7	1.1	< 0.50	< 0.50	3.4	< 0.50	1.7	3.4	< 1.0	< 1.0	0.50	< 0.50	< 0.50	12	2.8	17	< 0.50		< 0.50
SV2-73		< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 1.0	_	< 0.50	< 5.0	1.4	< 0.50	0.70	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.53	< 1.0	_	< 0.50	< 0.50	< 0.50	14	0.60	17	< 0.50	1.1	< 0.50
SV2-93	< 0.50	100000000000000000000000000000000000000	< 0.50	< 0.50	< 0.50		0.64	< 1.0	< 2.0	< 0.50	11	1.1	4.1	< 0.50	0.52	0.92	< 0.50	< 0.50	7.1	< 0.50	5.1	< 0.50	1.3	2.4	< 1.0	< 1.0	< 0.50	< 0.50	11	13	2.6	20	1.6	2.0	< 0.50
SV3-33	< 0.50	< 0.50	< 0.50	0.63	< 0.50	< 0.50	< 0.50	< 1.0	< 2.0	< 0.50	12	< 0.50	2.3	< 0.50	< 0.50	2.5	< 0.50	< 0.50	< 0.50	< 0.50	0.64	< 0.50	< 0.50	< 0.50	< 1.0		< 0.50	< 0.50	< 0.50	81	0.52	1.1	< 0.50	< 0.50	< 0.50
SV3-33-D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	7.3	< 1.0	23	< 1.0	4.3	< 1.0	< 1.0	2.0	< 1.0	< 1.0	< 1.0	< 1.0	15	< 1.0	1.5	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	62	4.8	1.1	< 1.0	< 1.0	< 1.0
SV3-53	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.60	< 1.0	5.8	< 0.50	17	0.81	7.2	< 0.50	< 0.50	0.89	< 0.50	0.58	< 0.50	< 0.50	14	< 0.50	2.1	1.6	< 1.0	< 1.0	0.93	< 0.50	< 0.50	23	6.7	2.4	0.81	< 0.50	< 0.50
SV3-73	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.4	0.79	< 1.0	< 2.0	< 0.50	< 5.0	0.61	2.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.7	< 0.50	0.68	0.71	< 1.0		< 0.50	< 0.50	< 0.50	26	2.1	3.6	0.97	0.62	< 0.50
SV3-93	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	0.83	< 1.0	2.7	< 0.50	17	0.63	5.9	< 0.50	< 0.50	5.9	< 0.50	< 0.50	< 0.50	< 0.50	2.5	< 0.50	1.0	0.99	< 1.0	< 1.0	< 0.50	< 0.50	< 0.50	27	3.8	5.0	1.1	0.70	< 0.50
SR-84-101-20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 0.50	< 1.0	< 2.0	< 0.50	6.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	_	< 0.50	< 0.50	< 0.50	11	0.57	< 0.50	0.70	< 0.50	< 0.50
SR-84-101-40	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 2.0	< 0.50	18	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 1.0	< 0.50	< 0.50	< 0.50	18	0.53	< 0.50	1.0	0.76	< 0.50
SR-84-101-60	200	1.1	11	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 4.0	< 1.0	< 10	< 1.0	< 1.0	< 1.0	2.2	< 1.0	< 1.0	< 1.0	7.9	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	1.5	58	< 1.0	11	5.5	4.5	< 1.0
SR-84-101-75	< 2.5	5.0	43	< 2.5	< 2.5	< 2.5	< 2.5	< 5.0	< 10	< 2.5	< 25	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	12	< 2.5	57	< 2.5	10	< 2.5	< 2.5	< 2.5	< 5.0	< 5.0	< 2.5	< 2.5	< 2.5	75	3.6	37	16	15	5.8
SR-84-201-20	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 4.0	< 1.0	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.0	< 1.0	2.4	< 1.0	2.2	< 1.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	2.8	110	< 1.0	< 1.0	< 1.0	< 1.0
SR-84-201-40	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	7.7	< 0.50	< 1.0	< 2.0	< 0.50	< 5.0	< 0.50	0.76	< 0.50	< 0.50	< 0.50	2.7	1.3	1.5	< 0.50	< 0.50	0.66	2.1	2.8	1.5	< 1.0	< 0.50	0.73	< 0.50	5.7	1.2	0.54	0.90	0.75	< 0.50
SR-84-201-60	< 0.50	< 0.50	< 0.50	0.51	< 0.50	< 0.50	< 0.50	< 1.0	< 2.0	< 0.50	< 5.0	0.52	0.99	< 0.50	< 0.50	< 0.50	< 0.50	2.5	7.7	0.65	< 0.50	0.72	3.1	5.0	1.4	< 1.0	< 0.50	0.76	1.5	8.7	2.2	3.4	3.8	8.8	< 0.50
SR-84-201-75	< 1.0	1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	6.6	< 1.0	12	< 1.0	1.2	< 1.0	1.4	< 1.0	< 1.0	3.1	23	1.5	26	< 1.0	5.1	11	< 2.0	3.0	< 1.0	< 1.0	2.8	10	11	12	7.9	18	< 1.0
SR-84-301-20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 2.0	< 0.50	6.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.0	< 0.50	4.2	< 0.50	0.99	0.92	< 1.0	< 1.0	0.68	< 0.50	< 0.50	15	3.1	1.9	< 0.50	< 0.50	< 0.50
SR-84-301-40	< 0.50	< 0.50	< 0.50	15	6.1	< 0.50	1.9	< 1.0	7.6	4.4	9.2	3.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	0.94	< 0.50	5.9	2.4	2.9	3.0	37	< 1.0	0.65	17	0.61	4.1	17	< 0.50	0.52	< 0.50	< 0.50
SR-84-301-60	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.8	< 0.50	< 1.0	2.8	< 0.50	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	4.5	< 0.50	< 0.50	< 0.50	0.93	1.2	< 1.0	< 1.0	0.55	< 0.50	0.90	2.6	1.7	< 0.50	1.7	3.0	< 0.50
SR-84-301-75	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 2.0	< 0.50	< 5.0	< 0.50	< 5.0	< 5.0	< 5.0	0.75	< 5.0	< 5.0	16	2.2	< 0.50	< 0.50	2.0	3.9	< 1.0	< 1.0	< 0.50	< 0.50	2.8	3.6	0.76	< 0.50	8.3	14	< 0.50

Il remaining TO15 analytes are below laboratory detection limits apply - parts per billion by volume <2.5 results below labora <2.5 results below laboratory detection limit of 2.5

From: Well Abandonment Report, 3100 West Curtis Road, El Camino del Cerro WQARF Site, URS, September 25, 2005

Figure 18

Unregistered well location, E.C Winter

Appendix Q

Results of Water Analyses at the E.C. Winter Site, April 3 through 8, 2002

Boring 1, April 5-8, 2002	Water Sample Location Depth (feet)							
	129	290						
1,1-Dichloroethane	5.1	<1.0						
1,1-Dichloroethene	1.3	<1.0						
cis-1,2-Dichloroethene	19	<1.0						
Dichlorodifluoromethane	3.8	<1.0						
Tetrachloroethene	23	<1.0						
Trichloroethene	15	<1.0						

Concentration in micrograms per liter (µg/L)

Boring 3, April 3, 2002	Water Sample Location Depth (ft)
	130
1,1-Dichloroethane	1.3
1,2-Dichloroethane	2.9
Chloroform	1.3
cis-1,2-Dichloroethane	2.8
Dichlorodifluoromethane	1.0
Tetrachloroethene	5.4
Trichloroethene	27

Concentration in micrograms per liter (µg/L)

Boring 4, April 4, 2002	Water Sample Location Depth (feet)
	130
1,1-Dichloroethane	1.0
1,2-Dichloroethane	2.7
Chloroform	1.5
Tetrachloroethene	1.4
Trichloroethene	26

Concentration in micrograms per liter (µg/L)

Boring 5, April 5, 2002	Water Sample Location Depth (feet)
	130
1,2-Dibromoethane	2.2
Acetone	46
Chloroform	1.7
Tetrachloroethene	1.4
Trichloroethene	25

Concentration in micrograms per liter (µg/L)

From: Draft Vadose Zone Remedial Action Plan Former E.C. Winter Facility, URS, August 2002

Boring 2 April 1, 2002

	Soil Va	por Sample	Location D	epth (feet)
	30	60	90	120
1,1,1-Trichloroethane	560	520	<10	<10
1,1-Dichloroethane	460	800	300	<10
1,1-Dichloroethene	<10	42	210	<10
Chloroform	10	11	220	<10
m&p-Xylene	<20	<20	35	31
o-Xylene	<10	<10	15	12
Styrene	<10	<10	14	<10
Tetrachioroethene	1200	150	34	<10
Toluene	<10	15	42	54
Trichloroethene	960	930	2800	10
Trichlorotrifluoroethane	34	49	180	<10

Concentrations in parts per billion by volume (ppbv)

Boring 3 April 3, 2002

bolling of ripinion and	Soil Vap	or Sample I	ocation De	pth (feet)
	30	60	90	120
1,1,1-Trichloroethane	100	3	<2.0	<10
1,1-Dichloroethane	120	9.1	<2.0	49
1,1-Dichloroethene	<10	0.54	<2.0	140
1,2,4-trimethylbenzene	<10	3.3	2.8	√20
1,3,5-Trimethylbenzene	<10	0.9	<2.0	<10
1,4-Dichlorobenzene	<10	<0.5	<2.0	<10
Benzene	10	2.1	4.7	<10
Chloroform	<10	<0.5	<2.0	120
Chloromethane	<10	0.91	2	<10
Dichlorodifluoromethane	<10	0.92	<2.0	11
Ethylbenzene	<10	1.3	5.4	<10
m&p-Xylene	<20	5.6	19	<20
Methylene Chloride	<10	<0.5	<2.0	<10
o-Xylene	<10	2	7.3	<10
Styrene	<10	<0.5	4.2	<10
Tetrachloroethene	180	<0.5	3	<40
Toluene	16	7.7	25	20
Trichloroethene	990	27	3.5	900
Trichlorotrifluoroethane	19	0.73	<2.0	140

Concentrations in parts per billion by volume (ppbv)

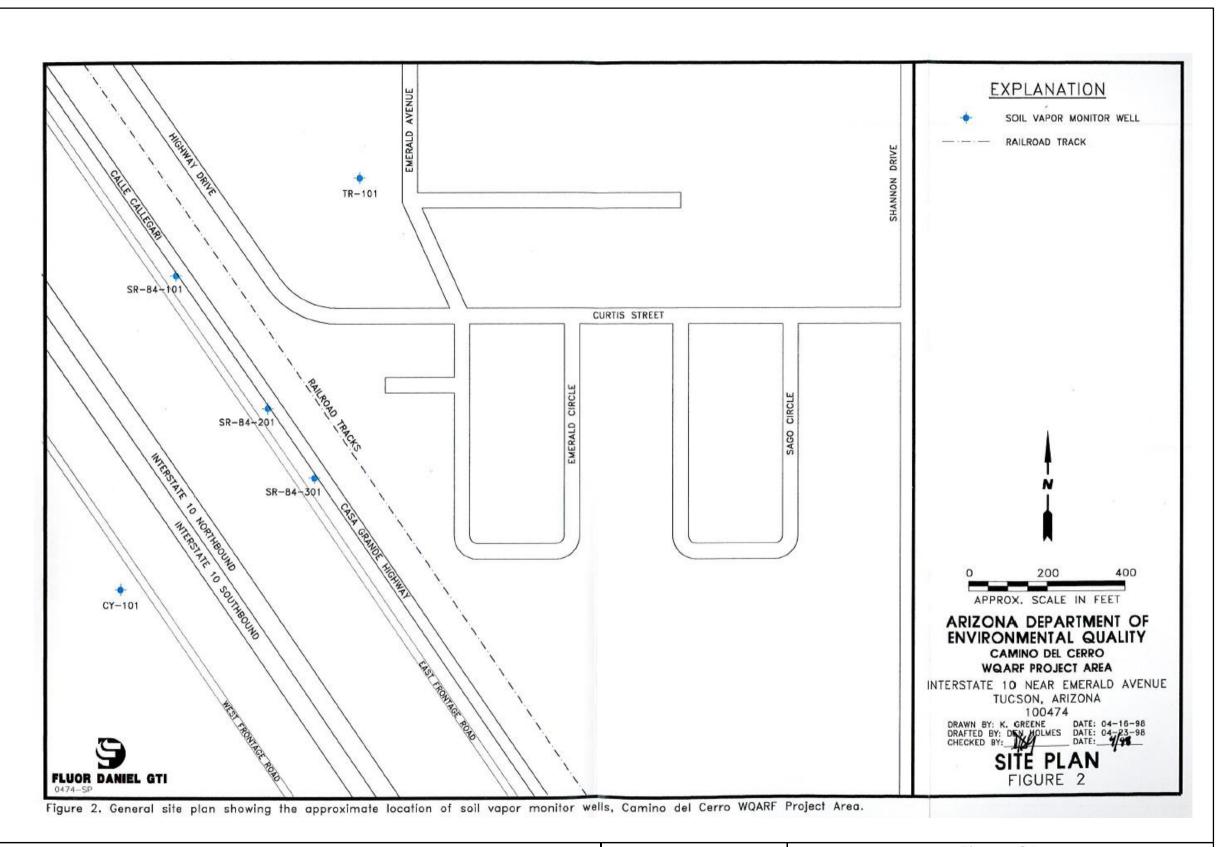
Boring 4 April 4, 2002

	Soil Vap	or Sample L	ocation De	pth (feet)
	30	60	90	120
1,1,1-Trichloroethane	11	210	2.2	<10
1,1-Dichloroethane	18	620	7.4	53
1,1-Dichloroethene	<2	22	<2	120
1,2,4-trimethylbenzene	2.2	<20	22	<10
1,3,5-Trimethylbenzene	<2	<10	6.6	<10
1,4-Dichlorobenzene	<2	<10	6.5	<10
Benzene	4.2	12	4.2	<10
Chloroform	<2	17	√2	140
Chloromethane	<2	<10	<2	<10
Dichlorodifluoromethane	<2	<10	<2	<10
Ethylbenzene	2.4	<10	30	17
m&p-Xylene	11	21	90	52
Methylene Chloride	<2	<10	<2	<10
o-Xylene	4.2	<10	<2	<10
Styrene	<2	<10	23	12
Tetrachloroethene	18	140	4.9	14
Toluene	14	44	140	110
Trichloroethene	130	3500	33	740
Trichlorotrifluoroethane	2.2	37	<2	150

Concentrations in parts per billion by volume (ppbv)

From: Draft Vadose Zone Remedial Action Plan Former E.C. Winter Facility, URS, August 2002

Boring 5 April 5, 2002


	Soil Var	or Sample I	ocation De	pth (feet)
	30	60	90	120
1,1,1-Trichloroethane	120	64	<2.0	< 0.50
1,1-Dichloroethane	140	200	3.3	<0.50
1,1-Dichloroethene	<10	14	<2.0	<0.50
1,2,4-trimethylbenzene	<10	<10	10	1.3
1,3,5-Trimethylbenzene	<10	<10	2.9	<0.50
Benzene	<10	<10	2.2	<0.50
Chloroform	<10	<10	<2.0	<0.50
Chloromethane	<10	<10	<2.0	0.72
Dichlorodifluoromethane	<10	<10	<2.0	0.68
Ethylbenzene	<10	<10	21	<0.50
m&p-Xylene	<10	<10	61	1.7
Methylene Chloride	<20	<20	<2.0	5.1
o-Xylene	<10	<10	<2.0	0.74
Styrene	<10	<10	16	< 0.50
Tetrachloroethene	270	14	3.3	<0.50
Toluene	<10	12	110	2.4
Trichloroethene	1000	460	12	1.0
Trichlorotrifluoroethane	19	12	<2.0	2.8

Concentrations in parts per billion by volume (ppbv)

Figure 20

April 2002 VOCs in soil gas, E.C Winter

Appendix Q

From: Soil Vapor Sampling Report for the Third Fiscal Quarter of 1998, Camino Del Cerro WQARF Project Area, Tucson, Arizona, Fluor Daniel, May 5, 1998

	T.	ABLE 3.	SUMMA	RYO	F SOIL VA	POR AN	NALYTICA	L RESULTS	S	
Sample					Analyte Con	centrations (mg/m³)			
·D	dichlorodifluoromethane	4-ethyltoluene	tetrachloroethylene	toluene	1,2,4 trichlorobenzene	trichloroethylene	. trichlorofluoromethane	trichlorotrifluoroethane	1,3,5-trimethylbenzene	m,p-xylene
CY-20	2.2	<0.07	0.19	<0.07	<0.07	<0.07	0.16	<0.07	<0.07	<0.07
CY-40	4.0	<0.07	0.25	0.08	<0.07	<0.07	0.21	<0.07	<0.07	<0.07
CY-60	59	<0.07	3.4	<0.07	<0.07	<0.07	2.6	<0.07	<0.07	<0.07
CY-75	85	<0.07	4.5	<0.07	<0.07	<0.07	3.0	<0.07	<0.07	<0.07
TR-20	<0.07	<0.07	1.3	<0.07	<0.07	41	<0.07	<0.07	<0.07	<0.07
TR-40	<0.07	<0.07	0.92	<0.07	<0.07	26	<0.07	<0.07	<0.07	<0.07
TR-60	<0.07	<0.07	0.12	0.19	<0.07	2.4	<0.07	<0.07	<0.07	0.08
TR-75	<0.07	<0.07	<0.07	0.72	<0.07	0.52	<0.07	<0.07	<0.07	0.12
SR84-1-20	0.12	<0.07	0.07	0.46	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-1-40	0.17	<0.07	0.12	0.08	<0.07	<0.07	<0.07	<0.07	0.09	0.09
SR84-1-60	0.11	<0.07	<0.07	0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-1-75	0.15	0.08	<0.07	0.83	0.08	<0.07	<0.07	0.10	<0.07	0.17
SR84-2-20	0.13	<0.07	0.07	0.08	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-2-40	0.23	<0.07	0.09	0.26	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-2-60	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-2-75	<0.07	<0.07	<0.07	0.25	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-3-20	<0.07	<0.07	<0.07	0.08	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-3-40	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-3-60	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07
SR84-3-75	<0.07	<0.07	<0.07	0.16	<0.07	<0.07	<0.07	<0.07	<0.07	0.10

From: Installation and Initial Soil Vapor Sampling Event four Soil vapor Monitoring Probes in the el Camino Del Cerro Water Quality Assurance Revolving Fund (WQARF) Area, Tucson, Arizona, Growth Resources, Inc., June 1997

Table 3. Summary of historical soil vapor results, Camino del Cerro WQARF Project Area. Results in ppbv.

Sample ID	Date	FC12	FC11	1.1-DCE	1,1-DCA	TTE	TMB	4.ET	1,1,1-TCA	EB	PCE	R10	TOL	Xylenes	1,240CE	TCE
TR-101-20	Jun-97	<14	<12	NA I	NA	9	<14	<14	NA I	NA	189	NA	<18	<16	NA	7,505
	Jul-97	<40	<35	<50	<49	45	<40	<40	34	×45	189	<31	55	<45	<50	5,674
	Oct-97	<30	<30	<30	70	<30	<30	<30	<30	<30	412	<30	<30	<30	<30	8,410
TR-101-40	Jun-97	<14	<12	NA	NA NA	<9	<14	<14	NA NA	NA	133	NA	<18	<16	NA NA	4,759
ĺ	Jul-97	<40	<35	<50	180	58	<40	<40	99	<45	232	<31	<52	<45	<50	5,308
	Oct-97	<30	<30	<30	161	39	<30	<30	91	<30	401	<30	<30	<30	<30	6,670
TR-101-60	Jun-97	<14	<12	NA I	NA -	- 0	<14	<14	NA NA	NA	17	NÃ	50	18	ΝĀ	439
{	Jul-97	<40	<35	42	292	68	<40	<40	59	<45	142	<31	70	34	<50	3,295
ĺ	Oct-97	<30	<30	<30	584	149	<30	<30	74	<30	298	<30	<30	<30	<30	4,760
TR-101-75	Jun-97	<14	<12	NA	NA	9	<14	<14	NA .	NA	<10	NA NA	188	27	NA NA	95
	Jul-97	<40	<35	323	389	218	<40	<40	<36	<45	232	<31	<52	<u></u> <45	<50	6,223
ì	Oct-97	<30	<30	113	202	99	<30	<30	<30	<30	245	<30	<30	<30	<30	6,080
			<u> </u>	L					Ll						<u></u>	
SR84-101-20	Jun-97	24	<12	NA	NA	<9	<14	<14	NA ,	NA	10	NA	120	<16	NA .	<13
	Jul-97	18	<35	<50	<49	6	22	10	<36	7	16	<31	16	34	<50	<37
}	Oct-97	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
SR84-101-40	Jun-97	34	<12	NA NA	NA	< 9	18	<14	NA	NA	17	NA NA	21	20	NA .	<13
]	Jul-97	<40	<35	<50	<49	<26	<40	<40	<36	<45	<29	<31	<52	<45	<50	<37
	Oct-97	<7	<7	<7	<7	<7	.<7	< 7	<7	<7	21	<7	<7	<7	<7	<7
SR84-101-60	Jun-97	22	<12	NA NA	NA NA	- 9	<14	<14	NA NA	NA	<10	NA NA	18	<16	NA NA	<13
ŀ	Jul-97	99	25	<50	<49	49	<40	<40	<36	<45	20	<31	<52	<45	<50	<37
1	Oct-97	<9	<9	<9	<9	40	<9	<9	<9	<9	12	<9	<9	<9	<9	<9
SR84-101-75	Jun-97	30	<12	-NA	NA NA	13	16	16	NA	NA NA	<10	- NA	217	39	NA NA	<13
1	Jul-97	278	61	30	<49	128	10	6	<36	<45	52	5	13	14	<50	<37
į	Oct-97	13	<7	<7	<7	65	<7	<7 .	<7	<7	47	<7	<7	<7	<7	14
Ł						l			<u>.</u> <u>.</u>							

From: Soil Vapor Sampling Report for the Third Fiscal Quarter of 1998, Camino Del Cerro WQARF Project Area, Tucson, Arizona, Fluor Daniel, May 5, 1998

Summary of historical soil vapor results, Camino del Cerro WQARF Project Area Continued.

Sample 10	Date	FC12	FC11	1,1-DCE	1.1-DCA	TIE	TMB	4-E1	1.1.1-TCA	EB	PCE	R10	TOL	Xylenes	1,2-DCE	TCE
	<u> </u>															
SR84-201-20	Jun-97	26	<12	NA NA	NA	<9	<14	<14	NA	NA	10	NA	21	<16	NA	<13
	Jul-97	40	<35	<50	<49_	6	<40	<40	<36	<45	38	<31	8	<45	<50	<37
'	Oct-97	<7	<7	<7	<7	<7	<7	<7	<7	<7	42	<7	<7	<7	<7	<7
SR84-201-40	Jun-97	46	<12	NA .	NÁ	<9	<14	<14	NA .	NA	13	NA	68	<16	NA	<13
	Jul-97	72	. 7	<50	<49	8	<40	<40	<36	<45	48	<31	8	<45	<50	<37
	Oct-97	<7	<7	<7	<7	<7	<7	<7	<7	<7	35	<7	<7	<7	<7	<7
SR84-201-60	Jun-97	<14	<12	NA NA	NA NA	< 9	<14	<14	NA NA	NA.	<10	NA	<18	<16	NA NA	<13
	Jul-97	62	7	<50	<49	55	<40	<40	<36	<45	22	<31	10	7	<50	5
	Oct-97	4 8	<8	<8	<8	61	-8	<8	48	8	13	≪8	9	9	<8	<u><8</u>
SR-84-201-75	Jun-97	<14	<12	NA NA	NA NA	9	<14				- 12		25	- 10		
3K-04-201-73	Jul-97	60	14	· NA √50	<49	128	6	<14	NA <36	NA <45	<10 20	NA <31	65 13	<16 9	NA <50	<13
	Oct-97	<7	- 14	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	<7	65	<7	<7	<7	<7	23	<7	10	9		64
	Oct-97					90			<1	- </td <td>23</td> <td></td> <td>-10-1</td> <td></td> <td></td> <td>44</td>	23		-10-1			44
	<u> </u>		لــــا								لـــــا		L			
SR84-301-20	Jun-97	<14	<12	NA	NA	<9	<14	<14	NA	NA	<10	NA.	21	<16	NA	<13
	Jul-97	<40	<35	<50	<49	<26	78	32	<36	<45	<29	<31	13	45	<50	<37
ļ	Oct-97	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
SD94 204 40	hi= 07		-10								- 10					-44
SR84-301-40	Jun-97	<14	<12	NA	NA I	<9	<14	<14	NA .	NA NA	<10	NA .	<18	<16	NA	<13
ļ	Jul-97	<40	<35	<50	<49	<26	6	<40	<36	<45	<29	<31	10	7	\ 50	<37
1	Oct-97	<7	<7	<7	-<7	<7	<7	<7	<7	<7	<7	<7	<7_	<7	<7	<7
SR84-301-60	Jun-97	<14	<12	NA	NA	<9	<14	<14	NA	NA	<10	NA	<18	<16	NA	<13
ĺ	Jul-97	<40	<35	<50	<49	13	6	<40	<36	<45	<29	<31	16	9	<50	<37
	Oct-97	<8	<8	<8	<8	<8	<8	<8	<8	<8_	<8	<8	<8	<8	<8	<8
SR84-301-75	Jun-97	<14	<12	NA NA	NA		<14	<14	NA NA	NA	<10	NA NA	42	23	NĀ.	<13
	Jul-97	44	<35	<50	<49	59	6	6	<36	<45	6	<31	18	9	<50	11
ţ	Oct-97	<7	<7	-7	<7	14	<7	<7	<7	<7	- 27	<7	<7	<7	<7	<7
1																
CY-101-20	Jun-97	438	28	NA T	NA I	<9	<14	<14	NA]	NA	28	NA	<18	<16	NA	<13
	Jul-97	716	161	<50	<49	12	138	44	<36	36	45	- 31	10	109	<50	<37
ŀ	Oct-97		8	<7	<7	<7	<7	<7	<7	<7	43	<7	<7	<7	<7	<7
ŀ											 					

From: Soil Vapor Sampling Report for the Third Fiscal Quarter of 1998, Camino Del Cerro WQARF Project Area, Tucson, Arizona, Fluor Daniel, May 5, 1998

Summary of historical soil vapor results, Camino del Cerro WQARF Project Area Continued.

Sampte ID	Date	FC12	FC11	1,1-DCE	1,1-DCA	TTE	TMB	4-ET	1,1,1-TCA	EB	PCE	R10	TOL	Xylenes	1,2-DCE	TCE
CY-101-40	Jun-97	796	37	NA	NA	<9	<14	<14	NA	NA	36	NA	21	<16	NA	<13
	Jul-97	676	151	<50	<49	12	14	6	<36	9	44	<31	<52	<45	<50	<37
CY-101-60	Jun-97	11,736	455	NA NA	NA	<9	<14	<14	NA NA	NA NA	493	NA.	<18	<16	NA NA	<13
CY-101-50	Jul-97	10,144	2,101	<50	<49	116	6	<40	<36	<45	624	<31	13	<45	<50	110
CY-101-75	Jun-97	16,907	525	NA NA	NA NA	<9	<14	<14	NA.	NA NA	653	NA NA	<18	<16	NA .	<13
CY-101-75	Jul-97	12,730	2,801	<50	34	167	6	<40	<36	<45	609	<31	< 52	<45	10	183
								<u> </u>		 						

FC12 = Dichlorodifluoromethane (Freon 12)

FC11 = Trichlorofluoromethane (Freon 11)

1,1-DCE = 1,1-Dichloroethene 1,1-DCA = 1,1-Dichloroethane

WQARF Project Area, Tucson, Arizona, Fluor Daniel, May 5, 1998

TTE = 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)

TMB = 1,2,4- & 1,3,5-Trimethylbenzene

4-ET = 4-Ethyttoluene

1,1,1-TCA = 1,1,1-Trichloroethane

EB = Ethylbenzene

PCE = Tetrachloroethene

R10 = Carbon Tetrachloride

TOL = Toluene

Xylenes = Totai (m,p&o) Xylenes

1,2-DCE = cis-1,2-Dichloroethene

TCE = Trichloroethene

NOTE: June 1997 data collected by Growth Environmental Resources and converted from mg/m³ July 1997 data collected by EMCON and converted from mg/m³.

NA = Data Not Available

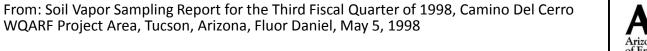


Table 2. Summary of soil vapor analytes detected during first quarter, 1998 monitoring. Results in ppbv.

Well ID	Sample ID	Sample Date	Lab ID	FC12	FC11	1,1-DCE	DCM	TTE	1,1-DCA	TCM	1,1,1-TCA	TCE	Toluene	PCE	m&p Xylene
TR-101	TR-101-20	08-Jan-98	184616	<30	<30	<30	<30	<30	58	<30	35	6,610	<30	555	<30
	TR-101-40	08-Jan-98	184615	<30	<30 .	<30	<30	43	205	57	117	5,260	<30	730	<30
	TR-101-60	08-Jan-98	184614	<30	<30	<30	<30	156	832	49	150	6,000	<30	695	<30
	TR-101-75	08-Jan-98	184613	<30	<30	200	<30	190	483	386	<30	4,430	<30	671	<30
SR84-101	SR84-101-20	07-Jan-98	184604	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	27	<7
	SR84-101-40	07-Jan-98	184603	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	35	<7
	SR84-101-60	07-Jan-98	184602	<8	<8	<8	<8	58	-8	<8	<8	<8	<8	28	<8
	SR84-101-75	07-Jan-98	184601	10	9	7	<6	40	<6	<6	<6	21	<6	73	<6
SR84-201	SR84-201-20	08-Jan-98	184608	<7	<7	<7	<7	<7	<7	<7		<u><7</u>	<7	40	<7
2112121	SR84-201-40	08-Jan-98	184607	<6	<6	<6 .	<6	<6	<6	<6	<6	<6	<6	49	<6
	SR84-201-60	08-Jan-98	184606	<7	<7	<7	<7	97	<7	<7	<7	<7	<7	38	11
	SR84-201-75	08-Jan-98	173780	<7	<7	<7	<7	103	<7	<7	<7	67	<7	41	13
	000400400	07 4 00	404000			-7	-7	-7							
SR84-301	SR84-301-20	07-Jan-98	184600	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
	SR84-301-40	07-Jan-98	184599	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
	SR84-301-60	08-Jan-98	184598	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
	SR84-301-75	07-Jan-98	184597	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7	<7
CY-101	CY-101-20	08-Jan-98	184612	<7	15	<7	<7	<7	<7	<7	<7	<7	<7	48	<7
	CY-101-40	08-Jan-98	184611	<7	13	<7	<7	<7	<7	<7	<7	<7	<7	64	<7
	CY-101-60	08-Jan-98	184610	<7	<7	<7	<7	<7	<7	<7	<7	69	<7	1,230	<7
	CY-101-75	08-Jan-98	184609	<7	<7	<7	<7	<7	18	<7	<7	153	<7	817	<7
	EB	08-Jan-98	184617	<1	<1	<1	2	<1	<1	<1	<1	<1	3	<1	1
	BD-00	08-Jan-98	184618	<7	<7	<7	<7	8	<7	<7	<7	76	<7	1,570	<7

FC12 = Dichlorodifluoromethane (Freon 12)

TTE = 1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)

FC11 = Trichlorofluoromethane (Freon 11)

DCM = Dichloromethane (Methlene Chloride)

1,1-DCE = 1,1-Dichloroethene

1,1-DCA = 1,1-Dichloroethane

TCM = Trichloromethane (Chloroform)

1,1,1-TCA = 1,1,1-Trichloroethane

TCE = Trichloroethene

PCE = Tetrachloroethene

Notes: Sample BD-00 is a blind duplicate sample of sample CY-101-60

ADEO

Arizona Department
of Environmental Quality

EL CAMINO DEL CERRO WQARF SITE SUMMARYOF SOIL GAS ANALYTICAL DATA

SECOND QUARTER 2001

				We	ll ID	-1						We	II ID					We	11 ID	
Analyte		SR-8	4-301 rted in ppby	7)		SR-8 results repo	4-201 rted in ppb	v)	. (4-101 rted in ppby	v)		CY results repo	-101 rted in ppb	v)		TR results repo	-101 rted in ppb	v)
:	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet
1,1,1-TCA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	<5.0	< 1.0	< 1.0	< 10	< 10	37	85	87	14
1,1-DCA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	46	< 1.0	< 1.0	< 10	42	56	130	440	370
1,1-DCE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	7.9	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	53	250
1,2,4-ТСВ	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 10	< 1.0	< 1.0	< 5.0	<10	< 2.0	< 2.0	< 20	< 20	< 20	< 20	< 20	< 20
1,2,4-TMB	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	< 0.50	< 0.50	0.59	1.1	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Chloroform	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	230
Chloromethane	< 0.50	< 0.50	< 0.50	0.90	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
c-1,2-DCE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	16	< 10	< 10	< 10	< 10
Freon 12	4.6	3.9	29	45	6.7	8.9	41	70	17	28	160	260	31	58	930	1,700	74	< 10	< 10	< 10
Freon 114	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	1.6	3.1	52	110	< 10	< 10	< 10	< 10
Ethyl benzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	1.7	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Total Xylene	< 1.0	< 1.0	< 1.0	< 1.0	0.74	6.5	5.9	< 10	< 1.0	< 1.0	< 5.0	< 10	< 2.0	< 2.0	< 20	< 20	< 20	< 20	< 20	< 20
PCE	1.5	1.4	2.2	2.1	13	13	12	11	16	21	17	20	7.1	7.6	54	120	180	170	170	260
Toluene	29	3.2	3.3	3.8	1.1	3.3	4.6	< 5.0	1.5	1.0	< 2.5	< 5.0	2.1	1.4	< 10	< 10	< 10	< 10	< 10	< 10
TCE	< 0.50	< 0.50	< 0.50	1.5	< 0.50	< 0.50	1.1	16	< 0.50	6.2	< 2.5	15	< 1.0	< 1.0	39	110	2,000	1,900	3,000	3,500
Freon 11	0.81	0.63	2.2	4.1	1.0	1.3	4.3	7.0	2.9	4.3	19	32	4.4	8.9	170	330	14	< 10	< 10	< 10
Freon 113	0.98	0.81	18	35	2.9	3.6	52	85	4.9	9.8	63	92	1.7	2.6	24	45	28	32	110	180

From: Quarterly report, Second Quarter 2001, El Camino Del Cerro WQARF Site, URS, July 6, 2001

EL CAMINO DEL CERRO WQARF SITE SUMMARY OF SOIL GAS ANALYTICAL DATA

THIRD QUARTER 2001

				We	ll ID							We	ll ID							
Analyte		SR-8 results repo	4-301 rted in ppb	v)			4-201 rted in ppb	v)			4-101 rted in ppb	<i>(</i>)		CY results repo	-101	0)		TR (results repo	-101	e)
	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet		40 Feet	60 Feet	75 Feet
1,1,1-TCA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	28	130	160	18
1,1-DCA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	30	47	230	800	230
1,1-DCE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0	< 5.0	< 0.50	< 0.50	7.0	38	< 1.0	< 1.0	< 10	< 10	< 10	< 10	75	100
1,2,4-TCB	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 2.0	< 10	< 1.0	< 1.0	< 5.0	< 10	< 2.0	< 2.0	< 20	< 20	< 20	< 20	< 20	< 20
1,2,4-TMB	< 0.50	< 0.50	< 0.50	< 0.50	0.59	2.1	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
1,3,5-TMB	< 0.50	< 0.50	< 0.50	< 0.50	0.56	0.86	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Benzene	< 0.50	< 0.50	< 0.50	0.86	< 0.50	< 0.50	1.1	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Chloroform	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	11	31	96
Chloromethane	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
c-1,2-DCE	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Freon 12	3.1	2.6	17	13	5.2	8.4	13	46	14	16	150	270	25	42	640	1,200	< 10	< 10	< 10	< 10
Freon 114	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	3.1	5.6	1.1	2.0	31	71	< 10	< 10	< 10	< 10
Ethyl benzene	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	< 5.0	<1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
Total Xylene	< 1.0	< 1.0	< 1.0	< 1.0	0.66	4.8	< 2.0	< 10	< 1.0	< 1.0	< 5.0	< 10	< 2.0	< 2.0	< 20	< 20	< 20	< 20	< 20	< 20
Methylene chloride	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	1.1	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	25	< 10	< 10	< 10
PCE	1.7	0.99	1.8	0.96	12	13	4.0	7.6	11	13	15	20	5.8	7.2	41	20	220	340	400	170
Toluene	0.61	30	0.56	1.4	< 0.50	2.2	2.7	< 5.0	0.54	< 0.50	< 2.5	< 5.0	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10
TCE	< 0.50	< 0.50	< 0.50	< 0.50	9.2	1.7	12	8.6	< 0.50	6.1	< 2.5	13	1.8	< 1.0	23	42	5,900	5.200	7,300	3,400
Freon 11	0.60	< 0.50	1.3	1.0	0.81	1.3	1.2	< 5.0	2.0	2.4	17	30	3.1	5.8	100	230	< 10	< 10	< 10	< 10
Freon 113	0.76	0.52	. 10	6.1	2.4	3.4	8.0	51	4.2	5.9	58	90	1.1	1.7	16	35	22	53	140	110
Vinyl chloride	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 2.5	5.5	< 1.0	< 1.0	< 10	< 10	< 10	< 10	< 10	< 10

From: Quarterly report, Third Quarter 2001, El Camino Del Cerro WQARF Site, URS, December 7, 2001

EL CAMINO DEL CERRO WQARF SITE SUMMARY OF SOIL GAS ANALYTICAL DATA

FOURTH QUARTER 2001

				We	il ID							
Analyte	(SR-8 results repo	4-101 rted in ppb	v)		SR-8 results repo	34-201 orted in ppb	v)_	(4-301 rted in ppby	()
	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet
1,1,1-TCA	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,1-DCA	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,1-DCE	< 0.50	< 0.50	12	59	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,2,4-TCB	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	1.2	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,2,4-TMB	< 0.50	< 0.50	< 2.5	< 5.0	0.53	1.6	< 1.0	< 5.0	< 0.50	0.73	< 0.50	< 0.50
1,3,5-TMB	< 0.50	< 0.50	< 2.5	< 5.0	0.58	0.66	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Benzene	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	0.60
Carbon Tetrachloride	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Chloroform	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Chloromethane	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
c-1,2-DCE	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Freon 12	14	24	170	310	6.3	8.6	49	86	. 4.4	3.5	19	59
Freon 114	< 0.50	0.55	3.4	6.3	< 0.50	< 0.50	1.0	< 5.0	< 0.50	< 0.50	< 0.50	1.4
Ethyl benzene	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	1.4	1.9	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Total Xylene	< 1.0	< 0.50	< 5.0	< 10	0.75	6.0	7.3	< 10	< 1.0	1.2	< 1.0	< 1.0
Methylene chloride	< 0.50	< 1.0	< 2.5	< 5.0	·< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
PCE	18	32	31	62	13	12	17	22	3.1	2.5	2.6	2.4
Toluene	< 0.50	< 0.50	< 2.5	< 5.0	0.62	2.8	3.0	< 5.0	0.82	0.80	0.94	1.4
TCE	< 0.50	< 0.50	3.6	30	< 0.50	< 0.50	2.0	21	< 0.50	< 0.50	< 0.50	1.2
Freon 11	2.0	3.3	19	32	0.87	1.1	4.1	7.6	0.67	0.54	1.4	4.2
Freon 113	4.6	7.7	65	99	2.5	3.3	57	80	1.2	0.65	12	34
Vinyl chloride	< 0.50	< 0.50	<2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50

From: Quarterly report, Fourth Quarter 2001, El Camino Del Cerro WQARF Site, URS, February 27, 2002

EL CAMINO DEL CERRO WQARFSITE SUMMARY OF SOIL GAS ANALYTICAL DATA

FIRST QUARTER 2002

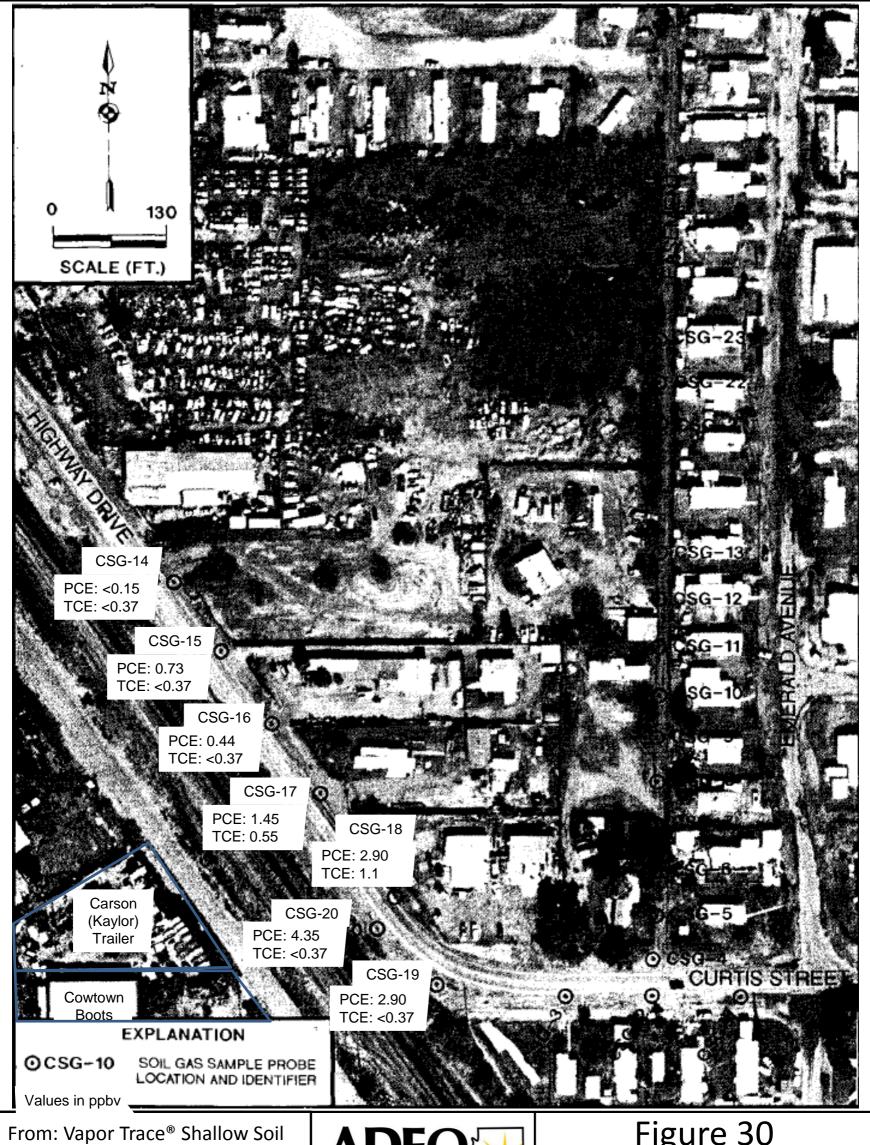
	Τ					K115K 200						
				We	ll ID							
Analyte	Ι,	SR-8 results repo	4-101 erted in pob	v) ·		SR-8 results repo	4-201 rted in pub	v)			4-301 rted in ppb	4)
	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet	20 Feet	40 Feet	60 Feet	75 Feet
1,1,1-TCA	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,1-DCA	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,1-DCE	< 0.50	< 0.50	11	36	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
1,2,4-TCB	< 1.0	< 1.0	< 5.0	< 10	< 1.0	< 1.0	< 2.0	<10	< 1.0	< 1.0	< 1.0	<-1.0
1,2,4-TMB	< 0.50	< 0.50	< 2.5	< 5.0	0.73	0.73	1.0	< 5.0	< 0.50	< 0.50	< 0.50	4.0
1,3,5-TMB	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	1.1
Benzene	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	0.83
Carbon Tetrachloride	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Chloroform	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	0.53	< 0.50	< 0.50	0.61
Chloromethane	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
c-1,2-DCE	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	<0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
Freen 12	10	15	140	250	4.1	6.5	42	70	2.2	2.8	16	49
Freon 114	< 0.50	< 0.50	3.0	5.6	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	1.2
Ethyl benzene	< 0.50	< 0.50	< 2.5	< 5.0	< 1.0	1.2	1.5	< 5.0	< 0.50	< 0.50	< 0.50	0.84
Total Xylene	< 1.0	< 1.0	< 5.0	< 10	< 1.0	4.3	6.5	< 10	< 1.0	< 1.0	< 1.0	6.8
Methylene chloride	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50
PCE	11	19	19	23	7.2	9.4	14	13	1.3	2.7	1.7	2.1
Toluene	< 0.50	< 0.50	< 2.5	< 5.0	< 0.50	1.4	2.4	< 5.0	< 0.50	< 0.50	0.63	4.2
TCE	< 0.50	< 0.50	< 2.5	17	< 0.50	< 0.50	2.3	18	< 0.50	< 0.50	< 0.50	0.89
Freon 11	1.7	2.5	18	32	0.63	0.95	4.5	6.9	< 0.50	< 0.50	1.2	3.7
Freon 113	3.3	4.9	50	84	1.6	2.7	45	62	< 0.50	0.58	9.8	28
Vinyl chloride	< 0.50	< 0.50	< 2.5	6.4	< 0.50	< 0.50	< 1.0	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50

From: Quarterly report, First Quarter 2002, El Camino Del Cerro WQARF Site, URS, April 26, 2002

Analyte	Sample Date	E.C. WINTER B2-30 (ppbv)	E.C. WINTER B2-80 (ppbv)	E.C. WINTER B5-30 (ppbv)	E.C. WINTER 85-60 (ppbv)	Analyte Maximum (ppbv)	Analyte Maximum (ug/L)
Acetone	2/20/2003	290	14	100	59		
	10/13/2005	ND(50)	ND(10)	16	ND(500)	290	0.69
1,1-Dichloroethane *	4/17/2002	340	150	250	340		
	2/20/2003	92	120	310	770		
	5/28/2003	69	11	17	600		
	2/11/2004	95	82	16	69		
	10/13/2005	35	ND(1.0)	7.2	180	770	3.1
1,1-Dichloroethene *	4/17/2002		49		46		
	2/20/2003	76	4.7	25	66		
	5/28/2003	12		60		•	
	2/11/2004	28	36		13		
	10/13/2005	10	ND(1.0)	ND(1.0)	ND(50)	76	0.30
Chloroform *	4/17/2002	ŀ	52		30		
	2/20/2003	46	6.4	18	32		
	5/28/2003	19		59	31		
	2/11/2004	40	41	2.6	<10		
	10/13/2005	15	ND(1.0)	1.2	ND(50)	59	0.29
Tetrachloroethene *	4/17/2002	1100	230	1100	350		[
	2/20/2003	4	1800	510	7.9		
	5/28/2003	1100	580	800	220		
	2/11/2004	770	500	240	400		
	10/13/2005	370	70	140	1800	1800	12
Trichloroethene *	4/17/2002	1300	1400	1800	2400		
	2/20/2003	260	550	840	660		
	5/28/2003	640	400	360	4100		
	2/11/2004	1000	1100	210	600		
	10/13/2005	490	44	84	1900	4100	22
1,1,1-Trichloroethane *	4/17/2002	240	39	200	79	240	1.3
Trichlorofluoromethane(F-11)	4/17/2002	24	36	26	38	38	0.21
Trichlorotrifluoroethane(F-113)	2/20/2003	. 1					
` ′	5/28/2003	11			17		
	2/11/2004	18					
	10/13/2005	5.2	ND(1.0)	ND(1.0)	ND(50)	18	0.14
Dichlorodifluoromethane(F-12)	2/20/2003	1.9		1.1	1.3		
` ′	10/13/2005	ND(5.0)	ND(1.0)	. 1	ND(50)	1.9	0.0094
Methylene chloride *	2/20/2003	1.8		1.1			
	10/13/2005	ND(5.0)	ND(1.0)	ND(1.0)	68	68	0.24
Total VOC Concentration							40.3
Total HAP Concentration							39.2

ppbv - parts per billion by volume

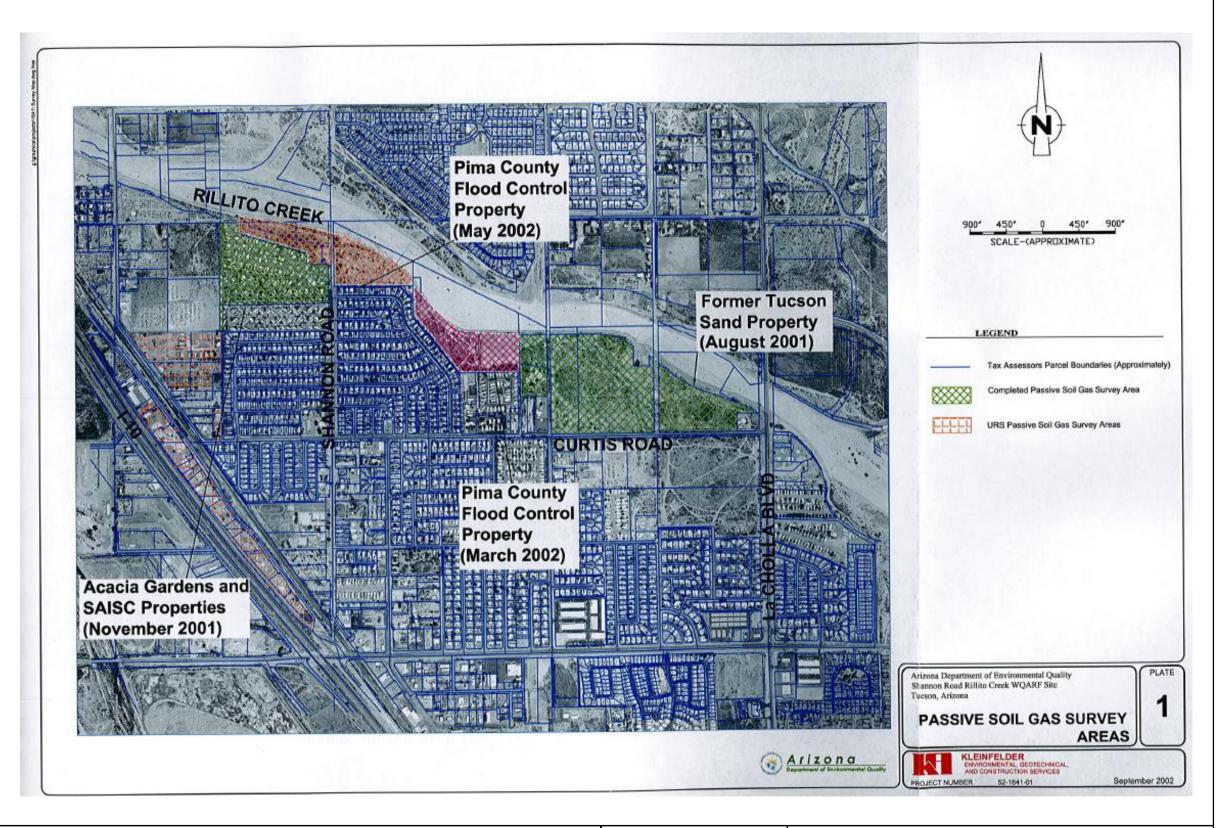
μg/L - micrograms per liter
ND - No detectable concentration above the laboratory method detection limit


* Indicates Constituent is a Hazardous Air Pollutant (HAP)

From: 30% Design Submittal Soil Vapor Extraction unit Former E.C. Winter Site, URS, February 2006

Figure 29

E.C. Winter Soil Vapor monitoring Summary Table Appendix Q



Gas Investigation, LESP 3 Site, Tracer Research Corp. 1995

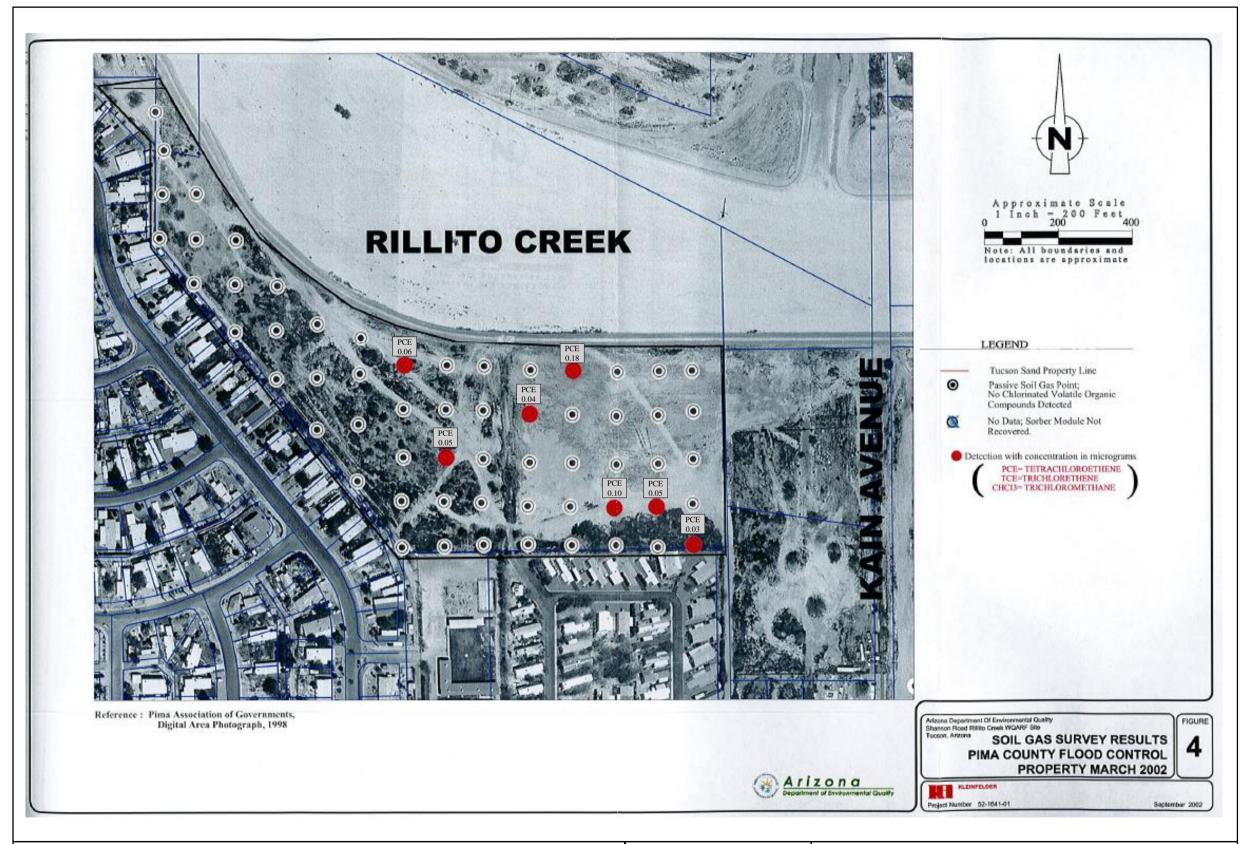
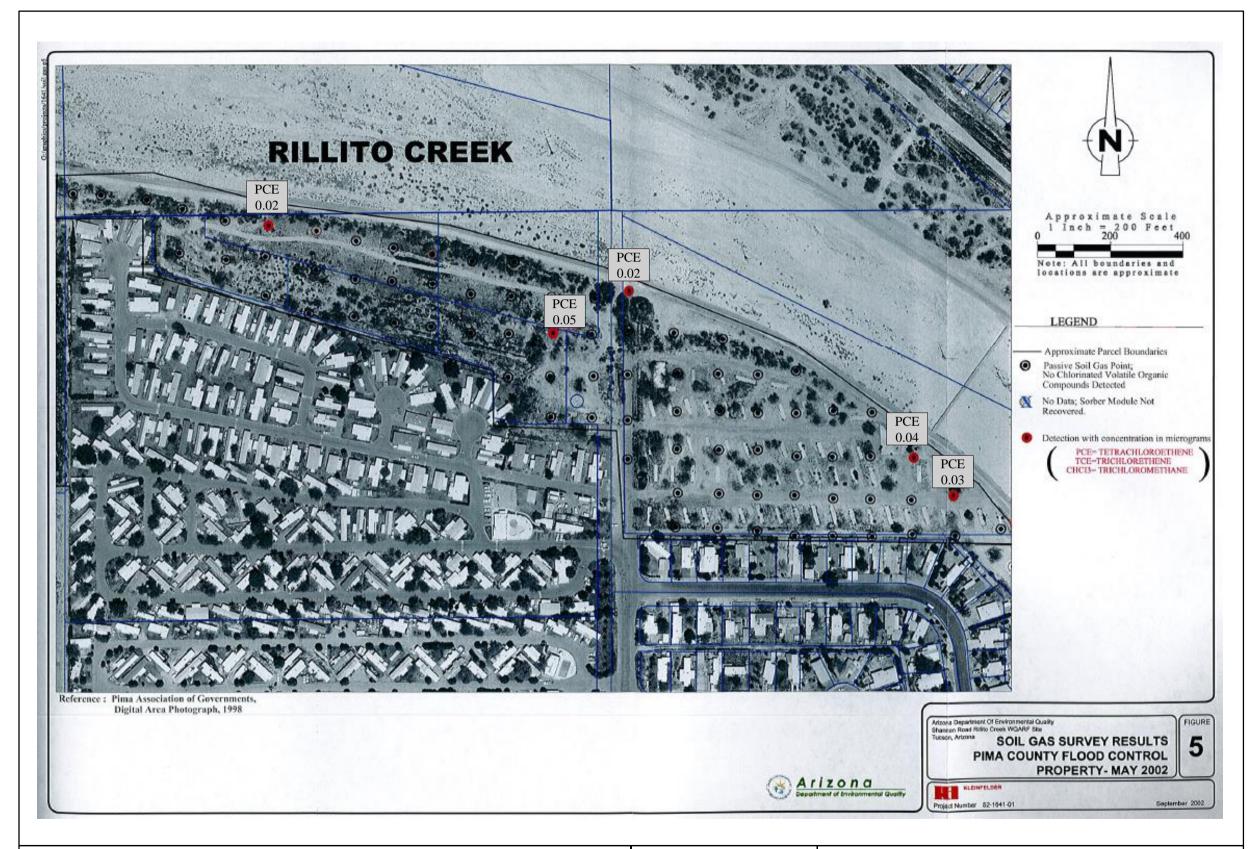
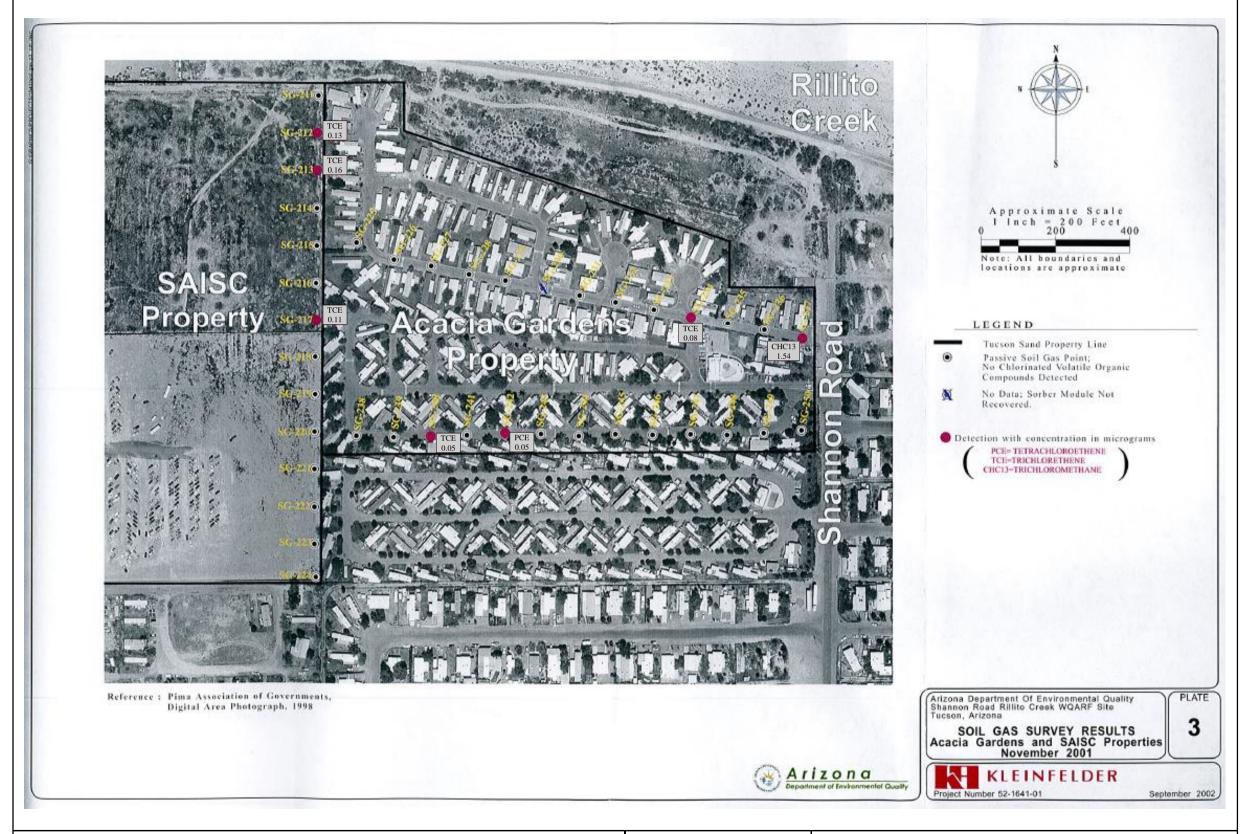
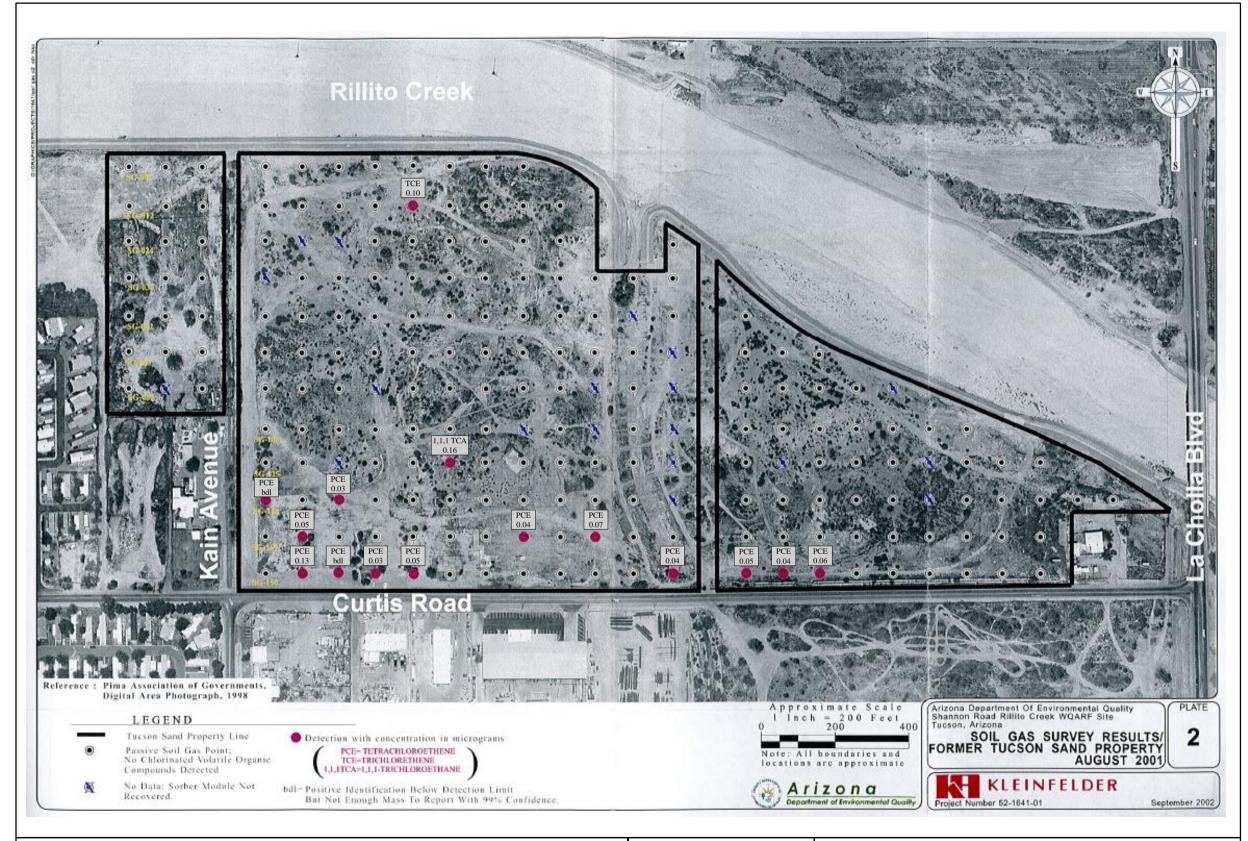


Figure 30


1995 PCE/TCE in soil shallow soil gas, I-10 corridor Appendix Q





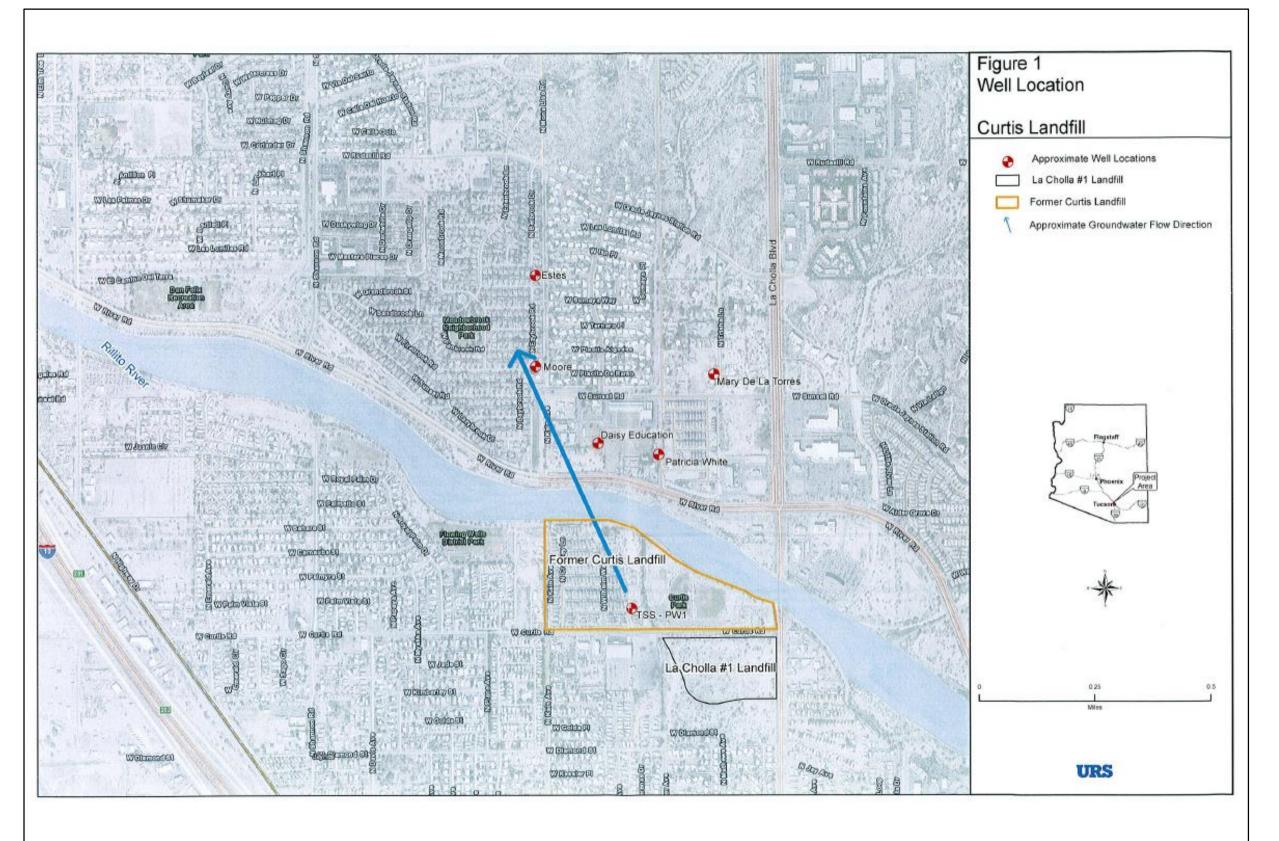
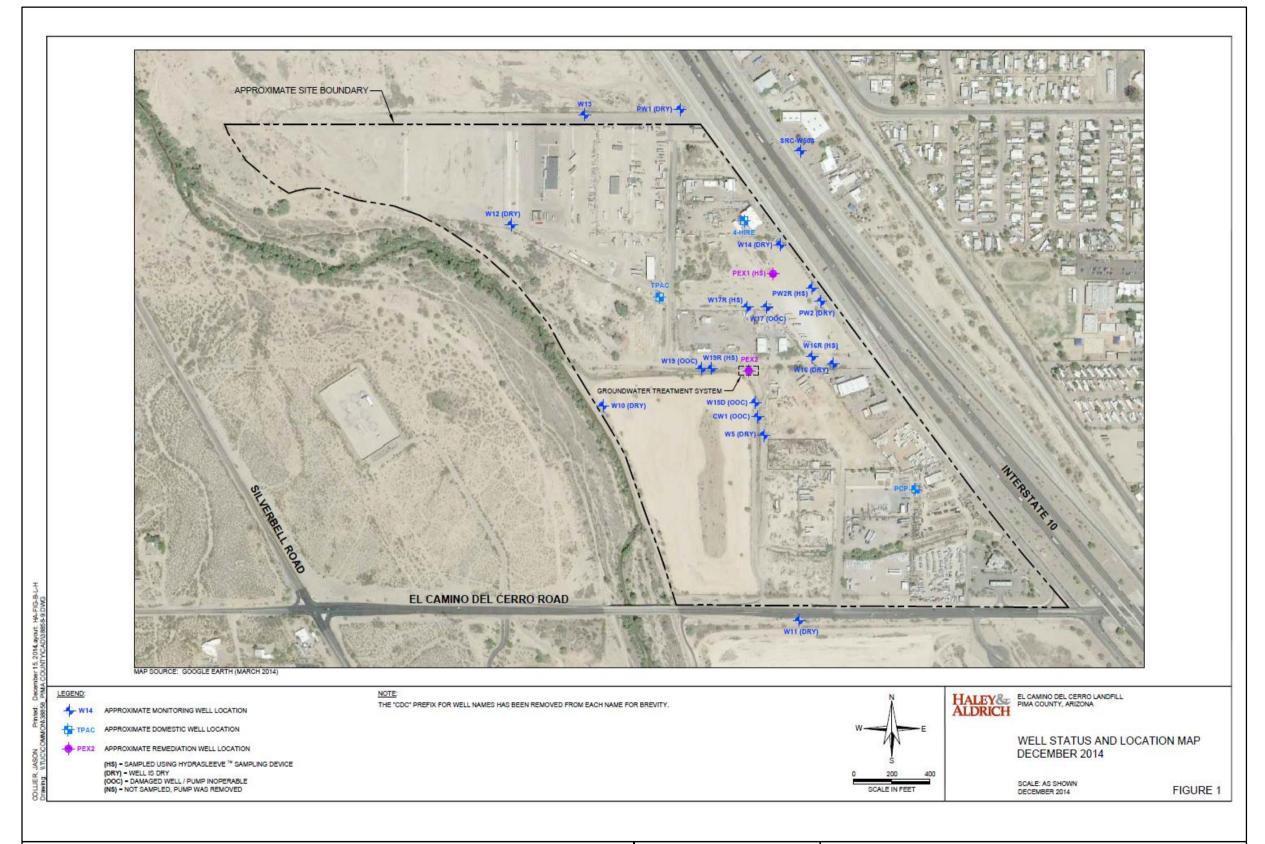


Figure 34



From: Summary Report for Curtis Road Landfill Sampling, October 12, 2012 $\,$

From: Status of the El Camino del Cerro Groundwater Remediation Project, Pima County, Arizona. Letter from Mark B. Groseclose, R.G., Senior Project Manager, Haley & Aldrich, January 6, 2015.

