Prepared for

Arizona Department of Environmental Quality 1110 West Washington Street Phoenix, Arizona 85007

FEASIBILITY STUDY COOPER AND COMMERCE WATER QUALITY ASSURANCE REVOLVING FUND SITE PHOENIX, ARIZONA

Prepared by

engineers | scientists | innovators

11811 N. Tatum Blvd., Suite P-186 Phoenix, Arizona 85028

Project Number SP0146B

February 2018

FEASIBILITY STUDY COOPER AND COMMERCE WATER QUALITY ASSURANCE REVOLVING FUND SITE PHOENIX, ARIZONA

This report was prepared by the staff of Geosyntec Consultants under my supervision to ensure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who are directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Brian McNamara, P.E. Professional Engineer No. 51095

2/26/2018

Date

TABLE OF CONTENTS

1.	INTROD	UCTI	ON	1
	1.1 Pu	ırpose	and Scope of the Feasibility Study Report	1
	1.2 Re	eport (Organization	2
2.	SITE BA	CKGF	ROUND	4
	2.1 Si	te Des	scription	4
	2.2 Si	te His	tory	5
	2.3 Co	.3 Conceptual Site Model Summary		
	-	2.3.1	Site Hydrogeology	7
	4	2.3.2	Extent of Contamination	8
	4	2.3.3	Risk Evaluation	10
	2.4 Ea	arly R	emedial Actions	11
	4	2.4.1	AS/SVE System	11
		2.4.2	Groundwater Extraction and Treatment System	12
3.	FEASIBI	LITY	STUDY SCOPING	12
	3.1 Re	egulat	ory Requirements	12
	3.2 De	elinea	tion of Remediation Areas	13
		3.2.1	Vadose Zone	13
		3.2.2	Groundwater	14
	3.3 Remedial Objectives1			15
		3.3.1	ROs for Land Use	15
		3.3.2	ROs for Groundwater Use	16
		3.3.3	ROs for Surface Water Use	18
4.	IDENTIF	ICAT	ION AND SCREENING OF REMEDIATION	
	TECH	NOLO	DGIES	19
	4.1 Sc	reenii	ng Criteria and Assumptions	19
	4.2 Sc	reenii	ng of Treatment Technologies	20
	2	4.2.1	Soil Vapor Extraction	20
	2	4.2.2	Air Sparging	20
	2	4.2.3	Institutional Controls	21
	2	4.2.4	Groundwater Extraction and Treatment	21
	2	4.2.5	Monitored Natural Attenuation	22

	4.2.6 Enhanced Reductive Dechlorination	22	
	4.2.7 In Situ Chemical Reduction	23	
	4.2.8 In Situ Chemical Oxidation	24	
5.	DEVELOPMENT OF REFERENCE REMEDY AND ALTERNATIVE		
	REMEDIES	25	
	5.1 Reference Remedy	26	
	5.2 More Aggressive Alternative Remedy	29	
	5.3 Less Aggressive Alternative Remedy	32	
6.	COMPARISON OF REFERENCE REMEDY AND ALTERNATIVE		
	REMEDIES		
	6.1 Comparison Criteria		
	6.1.1 Reference Remedy	35	
	6.1.2 More Aggressive Remedy	37	
	6.1.3 Less Aggressive Remedy	39	
	6.2 Comparison of Remedies	41	
	6.2.1 Practicability	41	
	6.2.2 Risk	42	
	6.2.3 Cost	43	
	6.2.4 Benefits	43	
7.	PROPOSED REMEDY	44	
	7.1 Process and Reason for Selection	44	
	7.2 Achievement of Remedial Objectives	44	
	7.3 Achievement of Remedial Action Criteria Pursuant to A.R.S. §49-282.06 44		
	7.4 Consistency with Water Management and Land Use Plans	45	
	7.5 Contingencies	45	
8.	COMMUNITY INVOLVEMENT	47	
9.	REFERENCES	48	

TABLES

- Table 1
 Remediation Technology Screening Summary
- Table 2Remedy Evaluation
- Table 3Cost Summary
- Table 4Remedial Alternative Scoring

FIGURES

Figure 1	Site Location
Figure 2	Groundwater Elevations and Contours in Shallow Wells – January 2017
Figure 3	PCE Concentration Isopleths – January 2017

Figure 3FCE Concentration isoFigure 4ERA Systems Layout

APPENDICES

Appendix A	Updated 2016 Groundwater Model
Appendix B	Technical Memorandum for Soil Borings Near Former Drywell
Appendix C	Cross-Sectional Site Figures
Appendix D	Detailed Cost Sheets for Remedial Alternatives

LIST OF ACRONYMS AND ABBREVIATIONS

μg/L	micrograms per liter
A.A.C.	Arizona Administrative Code
ADEQ	Arizona Department of Environmental Quality
ADWR	Arizona Department of Water Resources
AMA	Active Management Area
A.R.S.	Arizona Revised Statutes
AS	air sparge
AWQS	Aquifer Water Quality Standard
CERCLA	Comprehensive Environmental Response, Compensation, and Liability
Act	
COCs	contaminants of concern
EISB	Enhanced In-Situ Bioremediation
Eh	redox potential
EPA	United States Environmental Protection Agency
ERAs	Early Response Actions
ERD	enhanced reductive dechlorination
ERH	electrical resistive heating
FS	Feasibility Study
ft bgs	feet below ground surface
ft/day	feet per day
ft/ft	feet per foot
Geosyntec	Geosyntec Consultants
GETS	groundwater extraction and treatment system
gpm	gallons per minute
HGC	Hydro Geo Chem, Inc.
ISCO	in situ chemical oxidation
ISCR	in situ chemical reduction
ISTR	in situ thermal remediation
ITRC	Interstate Technology & Research Council
J&E	Johnson & Ettinger
lbs	pounds
LGAC	liquid-phase granular activated carbon
MAU	Middle Alluvial Unit
MCAQD	Maricopa County Air Quality Department
mgd	million gallons per day
mg/kg	milligrams per kilogram
MNA	Monitored Natural Attenuation

mV	millivolt
NOV	Notice of Violation
O&M	operations and maintenance
PCE	tetrachloroethene
PRAP	Proposed Remedial Action Plan
PRB	permeable reactive barrier
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
ROs	Remedial Objectives
RSL	Regional Screening Level
Site	Cooper and Commerce Water Quality Assurance Revolving Fund Site
SRL	Soil Remediation Level
SRP	Salt River Project
SVE	soil vapor extraction
TCE	trichloroethene
TCLP	Toxicity Characteristic Leaching Procedure
TOG	Town of Gilbert
UAU	Upper Alluvial Unit
VGAC	vapor-phase granular activated carbon
VI	vapor intrusion
VISLs	Vapor Intrusion Screening Levels
VOCs	volatile organic compounds
WQARF	Water Quality Assurance Revolving Fund
ZVI	zero valent iron

1. INTRODUCTION

This Feasibility Study (FS) Report for the Cooper and Commerce Water Quality Assurance Revolving Fund (WQARF) Site was prepared by Geosyntec Consultants, Inc. (Geosyntec) on behalf of the Arizona Department of Environmental Quality (ADEQ). The Cooper and Commerce WQARF Site is located in Gilbert, Arizona (the Site, Figure 1).

1.1 <u>Purpose and Scope of the Feasibility Study Report</u>

This FS Report was prepared in accordance with Arizona Administrative Code (A.A.C.) Title 18, Environmental Quality, Chapter 16, Department of Environmental Quality WQARF Program, Article 4, 407: Feasibility Study (R18-16-407) and is based on information reported in the following documents:

- *Remedial Investigation Report Cooper Road and Commerce Avenue WQARF Site, Gilbert, Arizona* (Hydro Geo Chem, Inc. [HGC], 2015) (RI Report);
- Early Response Action Evaluation Technical Report for Cooper Road and Commerce Avenue WQARF, Gilbert, Arizona (HGC, 2006);
- Proposed Remedial Objectives Report, Cooper Road and Commerce Avenue WQARF Registry Site, Gilbert, Arizona (ADEQ, 2015a) (Proposed ROs Report);
- Feasibility Study Work Plan, Cooper Road and Commerce Avenue, WQARF Registry Site, Gilbert, Arizona (ADEQ, 2015b); and
- Identification of Remedial Alternatives Technical Memorandum (Geosyntec, 2015).

Information contained in the FS Report is drawn directly from the above referenced reports without attribution other than that noted here. The detailed history of remedial investigations, early response actions (ERAs), and preliminary screening of remedial alternatives completed for the Site are presented in these referenced documents and are briefly summarized in Section 2.

The objectives of the FS are as follows:

• Identify remedial options and alternatives that will achieve the Remedial Objectives (ROs) as outlined in the Proposed ROs Report; and

• Evaluate the identified remedies, recommend alternatives, and comply with the requirements of Arizona Revised Statutes (A.R.S.) §49-282.06.

Based on the objectives stated above, the FS presents recommendations for the preferred remedy, that:

- Assure the protection of public health, welfare, and the environment;
- To the extent practicable, provide for the control, management, or cleanup of hazardous substances so as to allow for the maximum beneficial use of waters of the state;
- Is reasonable, necessary, cost-effective, and technically feasible; and
- Address any well (used for municipal, domestic, industrial, irrigation or agricultural purposes) that could produce water that would not be fit for its current or reasonably foreseeable end use without treatment.

1.2 <u>Report Organization</u>

The remainder of this FS Report is organized as follows:

- Section 2: "Site Background" includes Site description, Site History, the nature and extent of contamination, ERAs, and risk evaluation;
- Section 3: "Feasibility Study Scoping" presents the regulatory requirements of pertinent statutes and rules, delineates the remediation areas, and presents the ROs identified by ADEQ;
- Section 4: "Identification and Screening of Remediation Technologies" presents an evaluation and screening of various remedial technologies related to contamination in soil and groundwater, and lists the technologies that have been retained for inclusion into the reference and alternative remedies;
- Section 5: "Development of Reference Remedy and Alternative Remedies" presents the evaluation process and selection of a reference remedy, a more aggressive remedy, and a less aggressive remedy;
- Section 6: "Comparison of Reference Remedy and Alternative Remedies" presents a summary of the three remedial alternatives compared to each other based on practicability, risk, cost, and benefit, and includes a discussion of uncertainties associated with each remedy;

- Section 7: "Proposed Remedy" presents the recommended remedy and discusses how the remedy will meet the requirements of A.R.S. §49-282.06 and A.A.C. R18-16-407(I);
- Section 8: "Community Involvement" presents public participation opportunities; and
- Section 9: "References" provides a list of references cited in this report.

2. SITE BACKGROUND

This section presents a summary of the Site background, physiographic setting, the nature and extent of contamination, and a risk evaluation. Additional background details are presented in the RI Report.

2.1 <u>Site Description</u>

The Site is located in Gilbert, Arizona (Figure 1), and emanates from a source area identified at the former Unichem facility at 619 West Commerce Avenue in Gilbert, Arizona. The former Unichem facility occupies approximately four acres north of the Salt River Project (SRP) Western Canal. The Unichem facility produced copper sulfate from scrap metal from approximately 1977 through 1983. The main source of contamination appears to be a former drywell constructed at the Site in 1977 that may have been used for waste disposal. In accordance with the Proposed ROs Report, the contaminants of concern (COCs) identified during previous investigations include tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and PCE, arsenic, and copper in source area soils.

According to the 2012 Town of Gilbert (TOG) General Plan (TOG, 2012), the Unichem facility is zoned as General Industrial. However, the WQARF site boundaries are defined by the extent of the PCE groundwater plume exceeding the Aquifer Water Quality Standard (AWQS) of 5 micrograms per liter (μ g/L). The groundwater plume underlies an area that is a mix of industrial, commercial, and residential land uses.

Soil samples collected at depths of approximately 70 feet below ground surface (ft bgs) near the source area drywell historically exceeded the Non-Residential Soil Remediation Level (SRL) for PCE of 13 milligrams per kilogram (mg/kg), with concentrations as high as 3,900 mg/kg.

During May 1989, ADEQ conducted a hazardous waste inspection of the Unichem property and collected several soil samples in the area of the drywell. Elevated cyanide concentrations observed in the soil samples triggered ADEQ to issue a Notice of Violation (NOV) in November 1989 that required Unichem to investigate potential contamination at the facility. The Site was placed on the WQARF Registry in June 2004 with an Eligibility & Evaluation Score of 33 out of a possible 120.

ERAs, initiated at the Site in 2006, included the installation and operation of an air sparge/soil vapor extraction (AS/SVE) system and a groundwater extraction and treatment system (GETS). The AS/SVE system was intended to decrease PCE

contamination in the vadose zone and groundwater at the former Unichem facility. The GETS was intended to hydraulically contain the PCE source area.

The AS/SVE system began operation in December 2008. Due to decreasing PCE mass removal rates, the AS/SVE system was shut down in August 2014. The SVE system was restarted in February 2016, operating in "pulse mode" (one month on followed by one month off). The AS/SVE system has removed approximately 4,800 pounds (lbs) of volatile organic compounds (VOCs) as of May 2017. The GETS operated from 17 September 2010 to 30 September 2014, treated over 193 million gallons of groundwater, and removed approximately 41 lbs of VOCs.

2.2 <u>Site History</u>

The following is a summary of Site history based on information from the RI Report.

Unichem purchased the property at 619 West Commerce Avenue in 1977 and constructed a facility to produce copper sulfate from scrap metal. Unichem discontinued operations at the Site prior to 1983. From July 1983 to March 1984, Aztec Resources, Inc. operated a gold extraction plant at the facility, using cyanide baths to extract gold from scrap materials and mine tailings. In 1988, the western portion of the facility was used as a vehicle testing station by Hamilton Testing Systems.

In 1989, ADEQ conducted a hazardous waste inspection of the Site and noted the presence of a triangular sump and drywell. An initial soil investigation was performed in 1990 by Simon Environmental Engineering that included drilling 24 soil borings to depths of up to 80 ft bgs. Maximum soil concentrations reported for PCE (1.4 mg/kg) exceeded the minimum Groundwater Protection Level (GPL) (1.3 mg/kg) but not the current Non-Residential SRL (13 mg/kg). The maximum arsenic concentration (37 mg/kg) exceeded the Non-Residential SRL (10 mg/kg) but not the minimum GPL (290 mg/kg). The maximum copper concentration (297 mg/kg) did not exceed the Non-Residential SRL of 41,000 mg/kg. Copper does not have an associated minimum GPL.

Approximately 20 cubic yards of contaminated soil were excavated from the triangular sump area in 1994. Three groundwater monitor wells (MW-101, MW-102, and MW-103) were installed at the Site to a depth of 165 ft bgs and an exploratory borehole was drilled through the center of the drywell to a depth of 99 ft bgs. Soil samples from the boreholes contained significant concentrations of PCE, with a maximum concentration of 24,000 mg/kg, collected at a depth of approximately 70 ft bgs. Groundwater samples collected from the three monitor wells contained PCE concentrations that ranged from 28 to 640 μ g/L, exceeding the AWQS for PCE of 5 μ g/L. A vapor extraction well (VW-104, later

referred to as SVE-104) was installed in the exploratory borehole; however, SVE was not performed at this time.

On 6 June 1995, the ADEQ Hazardous Waste Compliance Unit notified Simon New Mexico, Inc. of its intent to issue a consent order based on the violations observed during previous hazardous waste inspections. During 1996, groundwater monitoring performed at the Site detected PCE concentrations as high as $6,600 \mu g/L$ in monitor well MW-101, located north of the drywell.

In 2001, groundwater samples collected from TOG well G-9, located east of Cooper Road approximately 1,600 feet northwest of the Site, contained PCE detections above the AWQS of 5 μ g/L. On 21 October 2002, the ADEQ Resource Conservation and Recovery Act (RCRA) Unit referred the Site to the ADEQ Superfund Section. In 2003, ADEQ installed two additional monitor wells, MW-104S and MW-104D to investigate groundwater impacts in the vicinity of TOG well G-9.

During soil assessments performed in 2000 and 2002, soil borings were observed to contain layers of clayey sand containing scattered green granules, presumably copper sulfate. The maximum copper concentration detected (6,200 mg/kg) was below Non-Residential SRL (41,000 mg/kg).

During 2006, ADEQ completed an ERA evaluation at the Site and installed extraction well EW-101, located northwest of the drywell, and several SVE wells. Based on the ERA evaluation, ADEQ determined the concentrations of PCE in the soil, soil vapor, and groundwater at the Site warranted operation of the AS/SVE and GETS remediation systems.

ADEQ installed six additional groundwater monitor wells off-site to assess the extent of the plume during 2007 and 2008. Concentrations of PCE indicated that the groundwater contamination extended north of Guadalupe Road.

In April 2008, ADEQ began construction of the AS/SVE and GETS ERAs. Initial startup of the AS/SVE system occurred on 22 December 2008. The GETS began operation on 17 September 2010.

In June 2012, ADEQ drilled three borings in the immediate vicinity of the former drywell. Sample results indicated that PCE was still present at depth in the soil near the former drywell. Elevated PCE concentrations were reported in soil samples collected at 60 ft bgs (170 mg/kg) and 70 ft bgs (4,800 mg/kg). A soil sample from the same boring, collected at 30 ft bgs, had detections of arsenic (77 mg/kg) and copper (15,000 mg/kg);

however, only the arsenic detection was above the Non-Residential SRL. ADEQ installed two additional SVE wells in these borings, SVE-106 and SVE-107.

Between 2011 and 2013, ADEQ installed additional groundwater monitor wells to further delineate the extent of PCE contamination and estimate flow direction and hydraulic gradient. Shallow monitor wells were located near the center and in the southwest area of the groundwater plume. ADEQ also installed an additional deep monitor well, MW-119D, near SRP well 29E-1.5S located at the intersection of the SRP canal and Cooper Road. Initial samples from MW-119D detected PCE at concentrations at or above the AWQS, ranging from 4.2 to 7.2 μ g/L.

The SVE system operated continuously through August 2014 with periodic shut downs for carbon change out and maintenance. The SVE system was shut down on 22 August 2014 due to decreasing PCE mass removal rates. The SVE system was restarted 1 February 2016, extracting from SVE-106 and SVE-107, to assess residual soil vapor contamination. The GETS was shut down on 30 September 2014 following several quarters of negligible VOC recovery.

2.3 <u>Conceptual Site Model Summary</u>

The following summarizes the Site hydrogeology and extent of contamination presented in the RI Report.

2.3.1 Site Hydrogeology

The Site is located within the East Salt River Valley Sub-Basin of the Phoenix Active Management Area (AMA). The sub-basin includes the Middle Alluvial Unit (MAU), the principal water-bearing unit, and the Upper Alluvial Unit (UAU), which is saturated in limited areas. The Site is directly underlain by fine-grained material, consisting of silts, clays, and sands to about 70 ft bgs, that overlies a coarse-grained sand and gravel sequence extending to a depth of approximately 270 ft bgs. The average depth to groundwater at the Site is approximately 110 ft bgs (Geosyntec, 2017). Figure 2 presents the groundwater elevations and contours for the shallow wells from the January 2017 monitoring event.

The UAU and the productive horizon in the MAU are separated by a several hundred foot thick clayey layer that serves as an aquitard. At monitor well MW-104D, the clay layer is approximately 480 feet and characterized as gravelly clay and clay. At monitor well MW-119D, the clay layer is approximately 245 feet thick and characterized primarily as a sandy lean clay. Low concentrations of PCE have been previously detected in the deep

monitor wells (e.g., MW-119D), indicating a possible hydraulic connection exists between the upper and middle aquifers at the Site. SRP well 29E-1.5S, located near MW-119D, is screened across both aquifers, possibly providing a direct conduit between the aquifers. Additionally, a downward vertical gradient exists between the two aquifers suggesting the potential for vertical migration of contaminants.

Currently, the groundwater flow direction is to the northwest, but was to the west and southwest prior to August 2012. Groundwater monitoring data does not indicate seasonal variation in flow directions. The observed fluctuations in groundwater flow may be due to regional groundwater pumping.

Although the RI Report referenced a hydraulic conductivity of 1,215 feet per day (ft/day), based on the limited pumping test performed in 2011, a review of these pumping test data indicate that the results may not be accurate for modeling over a regional scale. A 2015 groundwater model (Geosyntec, 2015) using PCE distribution and regional groundwater flow gradient from the 4th quarter 2014 groundwater monitoring event, achieved stable modeling results using a hydraulic conductivity of 450 ft/day. The groundwater model was updated in 2016 and is included in Appendix A.

2.3.2 Extent of Contamination

Site assessment activities indicated a release of PCE and TCE to the vadose zone at the former drywell that impacted groundwater below the former Unichem facility. The groundwater plume, as defined by the 5 μ g/L PCE contour in January 2017, is approximately defined to the north by West Houston Avenue, to the south by the Neely Ranch Preserve, to the east by Neely Street, and to the west by McQueen Road. Figure 3 presents the PCE concentration isopleths from the January 2017 groundwater monitoring event. Based on the January 2017 groundwater monitoring results, TCE was not detected above the AWQS; however, PCE concentrations exceeded the AWQS in monitor wells MW-104S (19 μ g/L), MW-104M (6.6 μ g/L), MW-108 (6.9 μ g/L), MW-109 (18 μ g/L), MW-116 (5.3 μ g/L), MW-120 (18 μ g/L), MW-121 (7.8 μ g/L), and G-9 (9.7 μ g/L). Monitor well MW-110 had a PCE detection of 22 μ g/L during the August 2016 monitoring event but was inaccessible during the January 2017 monitoring event. Metals, including arsenic and copper, were not detected above their respective AWQS.

Two additional monitor wells, MW-104M and MW-121, were installed in August and September 2016 in an attempt to delineate the western/northwestern edge and vertical extent of the PCE plume. During installation of the new wells, depth discrete groundwater samples were collected to assess the vertical extent of dissolved-phase VOC concentrations. Monitor well MW-121 was installed at the prior northwestern edge of

the plume and MW-104M was installed at the approximate center of the plume. Based on the August/September 2016 groundwater monitoring event, the vertical extent of the plume appears to be delineated. However, based on the January 2017 groundwater monitoring event, the western/northwestern edge of the PCE plume may require further delineation by the installation and sampling of additional groundwater monitoring well(s) if follow up sampling indicates an increasing trend in PCE concentrations or sustained PCE impacts above 5 μ g/L.

During November 2016, two soil borings were drilled near the former drywell to assess remaining VOC concentrations present in soil and soil vapor after SVE operation (Appendix B). TCE was not detected above laboratory reporting limits in the soil and soil vapor samples. PCE detections in soil samples ranged from 12 to 77 mg/kg, exceeding the Non-Residential SRL of 13 mg/kg and the Minimum GPL of 1.3 mg/kg. Elevated PCE detections were observed in deeper soil and soil vapor samples collected from the two soil borings, ranging from approximately 65 to 70 feet. Soil vapor samples were compared to Site-specific soil vapor screening levels, calculated using the Johnson & Ettinger (J&E) subsurface vapor intrusion model, to assess potential vapor intrusion and groundwater impacts. The soil vapor results were below the Site-specific screening levels for both vapor intrusion and groundwater impacts.

Previous Site investigations indicate that while arsenic was initially considered a COC, there was no spatial pattern to the arsenic concentrations that would be consistent with a release and arsenic concentrations do not appear to be Site-related. Additionally, the RI Report and the ROs Report state that there is no spatial pattern to arsenic concentrations that would be consistent with a release and rather appears to be naturally occurring. However, a soil sample collected from a boring (B-1W) advanced in the vicinity of the former drywell contained arsenic at a concentration of 77 mg/kg at a depth of 30 ft bgs exceeding the Non-Residential SRL of 10 mg/kg. Soil samples collected above and below this depth interval from the boring were not analyzed for metals. Groundwater samples have had historic exceedances of the arsenic AWQS (10 μ g/L) but were attributed to arsenic being a naturally occurring constituent that is not Site-related.

In several soil samples collected near the former drywell, green staining was observed that was presumably copper sulfate. Copper concentrations were below Non-Residential SRL (41,000 mg/kg). Copper has not been detected in groundwater samples collected at the Site at concentrations exceeding the AWQS (1,300 μ g/L) since 2006.

Prior Site investigations conducted as part of the RI did not analyze soil samples collected from the vicinity of the former drywell for metals (e.g., arsenic and copper) except for at a depth of approximately 30 ft bgs. The soil sample collected from 30 ft bgs contained

arsenic and copper at concentrations exceeding the Residential and Non-Residential SRLs for arsenic and the Residential SRL for copper. Additional soil sampling in the vicinity of the former drywell is required to evaluate the vertical extent of arsenic and copper concentrations to confirm that the previously detected concentrations of arsenic and copper are isolated and do not pose a risk to on-site receptors.

2.3.3 Risk Evaluation

A risk evaluation documented in the RI Report assessed COCs and potential exposure pathways present at the Site. The soil, soil vapor, and groundwater monitoring results at the former Unichem facility, as well as the downgradient groundwater impacts to the west and north of the Site, were included in the evaluation. Four components of exposure pathways were evaluated, including source of release, retention of transport media, exposure point, and exposure route. The risk evaluation assessed COCs PCE and TCE in groundwater and PCE, arsenic, and copper in source area soils.

The risk evaluation concluded that the use of the UAU as a drinking water source would be unacceptable within the Site's boundaries. The findings were based on the highest groundwater concentrations of PCE (59 μ g/L) and TCE (15 μ g/L) observed at the Site in 2013. These concentrations were both detected in UAU monitoring well MW-106. The MAU is the principal water-bearing unit and is used as a drinking water source in the area of the Site, but is separated from the UAU by a several hundred foot thick clayey layer that serves as an aquitard as identified in the RI Report. No exceedances of AWQSs from wells producing drinking water from the MAU have been reported at the Site.

The risk evaluation concluded that no formal risk characterization for exposure to contaminated soil was warranted at the source property as no surface soil samples exceeded Non-Residential SRLs for analyzed compounds.

The risk evaluation concluded that any risk due to soil vapor would be negligible outside of an enclosed space due to atmospheric mixing, and that no buildings were close enough to measured soil vapor concentrations to quantitatively estimate risk. There could be a future potential for health risks caused by soil vapor intrusion were a building constructed in close proximity to measured concentrations of PCE, but the theoretical risk would vary depending on the specific location of the hypothetical building. During November 2015, a shallow soil vapor survey was performed around the main building at the Site to evaluate potential risk to current commercial workers via the vapor intrusion pathway. The evaluation was conducted following risk evaluation guidance for industrial sites. This evaluation was conducted separately from the risk evaluation included in the RI Report. The results of the 2015 soil vapor survey indicated no excess health risk for commercial Site workers (Geosyntec, 2016).

2.4 Early Remedial Actions

ERAs for the Site were initiated in 2006 and included installation and operation of an AS/SVE system and GETS. The AS/SVE system was implemented to address PCE contamination in the vadose zone and groundwater at the former Unichem facility. The GETS was designed to provide hydraulic containment of the PCE source area. Figure 4 presents the layout of the AS/SVE system and GETS. The following is a description of the ERAs, which form the basis of the FS for the vadose zone and groundwater remediation.

2.4.1 AS/SVE System

The SVE system consists of a skid-mounted vacuum blower system with 300 standard cubic feet per minute capacity, and two 2,000-pound vapor-phase granular activated carbon (VGAC) vessels connected in series for removal of the VOCs from the extracted soil vapor. The SVE system was initially connected to two AS/SVE wells (AS/SVE-101 and AS/SVE-102) during a pilot test performed in August 2007. These SVE wells are screened from 40 to 110 ft bgs.

Additional wells were installed by ADEQ and connected to the SVE system to maximize VOC mass removal. SVE-104 (originally referred to as VW-104) was installed in 1994 within the former drywell and screened from 5 to 50 ft bgs. SVE-105 was installed in November 2010 in the area of a suspected surface spill and screened from approximately 5 to 50 ft bgs. In 2012, SVE-106 was installed approximately five feet southwest of SVE-104 and SVE-107 was installed approximately 10 feet northeast of SVE-104. SVE-106 is screened from 50 to 60 ft bgs and SVE-107 is screened from 60 to 65 ft bgs. SVE-107 was initially used as a vent well but was connected to the SVE system in August 2013. Three 0.5-inch diameter nested vapor monitoring points (VP-101, VP-102, and VP-103) were installed during April 2006 to monitor the vadose zone soil vapor and to collect information to facilitate the design of the SVE system.

The initial start-up for the AS/SVE system occurred on 22 December 2008 and the system was in continuous operation from 6 July 2009 through 22 August 2014 with periodic shutdowns for carbon change out, maintenance, and repair. The system was shut down due to decreasing PCE mass removal. After changing out the VGAC vessels, the SVE system was restarted on 1 February 2016, extracting from SVE-106 and SVE-107. The system was shut down on 3 March 2016 for rebound testing and is currently operating in "pulse mode" (approximately one month on followed by one month off). Cumulative PCE recovery through May 2017 was approximately 4,800 lbs.

2.4.2 Groundwater Extraction and Treatment System

The groundwater extraction well EW-101 was installed in March 2006 to a total depth of 260 ft bgs and screened from 125 to 185 ft bgs. Pump tests were performed during September and October 2007. The pump intake was initially set at approximately 170 ft bgs. Discrete depth samples indicated higher PCE concentrations at 122 to 124 ft bgs. During December 2013, the pump intake was raised to 145 ft bgs in an effort to maximize VOC mass removal.

Groundwater was continuously extracted from the underlying aquifer via EW-101 at an average design flow rate of 150 gallons per minute (gpm). Two 5,000 lbs liquid-phase granular activated carbon (LGAC) vessels connected in series treat the influent water for VOC removal. The treated water then passes through a second bag filter to polish the treated water of particulate matter prior to discharge into the SRP Western Canal (used for irrigation) or a nearby TOG sanitary sewer manhole.

The GETS was started 17 September 2010 and was in operation until system shut down on 30 September 2014 due to exceedingly low VOC mass removal. Through September 2014, the GETS treated a cumulative total of over 193 million gallons of groundwater and removed approximately 41 lbs of VOCs.

3. FEASIBILITY STUDY SCOPING

The following presents the regulatory requirements of pertinent statutes and rules, delineation of the remediation areas, and the ROs identified by ADEQ.

3.1 <u>Regulatory Requirements</u>

Per A.R.S. §49-282.06, the following factors must be considered for selecting remedial actions:

- Population, environmental, and welfare concerns at risk;
- Routes of exposure;
- Amount, concentration, hazardous properties, environmental fate, such as the ability to bio-accumulate, persistence and probability of reaching the waters of the state, and the form of the substance present;

- Physical factors affecting environmental exposure, such as hydrogeology, climate, and the extent of previous and expected migration;
- The extent to which the amount of water available for beneficial use will be preserved by a particular type of remedial action;
- The technical practicability and cost-effectiveness of alternative remedial actions applicable to a site; and
- The availability of other appropriate federal or state remedial action and enforcement mechanisms, including funding sources established under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to respond to the release.

A.A.C. R18-16-407(A) states that an FS is a process to identify a reference remedy and alternative remedies that appear to be capable of achieving ROs and to evaluate the remedies based on the comparison criteria to select a remedy that complies with A.R.S. §49-282.06.

3.2 Delineation of Remediation Areas

The following subsections discuss the delineation of impacts to the vadose zone and groundwater at the Site, as well as the uncertainties associated with the delineations.

3.2.1 Vadose Zone

The disposal practices from industrial operations at the Site resulted in soil impacted by PCE and TCE. The main source of contamination appears to be a drywell that was constructed on the property in 1977 in a triangular-shaped sump near the center of the concrete pavement that served as a foundation for the processing plant. Prior soil investigations indicate that copper concentrations in soil in the source area of the Site are below the Non-Residential SRL. The highest detected copper concentrations have been in the vicinity of the former drywell at a depth of 30 ft bgs. The RI Report considers arsenic concentrations in soils at the Site to be background with the exception of a detection of arsenic at a depth of 30 ft bgs in a boring advanced in the vicinity of the former drywell.

In November 2016, two soil borings were drilled near the former drywell to assess VOC concentrations present in the soil and soil vapor after SVE operation. A description of the field activities and soil and soil vapor results is included in Appendix B. PCE results

for the soil samples range from less than reporting limits for the shallower depths (approximately 38 to 42 ft bgs) to 12 to 77 mg/kg at depths of approximately 65 to 70 ft bgs (shallow zone water level is approximately 100 to 110 feet bgs). The analytical results of the deeper soil samples exceed the Non-Residential SRL for PCE of 13 mg/kg. Soil vapor samples were compared to Site-specific screening levels to assess for potential vapor intrusion and groundwater impacts. The soil vapor screening levels are calculated using the J&E subsurface vapor intrusion model. For vapor intrusion, the screening levels are derived from carcinogenic and non-carcinogenic EPA indoor air RSLs for commercial/industrial exposure scenarios. For potential groundwater impacts, screening levels are based on the Minimum GPLs, converted to soil vapor units. The soil vapor intrusion and groundwater impacts.

3.2.2 Groundwater

The Site is composed of two distinct alluvial units, the UAU and MAU. The UAU lies above the MAU and the two are separated by a several hundred foot thick clayey layer that acts as an aquitard per the RI Report, limiting the ability of groundwater to flow between the alluvial units. Regular groundwater monitoring since 2014 shows that COC exceedances of AWQSs are currently limited to the UAU. TOG-15, the only TOG drinking water production well currently within the Site, is screened in the MAU and not known to be impacted from Site COCs above AWQS. Remedies described in the FS Report are therefore focused on the UAU. Cross-sectional figures from the RI Report depicting the UAU, MAU, and production well TOG-15 are included in Appendix C.

The 2016 updated groundwater model (Appendix A), based on the PCE distribution and regional groundwater flow gradient from the August/September 2016 groundwater monitoring, estimates PCE plume extent over time using a hydraulic conductivity of 450 ft/day and a storage coefficient of 0.0049. The groundwater gradient is assumed to be 0.00056 feet per feet (ft/ft) to the northwest based on the average hydraulic gradient as reported in the RI Report. The model is evaluated with a one million gallon per day (mgd) infiltration rate and a three mgd rate for the infiltration ponds located to the south of the Site. The modeled results depict slow migration of the existing PCE impacts to the northwest partially contributing to the dilution and dispersion of PCE impacts, with concentrations declining to less than 10 μ g/L within approximately nine years and less than 5 μ g/L within approximately 18 years.

Model results indicate that groundwater extraction from production well R-1, assuming a 300 gpm constant flow rate, would have minimal influence on regional groundwater flow direction, and would not significantly affect migration of VOCs from the Site. However, regional groundwater gradients have fluctuated significantly over the past decade, likely due to shifts in broader groundwater production patterns in the region.

The extent of the PCE plume based on January 2017 groundwater monitoring results is presented in Figure 3. Results from the updated groundwater model are included in Appendix A.

3.3 <u>Remedial Objectives</u>

The ROs for the Site were developed by ADEQ pursuant to A.A.C. R18-16-406(I). ROs are established for the current and reasonably foreseeable uses of land and waters of the state that have been or are threatened to be affected by a release of a hazardous substance. Pursuant to A.A.C. R18-16-406(D), it is specified that reasonably foreseeable uses of land are those likely to occur at the Site and the reasonably foreseeable uses of water are those likely to occur within one hundred years, unless Site-specific information suggests a longer time period is more appropriate.

Reasonably foreseeable uses are those likely to occur, based on information provided by water providers, well owners, land owners, government agencies, and others. The ROs are based on land and water use study questionnaires collected in 2013 and the solicitation of proposed ROs during the comment period of the draft RI Report in 2014. The land and water use questionnaires are included in Appendix J of the RI Report. Not every use identified in the land and water use questionnaires will have a corresponding RO, based on whether or not the use is reasonably foreseeable.

The ROs are stated in the following terms: (1) protecting against the loss or impairment of each use; (2) restoring, replacing, or otherwise providing for each use; (3) when action is needed to protect or provide for the use; and (4) how long action is needed to protect or provide for the use.

3.3.1 ROs for Land Use

Based on the current zoning maps provided by the TOG, the source area is zoned as General Industrial. The PCE groundwater plume underlies an area that is a mix of industrial, commercial, and residential land uses. Responses in the land and water use study questionnaire, presented in Appendix J of the RI Report, indicate that there are no immediate plans to change the land use or zoning for the areas within and adjacent to the Site.

The ROs state that soil conditions are to be restored to the remediation standards for intended end use specified in A.A.C. R18-7-203 (specifically, background remediation standards prescribed in A.A.C. R18-7-204, predetermined remediation standards prescribed in A.A.C. R18-7-205, or Site-specific remediation standards prescribed in A.A.C. R18-7-206) that are applicable to the hazardous substances identified. This action is needed for the present time and for as long as the level of contamination in the soil threatens its intended use.

As long as soil concentrations exceed the PCE Non-Residential SRLs, remedial actions must be taken to prevent exposure to contaminants. Additionally, remedial action needs to be taken for arsenic and copper as long as the soil concentrations in place exceed the predetermined Non-Residential SRLs.

3.3.2 ROs for Groundwater Use

The Site lies within the Phoenix AMA, which was created by the Arizona Groundwater Management Code passed in 1980 and covers approximately 5,646 square miles in central Arizona. All groundwater withdrawn from any AMA must occur under a groundwater right or permit, unless groundwater is being withdrawn from an exempt well.

The TOG operates seven non-exempt wells within and near the Site, SRP owns three nonexempt wells, and ADEQ owns one, as follows:

- TOG#15 (Arizona Department of Water Resources [ADWR] 55-542431) is a drinking water supply well located approximately 2,700 feet downgradient from the former Unichem facility at the southwest corner of West Guadalupe Road and North Cooper Road, within the Site boundaries. The well is screened in the MAU (non-impacted alluvial unit) and is jointly operated by SRP and identified by SRP as well 29E-1.0S.
- A non-exempt production well (ADWR 55-541861) was formerly designated as TOG#15 but has been replaced by the well described above. The former TOG#15 well has not been pumped in roughly a decade and does not currently have a pump installed. However, the well has not been capped or abandoned, and is located approximately 4,000 feet northwest (downgradient) from the former Unichem facility.
- Non-exempt TOG drinking water supply well, TOG#14 (ADWR 55-534889), is located roughly 2,600 feet southeast of the Site, along the Union Pacific Railroad corridor between North Neely Street and North Gilbert Road. TOG#14 is not

within the Site boundary and upgradient from groundwater contamination at the Site.

- Several non-exempt wells are operated by the TOG in the Site vicinity that are used for recovery of recharged water for irrigation and recreational uses and groundwater monitoring. These are R-1 (ADWR 55-595204), located about 4,000 feet west of the former Unichem facility and currently outside of the Site boundary; G-7 and G-8 (ADWR 55-524081 and 55-524082, respectively), located just southeast of the former Unichem facility outside of the Site boundary; and G-10 (ADWR 55-539954), located outside of the Site boundary just south of the former Unichem facility. Non-exempt well R-1 is used to supply water to local recreational ponds and is located downgradient from the former Unichem facility. Non-exempt well G-10 is cross-gradient and G-7 and G-8 are upgradient. PCE was detected at a concentration of 2.1 µg/L in TOG well R-1 when sampled in August 2016, but is scheduled to be replaced in 2018. Due to groundwater contamination at the Site, TOG limits the pumping of groundwater recovery wells G-7, G-8, and G-10.
- SRP has three non-exempt groundwater supply wells used for irrigation, recreational, and municipal supply in the vicinity of the Site: 29E1.0S (TOG#15, ADWR 55-542431), 29E-1.5S (ADWR 55-617105), and 29E-2.0S (ADWR 55-617104). Based on the response in the land and water use study questionnaire sent to SRP, there are no current plans for further development of infrastructure or groundwater resources in the vicinity of the Site.
- EW-101 is the extraction well owned by ADEQ and was part of the GETS ERA.

The ROs for regional groundwater at the Site are to protect, restore, or otherwise provide a water supply for potable or non-potable use by currently impacted, municipal, domestic, agricultural/irrigation and recreational well owners within or near the Site if the current and reasonably foreseeable future uses are impaired or lost due to Site contamination. Remedial actions will be in place for as long as a need for the water exists, the resource remains unavailable, and the contamination associated with the Site prohibits or limits the use of groundwater for its intended end use.

Although shallow groundwater is not currently used as a drinking water source, future use of shallow groundwater at the Site could be as a drinking water source. As long as groundwater concentrations exceed the PCE and TCE AWQS, remedial actions must be taken at the appropriate time to prevent exposure to contaminants.

3.3.3 ROs for Surface Water Use

The land and water use evaluation section of the RI Report identified no uses of surface water in the area of the Site. Therefore, there are no ROs required for surface water.

4. IDENTIFICATION AND SCREENING OF REMEDIATION TECHNOLOGIES

This section provides a detailed discussion of the identification and screening of remediation technologies for potential implementation at the Site. Technologies are identified and screened separately for remediation of the vadose zone and groundwater.

4.1 <u>Screening Criteria and Assumptions</u>

Remediation technologies that would meet Site ROs and comply with requirements of A.A.C. R18-16-407 and A.R.S. §49-282.06 were identified and screened according to the following criteria:

- Contaminant treatment effectiveness;
- Constructability;
- Flexibility/expandability;
- Operations and maintenance (O&M) requirements;
- Operational hazards; and
- Cost-effectiveness

The remediation technologies that pass the technology screening were retained for use in development of the reference remedy and alternative remedies described in Section 5. The following were assumed during the identification and screening of remedial technologies:

- PCE at a concentration of 18 to 19 μ g/L in groundwater near monitor wells MW-104S, MW-109, and MW-120;
- Low level TCE concentrations continue to be below the TCE AWQS of 5 μ g/L;
- PCE is still present in the vadose zone near the former drywell; at approximately 70 ft bgs, soil concentrations are greater than Non-Residential SRLs; and
- Copper and arsenic were present in the vadose zone near the former drywell; at approximately 30 ft bgs, soil concentrations are greater than the Residential and Non-Residential SRLs for arsenic and the Residential SRL for copper.

4.2 <u>Screening of Treatment Technologies</u>

Technologies are described below that are commonly used for remediation of chlorinated hydrocarbons or metals. The basic treatment mechanisms and the suitability and limitations of the technologies are discussed. An initial screening is presented below for each technology for applicability to Site conditions, plume extent, and VOC, arsenic, and copper concentrations. Those technologies that are potentially applicable were then evaluated in detail using the technology screening criteria discussed above. The results of the initial technology screening are summarized in Table 1.

4.2.1 Soil Vapor Extraction

SVE is a well-established remedial technology for treatment of VOCs in the vadose zone. SVE involves the installation of SVE wells in impacted vadose zone soil and applying vacuum to pull soil vapors containing VOCs from the vadose zone. The extracted soil vapor can then be discharged to the atmosphere following treatment as necessary to remove VOCs, depending on the quantity emitted and local regulations.

An SVE system was operated at the Site as an ERA from July 2009 through August 2014 and removed approximately 4,600 lbs of VOCs. The SVE system consists of a skidmounted vacuum blower and two 2,000-pound VGAC vessels connected in series for VOC removal. The SVE system extracts soil vapor through a network of six extraction wells: AS/SVE-101, AS/SVE-102, SVE-104, SVE-105, SVE-106, and SVE-107. SVE was effective at removing VOC mass from the subsurface and was shut down due to decreasing PCE mass removal rates. The SVE system was restarted in February 2016 to assess rebound conditions. As the SVE system was successful in cost effectively removing VOC mass from the vadose zone, SVE is retained as a treatment technology for remediating impacted soil and soil vapor at the Site.

4.2.2 Air Sparging

Air sparging involves using an air compressor to inject air into sparge wells, which are screened below the water table to volatilize contaminants into the unsaturated zone. Air sparging can enhance SVE remediation by increasing contaminant mass removal from the saturated zone.

Air sparging was performed in conjunction with the SVE system from July 2009 through August 2014 using wells AS/SVE-101 and AS/SVE-102. Currently, the majority of VOC mass is located in the fine-grained clayey interval above the water table, at approximately 70 ft bgs. Air sparging would provide no meaningful improvement in treatment of these

residual impacts or on the low-level VOCs currently in groundwater in the vicinity of the SVE/air sparging system. Air sparging is typically best suited to enhancing the volatilization of high concentration VOC impacts beneath the water table. All remaining groundwater VOC impacts are low concentration, dissolved phase impacts, with a deep groundwater table. Based on these factors, air sparging will not be cost-effective or improve treatment due to low groundwater concentrations and residual VOC mass in clay interval; therefore, air sparging has been eliminated from further consideration.

4.2.3 Institutional Controls

Institutional controls such as a land use restriction are commonly utilized for sites where residual soil impacts may exist and the future use of a property is likely to be commercial or industrial. Institutional controls can consist of items such as a deed restriction limiting the use of a property to non-residential development and/or the utilization of an engineering control. A.R.S. §49-152 allows for the use of an institutional control consisting of a deed restriction through the implementation of a Declaration of Environmental Use Restriction (DEUR) for facilities that have residual impacts above the Residential SRLs but below the Non-Residential SRLs. If soil impacts were to remain in place above Non-Residential SRLs, an engineering control would also need to be implemented. The use of an institutional control can be a cost-effective means of obtaining site closure. As the source area of the Site is currently zoned General Industrial and is not anticipated to change, the use of an institutional control by the implementation of a DEUR is feasible to address residual arsenic and copper impacts (and potentially VOC impacts) within the vicinity of the former drywell and is retained for further consideration.

4.2.4 Groundwater Extraction and Treatment

A groundwater extraction and treatment system (i.e., GETS) is a technology for groundwater remediation that can be effective for hydraulic containment and/or migration control for sites impacted by VOCs. Extraction and treatment systems typically utilize submersible pumps in extraction wells to extract groundwater and transfer it via conveyance piping into an aboveground treatment system. The post-treatment water is subsequently discharged to a municipal sewer, a canal or other surface water, an infiltration basin, or re-injected into the subsurface with an injection well. These systems can control the subsurface flow of impacted groundwater, mitigating migration and/or reducing the footprint of the impacts. LGAC is typically employed for VOC removal via adsorption onto the media surface.

The GETS that operated at the former Unichem facility from September 2010 through September 2014 extracted a total of 193 million gallons of groundwater and removed approximately 41 lbs of VOCs from groundwater, with exceedingly low VOC mass recovery over time.

As a dissolved-phase plume treatment alternative, GETS is not as effective due to the lower groundwater VOC concentrations, larger plume area, and additional extraction wells that would be needed to treat the remaining VOC plume. Regardless, extraction and treatment is widely used and is proven as a component for treatment of groundwater impacts. This measure is highly implementable with respect to both the design and operation of a treatment system, and is amenable to the hydrostratigraphy of the Site. Therefore, extraction and treatment is retained as a remedial measure for additional evaluation.

4.2.5 Monitored Natural Attenuation

Monitored Natural Attenuation (MNA) uses natural processes occurring in groundwater to reduce contaminant concentrations over time. These processes include dilution, dispersion, sorption, volatilization, chemical or biological stabilization, transformation, and biological degradation. Of these processes, reductive dechlorination (using biological and/or abiotic degradation processes) is usually the most significant process for natural reduction in chlorinated VOC concentrations, including PCE and TCE, where favorable conditions are present. However, the January 2017 groundwater monitoring parameters indicate aerobic, slightly oxidizing conditions, which would limit the potential for biologically mediated reduction of PCE and TCE. Other abiotic MNA processes (e.g., dilution, dispersion, and sorption) were evaluated as part of the 2016 updated groundwater model and results predict that MNA processes will result in PCE concentrations decreasing to less than 5 μ g/L within approximately 18 years without the presence of an ongoing source of new VOC impacts to groundwater. MNA is retained as a treatment technology for Site groundwater.

4.2.6 Enhanced Reductive Dechlorination

Enhanced reductive dechlorination (ERD) involves stimulation or augmentation of indigenous microbial populations to expedite the anaerobic biodegradation (reductive dechlorination) of chlorinated VOCs through injections of electron donor (e.g., sodium lactate or emulsified vegetable oil). In the presence of sufficient electron donor, natural microbial activity will produce the required anaerobic conditions conducive to reductive dechlorination. If a sufficient population of bacteria capable of completely degrading PCE and its daughter products are not naturally present, the natural bacterial population

can be augmented with a consortia of naturally-occurring bacteria capable of completely degrading PCE and its daughter products.

Successful implementation of ERD includes adequate spatial distribution of the electron donor to achieve strongly reducing conditions; a microbial community capable of complete reductive dechlorination; groundwater pH greater than 5.5 and less than 9.0; sufficient concentration of chlorinated VOCs to support the growth of the microbial culture (typically a minimum of 100 μ g/L); absence of high concentrations of inhibitory constituents; and low concentrations of competing electron acceptors, such as sulfate and nitrate. If these conditions are not initially present in an aquifer, measures must be taken to alter conditions to become conducive to active reductive dechlorination. Although reduction can be ultimately stimulated in most aquifers, the greater the initial deviation from these ideal conditions, the more difficult and costly ERD will be to implement.

Groundwater at the Site is generally aerobic and would require significant amounts of electron donor to become sufficiently reducing. Given the size of the plume and the relatively low contaminant concentrations, significant amounts of bacterial culture would be required to establish the necessary bacterial population for successful ERD at the Site.

Although ERD is potentially capable of achieving the applicable ROs for the Site, there are challenges posed by the predominantly aerobic groundwater conditions, the low PCE concentrations, the low groundwater flow velocity, the depth to groundwater, and the size of the plume. ERD would be prohibitively costly as a treatment alternative for the overall plume; however, ERD may be effective as a treatment for targeted areas in combination with other treatment methodologies. Therefore, ERD is retained as a potential contingent remedial alternative should conducive future conditions warrant.

4.2.7 In Situ Chemical Reduction

In situ chemical reduction (ISCR) can abiotically reduce VOC concentrations by chemically breaking the bonds within the VOC molecules using chemical reductants, such as zero valent iron (ZVI). ZVI can also be combined with an electron donor to promote concurrent biotic and abiotic reduction of VOCs. However, this technology is most suited for high concentration source-zone remediation or permeable reactive barrier (PRB) applications. Due to the slow migration rate of the groundwater at the site, a permeable reactive barrier would have no significant impact on the overall timeline of groundwater remediation. Given the thickness of the impacted groundwater zone, and the depth to groundwater, installation of a PRB would be both technically and economically infeasible. Based on these limitations, this technology was not retained for further consideration.

4.2.8 In Situ Chemical Oxidation

In situ chemical oxidation (ISCO) relies on injection of a powerful oxidizing agent to oxidize VOCs. Several oxidants are available and have been proven effective for chlorinated VOCs, including persulfate, permanganate, and modified Fenton's reagent. These oxidants are considered effective for oxidizing PCE and its biological degradation products, TCE, cis-1,2-dichloroethene, and vinyl chloride (Interstate Technology & Research Council [ITRC], 2005). The oxidant is generally delivered to the site in concentrated formulations or as solids, mixed in the field, and then injected through injection wells or temporary injection points. It is capable of rapidly reducing high concentration VOCs and well-suited for targeted remediation of small source areas. However, these strong oxidants can be dangerous to handle and can potentially result in unintended changes to aquifer geochemistry.

Although ISCO is potentially capable of achieving the applicable ROs for the Site, there are challenges posed by the high cost of the chemical oxidant, relatively small radius of influence of each ISCO injection, size and depth of the plume, and low concentrations of VOCs. ISCO would be prohibitively costly as a treatment alternative for the overall plume; however, ISCO may be effective as a treatment for targeted areas in combination with other treatment methodologies. Therefore, ISCO is retained as a potential contingent remedial alternative should conducive future conditions warrant.

5. DEVELOPMENT OF REFERENCE REMEDY AND ALTERNATIVE REMEDIES

Using the retained remedial technologies, a Reference Remedy has been developed along with two alternative remedies (the More Aggressive and the Less Aggressive Remedies). The Reference Remedy and each alternative remedy consist of remedial strategies and actions (remedial measures) to achieve ROs for the Site.

Remedial strategies may incorporate more than one remediation technology or methodology. As provided in A.A.C. R18-16-407(F), remedial strategies for consideration may include:

- Plume remediation to achieve water quality standards for COCs in waters of the state throughout the Site;
- Physical containment to contain contaminants within definite boundaries;
- Controlled migration to control the direction or rate of migration, but not necessarily to contain migration of contaminants;
- Source control to eliminate or mitigate a continuing source of contamination;
- Monitoring to observe and evaluate the contamination at the Site through the collection of data; and
- No action.

For the vadose zone, potential remedies consider future land use and potential risk exposure through vapor intrusion or impacts to groundwater. For groundwater, each alternative remedy has been identified with consideration of the needs of the water providers (TOG and SRP) and their customers, including the quantity and quality of water, water rights, other legal constraints, and operational implications. Where remedial measures are necessary to achieve ROs, the remedial measures will remain in effect as long as required to ensure the continued achievement of those objectives.

The Reference Remedy and each alternative remedy may also include contingent remedial measures to address reasonable uncertainties regarding the achievement of ROs, or uncertain timeframes in which ROs will be achieved. The Reference Remedy and the alternative remedies are described below.

5.1 <u>Reference Remedy</u>

The Reference Remedy for VOCs includes a combination of continued SVE operation in the vadose zone source area and downgradient MNA for groundwater to achieve Site ROs. The Reference Remedy for arsenic and copper in source area soils includes additional assessment to delineate the vertical extent of impacts in the former drywell area, updated risk evaluation, and potential institutional controls to achieve Site ROs. The remedial strategies for the vadose zone and groundwater Reference Remedy are:

- Physical containment to contain contaminants within definite boundaries;
- Source control to eliminate or mitigate a continuing source of contamination;
- Plume remediation to achieve water quality standards for COCs in waters of the state throughout the Site; and
- Monitoring to observe and evaluate the contamination at the Site through the collection of data.

Reference Remedy for Arsenic and Copper

Pursuant to A.A.C. R18-16-407C., an analysis of alternative remedies is not required for remedies addressing only soil. Since arsenic and copper impacts were identified in the RI in the former drywell area at 30 ft bgs that were not attributed to background, this FS presents a Reference Remedy only for arsenic and copper in soil. The Reference Remedy for arsenic and copper in soil is included in the More Aggressive Alternative Remedy and the Less Aggressive Alternative Remedy for costing and comparative purposes.

Additional delineation of arsenic and copper in source area soils is needed to update the risk evaluation for these metals. Should the evaluation indicate a potential exposure pathway and risk above target carcinogenic and/or non-carcinogenic levels, the Reference Remedy for arsenic and copper in source area soils will include institutional controls consisting of a DEUR. A DEUR for arsenic and copper is compliant with A.R.S. §49-152 and A.A.C R18-7-208 for soil impacts within source area soils (i.e., former drywell area). As the source area of the site is currently zoned General Industrial and is not anticipated to change, a DEUR restricting development as residential is feasible and would meet the ROs for soil by achieving predetermined Non-Residential SRLs prescribed in A.A.C R18-7-205 or potential Site-specific remediation standards developed pursuant to A.A.C. R18-7-206.

Copper has not been detected in groundwater samples collected at the Site at concentrations exceeding the AWQS since 2006. Additionally, according the RI Report and ROs Report, arsenic concentrations in groundwater have been attributed to naturally occurring background conditions. As arsenic and copper concentrations in the prior soil sample collected at a depth of 30 ft bgs in the vicinity of the former drywell do not appear to be impacting groundwater, a risk based assessment of the soil impacts, potential alternative soil cleanup levels, and/or implementation of a DEUR are technically acceptable and have been utilized at similar sites in Arizona. Removal of arsenic and copper impacted soils at depths of up to 30 ft bgs (or more) would impact current site activities and are not technically justifiable given the apparent nature of the current impacts, lack of associated contribution to groundwater impacts, and the regulatory framework allowed by Arizona rules and regulations.

A DEUR, if warranted, is consistent with the requirements of A.R.S. §49-282.06. This Remedy assures the protection of public health and the environment by limiting the type of activities that may be conducted at a site reducing the potential for future exposure. A DEUR also provides for the management of residual impacts in place and is a reasonable, cost effective, technically feasible, and regulatory accepted alternative to other potential remedies such as the removal of the arsenic and copper impacts at depth.

Reference Remedy VOCs

The vadose zone VOC remediation area is generally limited to the area around the former drywell; therefore, the remedial measures focus on controlling residual VOC impacts and continued removal of VOC mass, as well as routine monitoring of the SVE system. The remedial measures for the vadose zone Reference Remedy for VOCs include:

- Continued operation of the existing SVE system, using VGAC to treat the extracted soil vapor;
- Continued operational monitoring to assess remedial progress and system performance; and
- Performing soil and soil vapor confirmation sampling near the former drywell.

Continued operation of the SVE system will provide source control through the removal of VOC mass in the vadose zone, which will mitigate the potential for vapor intrusion and ongoing groundwater impacts from the residual VOCs within the vadose zone. The SVE system will continue to be operated in pulse mode (approximately one month on, followed by one month off) for up to five years. SVE system optimization will be

conducted throughout the five-year period and operational schedules may be adjusted to enhance VOC removal. Operation of the current SVE system removes less than 0.5 lbs of VOCs per day and has removed over 4,800 lbs of VOCs since 2009.

As a vadose zone contingency for the VOC Reference Remedy, if VOC results from the soil and soil vapor confirmation sampling are greater than Non-Residential SRLs, minimum GPLs, or Site-specific soil vapor screening levels, then the SVE system may be expanded (similar to the More Aggressive Remedy described in Section 5.2) and/or operated for an additional five years. If the confirmation sample results are below the applicable action levels, then the SVE system will be shut down for rebound testing (similar to the Less Aggressive Remedy described in Section 5.3).

As an additional vadose zone contingency for VOCs, if soil results from the confirmation sampling are greater than Non-Residential SRLs and/or minimum GPLs, a Site-specific risk assessment may be performed to evaluate potential carcinogenic and non-carcinogenic risks via exposure pathways for commercial/industrial workers. If exposure risks are below target cancer risk of 10⁻⁶ and target noncancer hazard of 1, then the SVE system would be shut down for rebound testing.

Operation of the SVE system will require continued compliance with the Maricopa County Air Quality Department (MCAQD) air permit for the SVE system operation, along with quarterly SVE performance testing and reporting. O&M measurements will be used to assess system performance.

The groundwater Reference Remedy will monitor and document the natural attenuation of groundwater VOC concentrations over time through MNA. Due to the aerobic conditions in the groundwater, MNA processes such as dilution, dispersion, volatilization, and sorption are likely to be the dominant mechanisms for concentration reductions in the VOC plume over time. The remedial measures for MNA include:

- Installation of up to two downgradient groundwater monitor wells to delineate the extent of the PCE plume to the northwest/west;
- Continued semiannual groundwater monitoring of the current groundwater monitor well network and the additional downgradient well(s) to evaluate plume stability and PCE concentration trends; and
- Continued semiannual groundwater elevation measurements to evaluate flow direction and hydraulic gradient.

Semiannual groundwater monitoring of up to 30 monitor wells may be continued for up to 18 years for the current monitor well network and up to two additional downgradient monitor wells. If the PCE plume appears to be stable, the groundwater monitoring frequency may be reduced to annual and the number of monitor wells may be decreased. As a contingency, if the PCE concentrations continue to be greater than the AWQS, then an additional 10 years, or until concentrations are less than the AWQS, of groundwater monitoring will be performed. The updated 2016 groundwater model (Appendix A) indicates that PCE concentrations would decrease to less than 5 μ g/L within 18 years. The groundwater model will be updated every five years to verify the timeline for PCE concentrations below AWQS.

If TOG or SRP requires restoration of production wells before PCE concentrations are below AWQS, then wellhead treatment using LGAC or modification of the production well (e.g., sleeving) may be performed to allow groundwater usage. Wellhead treatment with LGAC would be installed at a production well if monitoring results indicate PCE concentrations are greater than the AWQS and TOG or SRP requires drinking water quality out of the production well. The treated groundwater would then be pumped into the distribution system or canal system. For the Reference Remedy, additional coordination with TOG and/or SRP would be required for the design and location access of the wellhead treatment system or modification of the production well.

5.2 More Aggressive Alternative Remedy

The More Aggressive Remedy includes the Reference Remedy for arsenic and copper in soil. The More Aggressive Remedy for VOCs in soil includes all aspects of the Reference Remedy plus expansion of the current SVE system. The More Aggressive Remedy for groundwater includes the installation of a GETS to treat the PCE concentrations within the plume currently exceeding 10 μ g/L. The remedial strategies for the More Aggressive Remedy include:

- Physical containment to capture contaminants within definite boundaries;
- Source control to eliminate or mitigate a continuing source of contamination;
- Plume remediation to achieve water quality standards for COCs in water of the state throughout the Site; and
- Monitoring to observe and evaluate the contamination at the Site through the collection of data.

The More Aggressive Remedy remedial measures for the vadose zone VOC impacts include:

- Continued operation of the existing SVE system, using VGAC to treat the extracted soil vapor;
- Continued operational monitoring to assess remedial progress and system performance;
- Performing soil and soil vapor confirmation sampling near the former drywell; and
- Installation of two additional SVE extraction wells with focused screen intervals and connection to the VGAC treatment system.

Installation of two additional SVE extraction wells to the VGAC treatment system is based on the soil and soil vapor confirmation sampling results being greater than the applicable action levels (Non-Residential SRLs, minimum GPLs, or Site-specific soil vapor screening levels). The current SVE treatment system, which includes two 2,000-pound VGAC vessels, will have sufficient capacity to treat the soil vapor from the additional SVE extraction well, and no added treatment equipment will be required. The expanded SVE system will be operated for up to ten years. If influent PCE concentrations are below Site-specific soil vapor screening levels, then the SVE system will be shut down for rebound testing (similar to the Less Aggressive Remedy described in Section 5.3).

The More Aggressive Remedy for groundwater includes the installation of a GETS in the vicinity of the intersection of Guadalupe Road and Cooper Road. The remedial strategies for the More Aggressive Remedy include:

- Physical containment to capture contaminants within definite boundaries;
- Source control to eliminate or mitigate a continuing source of contamination;
- Plume remediation to achieve water quality standards for COCs in water of the state throughout the Site; and
- Monitoring to observe and evaluate the contamination at the Site through the collection of data.

The groundwater remedial measures for the More Aggressive Remedy include:

- Installation of up to two downgradient groundwater monitoring wells to delineate the extent of the PCE plume to the northwest/west;
- Continued semiannual groundwater monitoring to evaluate plume stability and PCE concentration trends;
- Continued semiannual groundwater elevation measurements to evaluate flow direction and hydraulic gradient;
- Installation and operation of a GETS system consisting of three groundwater extraction wells and a centralized LGAC treatment system; and
- Groundwater monitoring to assess the effectiveness of the remedial measures and to support a strategy of MNA for the dilute fringe of the plume.

The GETS would comprise three extraction wells withdrawing approximately 100 gpm of groundwater and a LGAC treatment system with a 300 gpm capacity and discharge to a nearby SRP lateral. These wells would be located south of Guadalupe Road and west of Cooper Road, sited to capture the highest-concentration portion of the plume as is practical given the physical and logistical limitations for placement of wells in a developed area. By controlling the migration of the highest-concentration portion of the plume, the More Aggressive Remedy would reduce the mass of COCs within the regional groundwater gradient, which would contribute to the closure of the site through Monitored Natural Attenuation of the remainder of the plume. The operation of the GETS is assumed to be 16 years based on the nature of the laterally disperse (greater than approximately 0.5 square miles) and dilute plume of PCE as of January 2017 groundwater sampling results.

Contingencies for the More Aggressive Remedy include two additional groundwater extraction wells and performing a single targeted enhanced in-situ bioremediation (EISB) injection at monitoring well MW-104S. If TOG or SRP requires restoration of production wells before PCE concentrations are below AWQS, then wellhead treatment using LGAC or modification of the production well (e.g., sleeving) may be performed to allow groundwater usage as a contingency. Semiannual groundwater monitoring will be continued for up to 16 years assuming the operation of the GETS could reduce the time for PCE groundwater concentrations reducing below the AWQS of 5 μ g/L by two years. If the PCE plume appears to be stable, the groundwater monitoring frequency may be reduced to annual and the number of monitor wells may be decreased. As a contingency, if the PCE concentrations continue to be greater than the AWQS, then an additional 10

years, or until concentrations are less than the AWQS, of groundwater monitoring will be performed.

5.3 Less Aggressive Alternative Remedy

The Less Aggressive Remedy includes the Reference Remedy for arsenic and copper in soil. The proposed Less Aggressive Remedy for VOCs in the source area vadose zone includes shutting down the SVE system for rebound testing and continued groundwater sampling of a reduced groundwater monitoring well network. The remedial strategies for the vadose zone Less Aggressive Remedy include:

- Plume remediation to achieve water quality standards for COCs in waters of the state throughout the Site; and
- Monitoring to observe and evaluate the contamination at the Site through the collection of data.

The vadose zone remediation area is generally limited to the area around the former drywell. As described in the Reference Remedy, soil and soil vapor confirmation sampling near the former drywell will be performed to assess residual VOC concentrations in the vadose zone after SVE operations. The remedial measures for the vadose zone Less Aggressive Remedy consist of discontinuing SVE operation based on soil and soil vapor confirmation sampling results being below the applicable action levels (Non-Residential SRLs, minimum GPLs, or Site-specific soil vapor screening levels). For costing purposes, it is assumed that the vadose zone Less Aggressive Remedy includes up to one year of quarterly rebound sampling following the SVE shut down.

The remedial measures for the groundwater Less Aggressive Remedy are similar to the Reference Remedy and include:

- Installation of up to two downgradient groundwater monitor wells to delineate the extent of the PCE plume to the northwest/west;
- Annual groundwater monitoring of a reduced groundwater monitor well network to evaluate PCE concentrations; and
- Annual groundwater elevation measurements to evaluate flow direction, hydraulic gradient, and plume stability.

As described in the Reference Remedy, MNA processes, such as dilution, dispersion, volatilization, and sorption, are likely to be the dominant mechanisms for VOC

concentration reductions over time. MNA could feasibly be conducted utilizing a reduced groundwater monitor well network given the nature of the remaining relatively dilute (less than 20 μ g/L) and laterally disperse (greater than approximately 0.5 square miles) plume on a more infrequent basis (annually versus semiannually). For the Less Aggressive Remedy, annual groundwater monitoring would be conducted for one well downgradient of the original source area as a sentinel well and eight groundwater monitor wells around the periphery of the extent of PCE impacts exceeding the AWQS of 5 μ g/L. Based on the January 2017 groundwater sampling results, the reduced groundwater monitor well network for MNA under the Less Aggressive Remedy would include:

- MW-117 as a sentinel well for the former source area; and
- MW-106, MW-111, MW-114, MW-113, MW-115, R-1, and two additional downgradient wells defining the extents of the PCE impacts exceeding 5 µg/L.

For cost evaluation purposes, it was assumed that monitoring would be on an annual basis for 18 years based on the 2016 groundwater model (Appendix A) indicating the AWQS will be attained within approximately 18 years. As a contingency, if the PCE concentrations continue to be greater than the AWQS, then an additional 10 years, or until concentrations are less than the AWQS, of groundwater monitoring will be performed. The groundwater model will be updated every five years to verify the timeline for PCE concentrations below AWQS.

Similar to the Reference Remedy, if TOG or SRP require restoration of production wells before PCE concentrations are below AWQS, then wellhead treatment using LGAC or modification of the production well (e.g., sleeving) may be performed to allow groundwater usage. Additional coordination with TOG and/or SRP would be required for the design and location access of the wellhead treatment system.

6. COMPARISON OF REFERENCE REMEDY AND ALTERNATIVE REMEDIES

The following section compares the reference and alternative remedies to criteria described in A.A.C R18-16-407H.3. As previously noted, alternative remedies for arsenic and copper in source area soils are not included pursuant to A.A.C. R18-16-407C. The remedy for arsenic and copper is discussed under the Reference Remedy and presented on Tables 2 and 4 for evaluation purposes. The costs for the arsenic and copper Reference Remedy are incorporated in Table 2 (and Appendix D) for the Reference Remedy, More Aggressive Remedy, and Less Aggressive Remedy as the Reference Remedy for arsenic and copper is the same for each scenario.

6.1 <u>Comparison Criteria</u>

In accordance with A.A.C. R18-16-407E.3., the FS has been completed to identify a Reference Remedy and alternative remedies that are potentially capable of achieving ROs, and to evaluate the remedies based on the comparison criteria in order to select a remedy that complies with A.R.S. §49-282.06. A.A.C. R18-16-407H specifies that practicability, risks, costs, and benefits are the primary remedy evaluation criteria.

Practicability includes the assessment of feasibility, short- and long-term effectiveness, and the reliability of the remedial alternative. The risk criteria includes assessment of the overall protectiveness of public health and the environment in terms of fate and transport of the COCs, current and future land and water uses, exposure pathways and durations of potential exposure, changes in risk during remediation, and residual risk at the end of remediation. The cost analysis includes capital, operating, maintenance, and life cycle costs. Evaluation of benefits includes the assessment of lowered risk, reduced COC concentration or volume, decrease in liability, and preservation of existing and future uses.

Table 2 presents an evaluation of the remedy for arsenic and copper impacts in the vadose zone and the detailed evaluation of the VOC vadose zone and groundwater remedies for VOCs with respect to the comparison criteria. The following subsections detail how the remedies perform against these criteria.

For cost analyses, the estimates are conceptual and assumed to have similar margins of error between +50% and -25% (i.e., the actual costs are expected to be between 25% less than and 50% more than the estimated costs).

6.1.1 Reference Remedy

The practicability, risk, cost, and benefits for both the vadose zone and groundwater Reference Remedies are discussed in the following subsections.

6.1.1.1 Practicability

The vadose zone and groundwater Reference Remedies involve technologies that are already operating at the Site (SVE) or are known and reliable remediation technologies (risk based remediation levels and institutional controls for arsenic and copper in the vadose zone and MNA for VOC impacts in groundwater). For the vadose zone Reference Remedy, confirmation soil borings would be advanced to delineate arsenic and copper concentrations, a risk evaluation would be conducted, and institutional controls would be implemented if needed based on the additional evaluation. Risk-based cleanup standards and institutional controls are highly practicable and have been implemented at other sites as a means to manage residual impacts in place. For vadose zone VOC impacts, the SVE system will continue operating as is currently constructed, and as such is highly practicable. SVE is a known effective and reliable remedy for VOC impacts in the vadose zone.

For the groundwater Reference Remedy, MNA is a well-established technology that can be highly effective in the long-term. While the groundwater conditions are not conducive to reductive dechlorination, monitoring for abiotic MNA processes is highly feasible and will be assessed as part of the semiannual groundwater monitoring. Coordination with the TOG or SRP would be required if the contingency of wellhead treatment or modification of a production well was implemented. The groundwater Reference Remedy is considered to be highly practicable.

6.1.1.2 Protectiveness (Risk)

The vadose zone Reference Remedy is protective, as it provides source control through management of arsenic and copper impacts in place and removal of VOC mass in the vadose zone. The Reference Remedy will mitigate the risk that residual PCE in the vadose zone could act as a long-term source of groundwater contamination. The vadose zone remedy reduces potential exposure pathways and is consistent with current and future industrial land use. The groundwater Reference Remedy is protective in that it provides continued monitoring of the dissolved-phase contaminant plume and nearby TOG and SRP production wells with the contingency of wellhead treatment.

6.1.1.3 Cost

The cost of the Reference Remedy is presented in Table 3, and detailed costs are presented in Appendix D. The Reference Remedy costs include the additional delineation, risk evaluation and potential institutional controls for arsenic and copper impacts in source area vadose zone soils. The following assumptions were used for costing purposes:

- Three soil borings would be advanced in the vicinity of the former drywell for additional delineation of arsenic and copper impacts noted in the former sample collected from 30 ft bgs;
- The SVE system will be operated for a period of up to five years in a pulse mode operation;
- Three confirmation soil borings will be advanced for soil and soil vapor sampling of VOCs;
- Two additional downgradient groundwater monitoring wells would be installed to delineate the PCE plume; and
- A total of 30 wells would be used for MNA.

From Table 3, the estimated capital costs (excluding contingencies) are approximately \$0.4 million. Total estimated O&M costs (excluding contingencies) are approximately \$1.7 million (accounting for three percent annual inflation), based on the estimation that SVE O&M would be conducted for five years and groundwater monitoring activities would be conducted for 18 years after the capital improvements are installed. Total estimated contingency costs are approximately \$8.0 million based on the assumptions included in Appendix D. Contingency costs conservatively assume wellhead treatment in lieu of extraction well modification.

6.1.1.4 Benefits

Additional soil delineation and updated risk evaluation of arsenic and copper impacts in the vadose zone would assess if a potential exposure pathway is present. The use of institutional controls would manage impacts in place and mitigate potential exposure pathways without impacting site operations in the way more intrusive remedial methods such as excavation would. The continued operation of the SVE system in the vadose zone VOC Reference Remedy is beneficial since it will remove VOC mass in the vadose zone and mitigate the potential for residual PCE to act as a long-term source of groundwater contamination, which will reduce the time to complete remediation. The groundwater Reference Remedy is considered beneficial by providing continued monitoring of the PCE plume as a means of evaluating the effectiveness of remediation.

6.1.2 More Aggressive Remedy

The practicability, risk, cost, and benefits for implementation of the More Aggressive Remedies are discussed in the following subsections.

6.1.2.1 Practicability

The More Aggressive Remedy in the vadose zone involves expansion of the currently operating SVE system. The SVE system, including up to two additional extraction wells, is highly practicable. SVE is an effective and reliable remedy for remediation of VOC impacts in the vadose zone. Installing additional SVE wells and connecting to the current SVE system will require coordination with Skyline Steel regarding the location of the SVE wells and possible expansion of the treatment facility fencing.

For the groundwater More Aggressive Remedy, groundwater extraction and treatment and MNA monitoring are both well-established technologies that can be effective in the short- and long-term. The technologies are feasible, although the installation of three extraction wells and a treatment system may present challenges to implementation. For example, if the ideal locations of the extraction wells and the treatment system are on private property, the property owners may be averse to allowing construction of these items on their property and the long-term access that would be required for their monitoring and maintenance. If the extraction wells are instead placed in public right-ofways, street closures may be necessary for well installation and monitoring. In addition, both private and public utilities and infrastructure would need to be avoided during siting and installation of the groundwater extraction wells and the associated conveyance piping.

6.1.2.2 Protectiveness (Risk)

The vadose zone More Aggressive Remedy is highly protective, as the remedy removes VOC mass from the subsurface and will mitigate the potential for residual PCE in the vadose zone to act as a long-term source of groundwater contamination. The remedy reduces exposure pathways and is consistent with current and future land use. Expansion of the SVE system will improve source control, as compared to the Reference Remedy.

The groundwater More Aggressive Remedy is highly protective by directly treating contaminated groundwater. Continued groundwater monitoring of portions of the plume

not addressed by groundwater treatment is protective in that it provides continued monitoring of the dissolved-phase contaminant plume and nearby TOG and SRP production wells with the contingency of wellhead treatment.

6.1.2.3 Cost

The cost of the More Aggressive Remedy is presented in Table 3, and detailed costs are presented in Appendix D. The More Aggressive Remedy costs include the additional delineation, risk evaluation and potential institutional controls for arsenic and copper impacts in source area vadose zone soils. The following assumptions were used for costing purposes:

- Three soil borings would be advanced in the vicinity of the former drywell for additional delineation of arsenic and copper impacts noted in the former sample collected from 30 ft bgs;
- Two additional SVE wells would be installed and connected to the existing SVE system;
- The expanded SVE system would be operated for a period of up to 10 years;
- Three confirmation soil borings will be advanced for soil and soil vapor sampling of VOCs;
- Two additional downgradient groundwater monitor wells would be installed to delineate the PCE plume;
- Permitting and utility clearance would be required for installation of three extraction wells and conveyance pipeline;
- The groundwater conveyance piping for the GETS would be single walled high density polyethylene installed via trenching;
- The native soil would be used to backfill above the pipes;
- The new treatment system would include a target extraction rate of approximately 300 gpm and include a concreate pad with a secondary containment berm, one sump pump, filtration, two 6,000-pound LGAC vessels, and a chain link fence for security purposes; and
- A total of 30 wells would be used for MNA.

From Table 3, the estimated capital costs (excluding contingencies) are approximately \$2.4 million. Total estimated O&M costs (excluding contingencies) are approximately \$5.6 million (accounting for three percent annual inflation), based on the estimation that

SVE O&M would be conducted 10 years and GETS O&M and groundwater monitoring activities would be conducted for 16 years after the capital improvements are installed. The costs for the More Aggressive Remedy are significantly higher due to the installation and operation of a GETs. Total estimated contingency costs are approximately \$8.7 million based on the assumptions included in Appendix D. Contingency costs conservatively assume wellhead treatment in lieu extraction well modification.

6.1.2.4 Benefits

Expansion of the current SVE system is beneficial since it will remove VOC mass in the vadose zone and mitigate the continued migration of VOC mass into and within the groundwater. The More Aggressive Remedy of installation of GETS and groundwater monitoring is considered beneficial by providing treatment of a portion of the dissolved-phase plume and monitoring as a means for evaluating the effectiveness of remediation. Semiannual groundwater monitoring would also provide a means for evaluating the effectiveness of the remediation.

6.1.3 Less Aggressive Remedy

The practicability, risk, cost, and benefits for both the vadose zone and groundwater Less Aggressive Remedies is discussed in the following subsections.

6.1.3.1 Practicability

The vadose zone Less Aggressive Remedy involves shutting down the SVE system, which would be very feasible to implement. Reliability will be moderate, as quarterly rebound sampling will be able to identify if concentrations increase to a point where groundwater may be impacted. The effectiveness of this remedy may be low if significant residual VOC mass remains.

The groundwater Less Aggressive Remedy consists of MNA, of a reduced monitor well network on an annual basis. MNA is a well-established technology that can be highly effective in the long-term and, under the Less Aggressive Remedy, is optimized to minimize the amount of wells and frequency of monitoring. While the groundwater conditions are not conducive to reductive dechlorination, monitoring for abiotic MNA processes is highly feasible. Although, MNA with a reduced monitor well network and frequency is considered moderately reliable as additional groundwater well monitoring may have to be conducted if the sentinel well for the former source area indicated an exceedance of the AWQS.

6.1.3.2 Protectiveness (Risk)

The vadose zone Less Aggressive Remedy may not be protective if significant residual VOC mass remains in the vadose zone, because no further treatment would be performed. If rebound conditions were to occur, then the contingency would be to default back to the Reference Remedy (continued operation of the SVE system).

The groundwater Less Aggressive Remedy is protective in that it provides for continued monitoring of the dissolved-phase contaminant plume and nearby TOG and SRP production wells. A reduced monitoring frequency and well network providing a sentinel well for the former source area and groundwater monitor wells around the portion of the PCE plume exceeding the AWQSs of 5 μ g/L would cost effectively allow for the continued monitoring of the PCE plume. The reduced monitor well network would not allow for the continued delineation of the interior portions of the plume currently exceeding a PCE concentration of 10 μ g/L. Additionally, an expansion to the monitor well network may be needed should an exceedance of the AWQSs be measured in the former source area sentinel well.

6.1.3.3 Cost

The cost of the Less Aggressive Remedy is presented in Table 3, and detailed costs are presented in Appendix D. The Less Aggressive Remedy costs include the additional delineation, risk evaluation and potential institutional controls for arsenic and copper impacts in source area vadose zone soils. The following assumptions were used for costing purposes:

- Three soil borings would be advanced in the vicinity of the former drywell for additional delineation of arsenic and copper impacts noted in the former sample collected from 30 ft bgs;
- SVE rebound testing will be conducted for a period of up to one year;
- Three confirmation soil borings will be advanced for soil and soil vapor sampling of VOCs;
- Two additional downgradient groundwater monitor wells would be installed to delineate the PCE plume; and
- A total of nine wells would be used for MNA.

From Table 3, the estimated capital costs (excluding contingencies) are approximately \$0.4 million. Total estimated O&M (monitoring) costs (excluding contingencies) are

approximately \$0.7 million (accounting for three percent annual inflation), based on the assumption that SVE rebound monitoring would be conducted for up to one year and groundwater monitoring activities would be conducted for 18 years after the capital improvements are installed. Total estimated contingency costs are approximately \$7.0 million based on the assumptions included in Appendix D. Contingency costs conservatively assume wellhead treatment in lieu extraction well modification.

6.1.3.4 Benefits

The vadose zone Less Aggressive Remedy provides the benefit of preserving the existing use of the source area site and returning the portion of the site that the treatment compound occupies to the property owner in a more timely fashion. Natural attenuation of potentially remaining chlorinated VOC impacts would be lengthy as natural attenuation mechanisms in the vadose zone are very slow. The groundwater Less Aggressive Remedy is considered beneficial by providing continued monitoring of the dissolved-phase plume as a means for evaluating the effectiveness of remediation with an optimized (reduced) monitor well network.

6.2 <u>Comparison of Remedies</u>

Comparison of the remedies is required under the A.A.C. R18-16-407(H). Table 4 presents a ranking of the comparison criteria for each of the remedies.

6.2.1 Practicability

There are four considerations for practicability as follows:

- <u>Feasibility</u> involves the ability to put the remedy in place;
- <u>Short-term effectiveness</u> represents how much the remedy removes the COCs and limits the potential for exposure in the short-term;
- <u>Long-term effectiveness</u> represents how much the remedy removes the COCs and limits the potential for exposure in the long-term; and
- <u>Reliability</u> involves whether the technologies comprising the alternative are expected to perform reliably.

For the arsenic and copper vadose zone remedy, additional characterization, updated risk evaluation, and potential institutional controls are technically acceptable and a cost effective measure to address the residual levels of these metals in place. A DEUR for arsenic and copper is compliant with A.R.S. §49-152 and A.A.C R18-7-208 for soil

impacts within source area soils (i.e., former drywell area). As the source area of the site is currently zoned General Industrial and is not anticipated to change, a DEUR restricting residential development is feasible and would meet the ROs for soil by achieving predetermined Non-Residential SRLs prescribed in A.A.C R18-7-205 or potential site-specific remediation standards developed pursuant to A.A.C. R18-7-206. Based on this and as allowed by A.A.C. R18-7-407C., alternatives were not evaluated for comparison.

Each of the remedies for VOCs in the vadose zone is considered to be technically and operationally feasible, as the remedies either rely primarily on the existing SVE system or involve shutting down the SVE system. The More Aggressive Remedy is slightly less feasible as coordination and access with the current property owner of the source area would be required. The VOC vadose zone Less Aggressive Remedy has a lower score for short- and long-term effectiveness since the remedy would consist of shutting down the SVE system and the reliability is lower than the Reference and More Aggressive Remedies if significant residual VOC mass remains.

The groundwater Reference Remedy and Less Aggressive Remedy consist of MNA monitoring and have the highest practicability, as being feasible and effective in both the short- and long-term, though the Less Aggressive Remedy is moderately reliable as an expansion to the monitor well network may be needed should an exceedance of the AWQSs be measured in the former source area sentinel well. The More Aggressive Remedy ranked lower due to the required coordination for sighting, property access, right-of-way agreements, and constructability associated with the installation of a GETS within a dilute disperse plume.

6.2.2 Risk

The vadose zone arsenic and copper Reference Remedy is considered protective as the risks evaluation of residual impacts would be completed and institutional controls utilized if needed to manage the arsenic and copper in place. The VOC vadose zone and groundwater Reference Remedies and More Aggressive Remedies are more protective than the Less Aggressive Remedies. The Less Aggressive Remedies are less protective if significant VOC mass remains in the vadose zone and/or contributes to impacts to groundwater around the source area that are not currently present. The groundwater More Aggressive Remedy is slightly more protective than the Reference Remedy due to the installation and operation of a GETS, though each of the groundwater. The vadose zone Less Aggressive Remedy ranked lowest for protection since it involves shutting down the SVE system and no further mass removal.

6.2.3 Cost

As previously discussed, the cost of the arsenic and copper remedy was included in the evaluation of the Reference Remedy, More Aggressive Remedy, and Less Aggressive Remedy as it would be implemented in each case. The three remedies have varying capital and O&M costs. Including the capital, O&M, and contingency costs, it is estimated that Less Aggressive Remedy would cost the least (\$8.1 million), the Reference Remedy cost would be moderate (\$10.2 million), and the More Aggressive Remedy would cost the most (\$16.7 million).

6.2.4 Benefits

The vadose zone arsenic and copper remedy provides the benefit of managing residual impacts in place without more intrusive soil remediation methods such as excavation and removal of impacts at depth. The vadose zone Less Aggressive Remedy scored lowest for benefits since it consists of shutting down the SVE system. The Reference Remedy and More Aggressive Remedy have similar benefits in that each would continue to remove remaining VOC mass from the vadose zone through operation of the SVE system. Although it is the lowest cost, the Less Aggressive Remedy does not contain/remediate soil at the source.

The groundwater More Aggressive Remedy ranked slightly higher for beneficial use since the remedy involves the extraction and treatment of a portion of the impacted groundwater, though direct wellhead treatment is a contingency for each remedy. Each remedy also includes continued groundwater monitoring of natural attenuation processes. The Reference Remedy and Less Aggressive Remedy were similar since they both provide continued groundwater monitoring of natural attenuation processes, though the Less Aggressive Remedy, utilizing a reduced monitor well network, is slightly less beneficial if an exceedance of the AWQS is detected in the former source area sentinel well. The benefit of including groundwater treatment as part of the More Aggressive Remedy is not offset by the potential impacts associated with the installation of the GETS components (i.e., groundwater extraction wells, conveyance piping, and treatment compound).

7. PROPOSED REMEDY

The following presents the proposed remedy for both vadose zone and groundwater, as well as the basis for selecting the proposed remedy. Detailed cost information for the remedial alternatives is included in Appendix D.

7.1 Process and Reason for Selection

The remedy for arsenic and copper in vadose zone soils in the vicinity of the former drywell consists of additional delineation, updated risk evaluation, and an institutional control (DEUR, if needed). This remedy is recommended based on the lack of arsenic and copper groundwater impacts attributed to the source area and is technically practicable for non-mobile sources.

The Reference Remedy for both VOC vadose zone and groundwater are recommended as the proposed remedies at the Site. This recommendation is based on what is considered to be the best combination of remedial effectiveness, practicably, cost, and benefit for restoration and use of land and groundwater resources. The Reference Remedy for VOC in the vadose zone and groundwater scored the highest when ranking in accordance with the comparison criteria specified in A.A.C R18-16-407H.3.e (Section 6).

7.2 Achievement of Remedial Objectives

The remedy for arsenic and copper in source area soils achieves the RO for soil for the site, as provided in Section 3.3, by meeting either predetermined Non-Residential SRLs and/or Site-specific remediation standards. The Reference Remedy for PCE in the vadose zone and PCE and TCE in groundwater also achieve the ROs for the Site (Section 3.3.) Continued operation of the SVE system will provide source control for the vadose zone and will prevent potential migration to groundwater. The groundwater Reference Remedy will provide continued monitoring of the PCE plume and ongoing monitoring of TCE concentrations as a means of evaluating the effectiveness of remediation through MNA.

7.3 Achievement of Remedial Action Criteria Pursuant to A.R.S. §49-282.06

To meet the remedial action criteria listed in A.R.S. §49-282.06, it is recommended that the Reference Remedy for arsenic and copper in the vadose zone, the Reference Remedy for PCE in the vadose zone, and the Reference Remedy for PCE and TCE in groundwater be

selected as the Final Remedies for the at the Site. Based on a comparison with the More Aggressive and Less Aggressive Remedies (for VOCs), the Reference Remedies will:

- Provide for adequate protection of public health and welfare and the environment;
- Provide a thorough and timely means for continued monitoring of the existing groundwater impacts, including assessment of plume capture by extraction wells, and evaluation of the progress of remediation over time;
- To the extent practicable, provide for the control, management, and cleanup of the COCs in the groundwater;
- Provide for the beneficial use of the groundwater resource by TOG and SRP; and
- Be reasonable, cost-effective, and technically feasible.

7.4 <u>Consistency with Water Management and Land Use Plans</u>

The Reference Remedy for vadose zone and groundwater are consistent with water management plans and general land use plans.

7.5 <u>Contingencies</u>

For the vadose zone Reference Remedy, O&M measurements will be used to assess system performance and to provide feedback on optimization activities. If results from soil and soil vapor confirmation sampling indicate that VOC concentrations are greater than Non-Residential SRLs, minimum GPLs, or site-specific soil vapor screening levels, the SVE system may be expanded (as described in the More Aggressive Remedy) and/or operated for an additional five years.

For the groundwater Reference Remedy, semiannual groundwater monitoring will be used to assess the PCE plume stability and monitor VOC concentrations at the Site. If groundwater VOC concentrations are stable, the monitoring frequency may be reduced to annual monitoring for VOCs and/or the number of wells that are monitored may be decreased as described in the Less Aggressive Remedy. If future VOC concentrations and areal extent indicate that an alternate remediation technology could significantly accelerate remediation or reduce remediation costs, then an alternate remedial strategy such as ISCO or ERD, as described in Section 4.2, may be implemented at the Site. If TOG and/or SRP determine that a drinking water production well has been impacted by PCE and/or TCE above AWQS and ADEQ determines that Site COCs are responsible, then wellhead treatment using LGAC or modification of the production well may be

performed to allow for groundwater usage. The hypothetical need for and cost of wellhead treatment or well modification of a production well would be well specific and vary significantly depending on the well location and the timing of when well treatment or modifications may be needed. Although a cost estimate for wellhead treatment is provided in Appendix D, the actual cost for wellhead treatment would be further evaluated on a well specific basis, if the need arises.

For both the vadose zone and groundwater Reference Remedy, contingencies will be presented in further detail in the Proposed Remedial Action Plan (PRAP) and subsequent remedial design documents.

8. COMMUNITY INVOLVEMENT

ADEQ will issue a Notice to the Public announcing availability of FS Report on ADEQ's website at <u>www.azdeq.gov</u>. The notice may be mailed to the Public Mailing List for the site, water providers, the Community Advisory Board, and any other interested parties.

9. **REFERENCES**

- ADEQ, 2015a. Proposed Remedial Objectives Report, Cooper Road and Commerce Avenue, WQARF Registry Site, Phoenix, Arizona. February.
- ADEQ, 2015b. Feasibility Study Work Plan, Cooper Road and Commerce Avenue, WQARF Registry Site, Phoenix, Arizona. April.
- Geosyntec, 2015. *Identification of Remedial Alternatives Technical Memorandum*, June 30.
- Geosyntec, 2016. Shallow Soil Vapor Evaluation, Cooper and Commerce WQARF Site, Gilbert, Arizona. February 29.
- Geosyntec, 2017. 1st 2017 Semiannual Groundwater Monitoring Report, Cooper and Commerce WQARF Site, Gilbert, Arizona. March.
- HGC, 2006. Early Response Action Evaluation Technical Report for the Cooper and Commerce WQARF Site, Gilbert, Arizona, August 30.
- HGC, 2015. Remedial Investigation Report, Cooper and Commerce WQARF Site, Gilbert, Arizona. June 12.
- ITRC, 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, Second Edition. Interstate Technology and Regulatory Cooperation Work Group, In Situ Chemical Oxidation Work Team. January.
- TOG, 2012. Gilbert General Plan. Approved by Town Council 06 December 2012.

TABLES

Table 1Remediation Technology Screening SummaryCooper and Commerce WQARF SiteGilbert, Arizona

Technology	Retained ?	Reason for Retention or Elimination
Soil Vapor Extraction (SVE)	Yes	Retained remedial technology; has been cost-effective at removing VOC mass from vadose zone.
Air Sparging	No	Not likely to be cost-effective or improve treatment due to low groundwater concentrations and residual VOC mass in clay interval.
Institutional Controls	Yes	Retained as remedial technology; institutional controls have been cost- effective means of managing impacts in place and previously implemented.
Groundwater Extraction & Treatment System (GETS)	Yes	Effectiveness for disperse dilute plume reduced but retained as effective for control of VOCs in groundwater and as potential wellhead treatment for contingency.
Monitored Natural Attenuation (MNA)	Yes	Retained remedial technology (primarily for abiotic processes).
Enhanced Reductive Dechlorination (ERD)	Yes	Cost prohibitive for overall plume due to predominantly aerobic groundwater conditions, low VOC concentrations, and the size and depth of the plume; retained for potentially targeted treatment areas.
In Situ Chemical Reduction (ISCR)	No	Technically and economically infeasible due to thickness of impacted groundwater zone and the size and depth of the plume.
In Situ Chemical Oxidation (ISCO)	Yes	Cost prohibitive for overall plume due to relatively small radius of influences, low VOC concentrations, and size and depth of plume; retained for potentially targeted treatment areas.

Abbreviations: VOC – Volatile Organic Compounds

Table 2 Remedy Evaluation Cooper and Commerce WQARF Site Gilbert, Arizona

Remedial	Vadose Zone /	Will Alternative		Practicability	1	Protectiveness	_		Regulatory/Public
Alternative	Groundwater	Meet Remedial Objectives?	Feasibility	Short/Long Term Effectiveness	Reliability	(Risk)	Costs	Benefits	Acceptance
	Vadose Zone Arsenic/Copper Confirmation Borings Risk Evaluation Institutional Controls	Yes	The implementation of risk based remediation levels is feasible. The use of Institutional Controls is also feasible but would require coordination with Skyline Steel.	Risk based remediation levels and the use of Institutional Controls have been utilized to effectively manage residual impacts in place by limiting potential exposure.	Risk based remediation levels and Institutional Controls are known and reliable remedies.	This remedy is protective as it limits the potential for exposure to arsenic and copper while managing the impacts in place. It is consistent with current and future land use for industrial purposes.	Only capital costs are associated with this remedy and would include additional of soil borings for additional delineation of arsenic and copper, a revised risk evaluation, and the costs associated with implementation of Institutional Controls if warranted based on the additional characterization and risk evaluation.	The reference remedy for arsenic and copper would provide for the management of residual concentrations in place without more intrusive remedial methods.	Highly Likely
Reference Remedy	Vadose Zone VOCs Current SVE System	Yes	Very feasible, system is already constructed and operational.	SVE is a known effective remedy for VOC contamination in the vadose zone; the current system has removed significant mass but is beginning to reach asymptotic removals.	SVE is a known and reliable remediation technology.	The reference remedy is protective, as it removes VOCs from vadose zone and reduces possibility of residual VOCs acting as long-term source of groundwater contamination. It mitigates exposure pathways and is consistent with current and future land use.	Capital costs would be incurred for the confirmation soil borings, and O&M costs would be similar to current SVE system operating costs.	The reference remedy would provide continued reduction of VOC concentrations and mass in the vadose zone, which would result in lower risk.	Highly Likely
	Semiannual MNA Monitoring Existing Groundwater Well Network	Yes	MNA monitoring is very feasible as groundwater monitoring is currently conducted at the site. The locations of up to two downgradient monitoring wells would have to be selected and property access agreements may be necessary.	MNA is a known and effective remedy; continued semiannual groundwater monitoring of existing monitoring well network will assess effectiveness.		The reference remedy is protective, in that it continues to monitor and evaluate Site contamination through the collection of data.	MNA monitoring costs would be similar to current semiannual groundwater monitoring costs; capital costs would include the installation of two groundwater monitoring wells.	MNA monitoring would provide data to evaluate VOC concentrations throughout the PCE plume and monitor for the potential need of implementing wellhead treatment as a contingency.	Moderately Likely
More Aggressive Remedy	Vadose Zone Arsenic/Copper Confirmation Borings Risk Evaluation Institutional Controls	Yes	The implementation of risk based remediation levels is feasible. The use of Institutional Controls is also feasible but would require coordination with Skyline Steel.	Risk based remediation levels and the use of Institutional Controls have been utilized to effectively manage residual impacts in place by limiting potential exposure.	Risk based remediation levels and Institutional Controls are known and reliable remedies.	This remedy is protective as it limits the potential for exposure to arsenic and copper while managing the impacts in place. It is consistent with current and future land use for industrial purposes.	Only capital costs are associated with this remedy and would include additional of soil borings for additional delineation of arsenic and copper, a revised risk evaluation, and the costs associated with implementation of Institutional Controls if warranted based on the additional characterization and risk evaluation.	The reference remedy for arsenic and copper would provide for the management of residual concentrations in place without more intrusive remedial methods.	Highly Likely
	Vadose Zone VOCs Expanded SVE System	Yes	Addition of a new SVE extraction point at the Site is feasible, coordination with Skyline Steel required.	SVE is a known effective remedy for VOC contamination in the vadose zone; adding SVE extraction point(s) to the current system could increase VOC mass removal observed.	SVE is a known and reliable remediation technology.	The more aggressive remedy is protective, as it removes VOCs from vadose zone and reduces possibility of residual VOCs acting as long-term source of groundwater contamination. It mitigates exposure pathways and is consistent with current and future land use.	installation of additional SVE extraction well(s).	The more aggressive remedy would provide continued reduction of VOC concentrations and mass in the vadose zone, which would result in lower risk.	Highly Likely
	Groundwater Extraction and Treatment with Semiannual Groundwater Monitoring	Yes	This remedy is moderately feasible. Siting the location of three groundwater extraction wells and a treatment system would have potential challenges and require property acquisition and/or access agreements. Installation would require linear improvements potentially impacting the community during construction activities. The locations of up to two downgradient monitoring wells would have to be selected and property access agreements may be necessary.	plume and continued semiannual monitoring will assess	Groundwater extractior is a known and reliable remediation technology.		Capital costs include the installation of three groundwater extraction wells, a treatment system, and installation of two downgradient monitoring wells. Groundwater monitoring costs would be similar to current semiannual groundwater monitoring costs, but this remedy would include the cost of O&M of the groundwater extraction and treatment system.	Groundwater extraction and treatment would help reduce mass within the area where impacts of PCE are above 10 micrograms per liter; however, several additional extraction wells (and/or treatment systems) would be needed to treated the entirety of the PCE plume. MNA monitoring would provide data to evaluate VOC concentrations throughout the PCE plume.	Likely

Table 2 Remedy Evaluation Cooper and Commerce WQARF Site Gilbert, Arizona

Remedial Alternative	Vadose Zone / Groundwater	Will Alternative Meet Remedial Objectives?	Practicability			Protectiveness		,	Regulatory/Public
			Feasibility	Short/Long Term Effectiveness	Reliability	(Risk)	Costs	Benefits	Acceptance
Less Aggressive Remedy	Vadose Zone Arsenic/Copper Confirmation Borings Risk Evaluation Institutional Controls	Yes	The implementation of risk based remediation levels is feasible. The use of Institutional Controls is also feasible but would require coordination with Skyline Steel.	Risk based remediation levels and the use of Institutional Controls have been utilized to effectively manage residual impacts in place by limiting potential exposure.		This remedy is protective as it limits the potential for exposure to arsenic and copper while managing the impacts in place. It is consistent with current and future land use for industrial purposes.	copper, a revised risk evaluation, and the costs	The reference remedy for arsenic and copper would provide for the management of residual concentrations in place without more intrusive remedial methods.	Highly Likely
	Vadose Zone VOCs Shutdown of Current SVE System	Yes	Very feasible, current system would be shut down.	This remedy has low effectiveness in the short term and long term.	Since the SVE system would no longer be operating under this remedy, reliability is very high.	No further active remediation would be performed, therefore the protectiveness of this remedy is unknown but would be quantified by confirmation soil borings.	Costs associated with this remedy would be rebound sampling and confirmation soil borings.	The benefit of this remedy would be preserving the existing use of the source area of the site and returning the portion of the site the treatment compound occupies to the property owner in a more timely fashion.	Moderately Unlikely
	Annual MNA Monitoring Reduced Monitoring Well Network	Yes	MNA monitoring is very feasible as groundwater monitoring is currently conducted at the site. The locations of up to two downgradient monitoring wells would have to be selected and property access agreements may be necessary. MNA monitoring of a reduced well network is feasible considering the current conditions of the plume.	MNA is a known and effective remedy including with the use of a reduced groundwater monitoring well network given the condition of the plume; annual monitoring will assess effectiveness.	MNA is a known and reliable remediation technology.	The less aggressive remedy is protective, in that it continues to monitor and evaluate Site contamination through the collection of data.	MNA monitoring costs for this remedy would be less than the current semiannual groundwater monitoring costs due to the reduced groundwater monitoring well network and annual monitoring. Capital costs include the installation of two downgradient monitoring wells.	the potential need of	Moderately Unlikely

Abbreviations: LGAC - liquid-phase granular activated carbon MNA - Monitored Natural Attenuation

O&M - Operation and Maintenance

O&M - Operation and Maintenance PCE = Tetrachloroethene SRP - Salt River Project SVE - Soil Vapor Extraction TOG - Town of Gilbert VOC - Volatile Organic Compound

Table 3Remedial Alternatives Cost SummaryCooper and Commerce WQARF SiteGilbert, Arizona

Remedial	Vadose Zone /				Total Remedy	Potential Range	
Alternative	Groundwater	Estimated Capital Costs	Estimated O&M Costs	Total Estimated Cost	Estimated Cost	(-25%)	(+50%)
	Vadose Zone Arsenic and Copper Additional Delineation, Risk Assessment, Institutional Controls	\$136,000	\$0	\$136,000		\$7,681,000	\$15,362,000
Reference Remedy	Vadose Zone VOCs - Current SVE System	\$143,000	\$366,000 (for 5 years)	\$509,000	\$10,241,000		
	Semiannual MNA Monitoring of Current Well Network	\$139,000	\$1,405,000 (for 18 years)	\$1,544,000			
	Estimated Contingency Costs			\$8,052,000			
	Vadose Zone Arsenic and Copper Additional Delineation, Risk Assessment, Institutional Controls	\$136,000	\$0	\$136,000		\$12,500,000	\$25,001,000
More Aggressive Remedy	Vadose Zone VOCs - Expanded SVE System	\$164,000	\$791,000 (for 10 years)	\$955,000	\$16,667,000		
	Groundwater Extraction and Treatment and Semiannual MNA Monitoring	\$2,127,000	\$4,757,000 (for 16 years)	\$6,884,000			
	Estimated Contingency Costs			\$8,692,000			
Less Aggressive Remedy	Vadose Zone Arsenic and Copper Additional Delineation, Risk Assessment, Institutional Controls	\$136,000	\$0	\$136,000		\$6,071,000	\$12,143,000
	Vadose Zone VOCs - Shutdown of Current SVE System	\$117,000	\$10,000 (for 1 year)	\$127,000	\$8,095,000		
	Annual MNA Monitoring of Limited Well Network	\$139,000	\$656,000 (for 18 years)	\$795,000			
	Estimated Contingency Costs			\$7,037,000			

Abbreviations:

WQARF = Water Quality Assurance Revolving Fund O&M = operations and maintenance % = percent \$ = United States dollars

Notes:

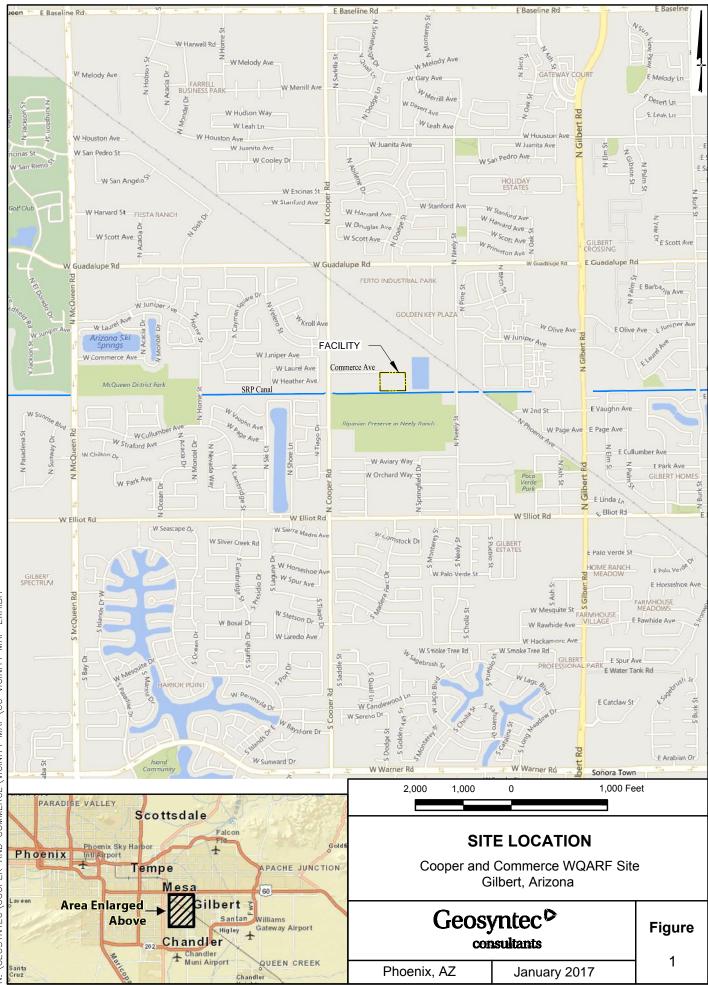
Costs are rounded off to the nearest thousand Costs are based on 2017 dollar values VOCs = volatile organic compounds SVE = soil vapor extraction

MNA = monitored natural attenuation

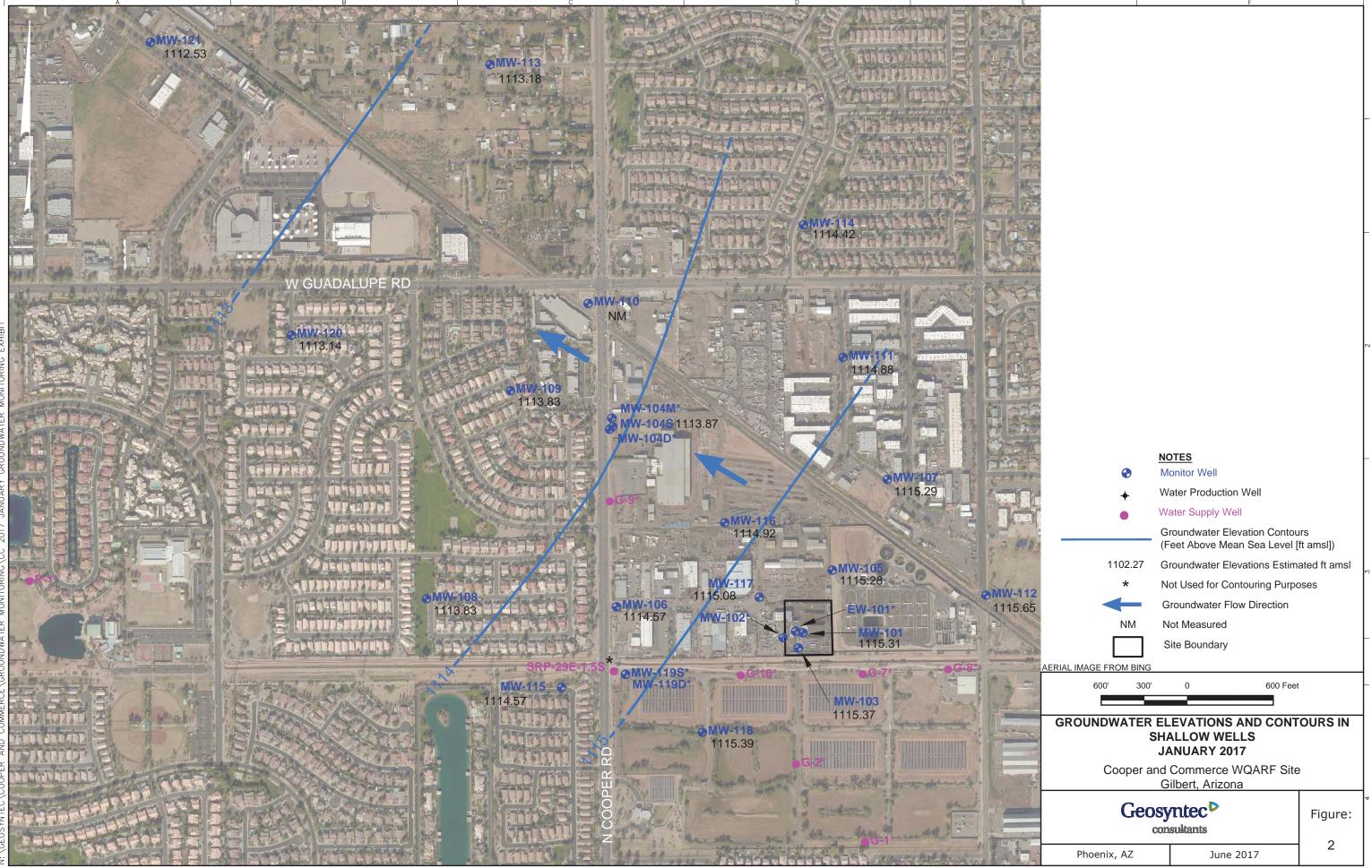
Table 4

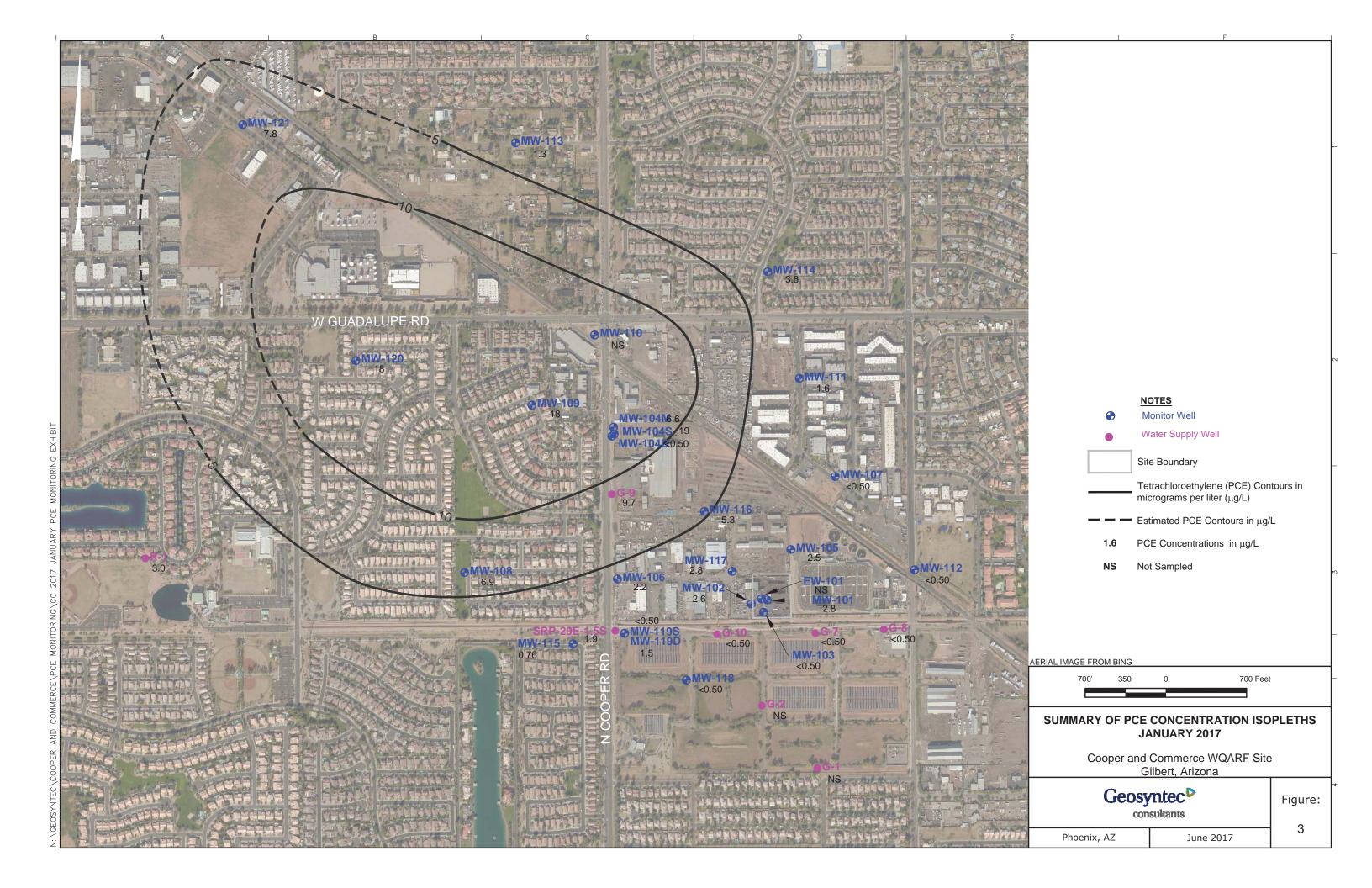
Remedial Alternative Scoring Cooper and Commerce WQARF Site Phoenix, Arizona

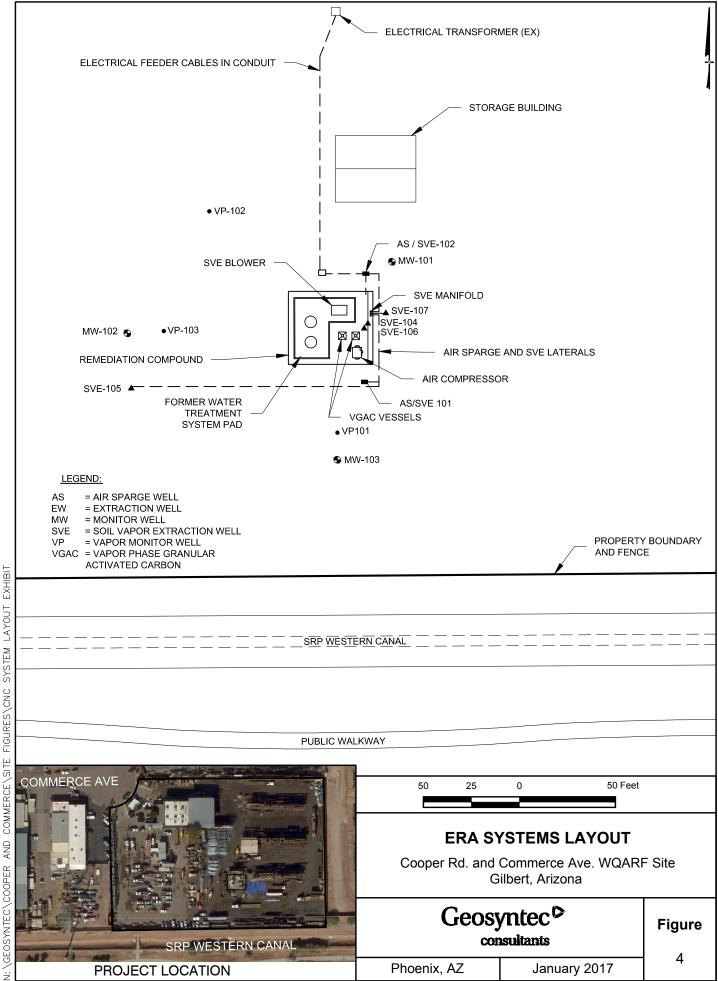
Remedial Alternative	Vadose Zone / Groundwater	Will Alternative Meet Remedial Objectives?		Practicability		Protectiveness (Risk)		
			Feasibility	Short/Long Term Effectiveness	Reliability		Cost	Benefits
Reference Remedy	Vadose Zone Arsenic/Copper Confirmation Borings Risk Evaluation Institutional Controls	Yes	High	High	High	High	Moderate to Low	High
	Vadose Zone VOCS - Current SVE System	Yes	High	High	High	High	Moderate	High
	Semiannual MNA Monitoring Existing Groundwater Well Network	Yes	High	High	High	Moderate to High	Moderate	High
	Vadose Zone Arsenic/Copper Confirmation Borings Risk Evaluation Institutional Controls	Yes	High	High	High	High	Moderate to Low	High
More Aggressive Remedy	Vadose Zone VOCs Expanded SVE System	Yes	Moderate to High	High	High	High	Moderate to High	High
	Groundwater Extraction and Treatment with Semiannual Groundwater Monitoring	Yes	Moderate to Low	High	High	High	High	Moderate
Less Aggressive Remedy	Vadose Zone Arsenic/Copper Confirmation Borings Risk Evaluation Institutional Controls	Yes	High	High	High	High	Moderate to Low	High
	Vadose Zone VOCs Shutdown of Current SVE System	Yes	High	Low	Moderate	Moderate	Low	Low
	Annual MNA Monitoring Reduced Monitoring Well Network	Yes	High	High	Moderate	Moderate	Low	Moderate


Abbreviations:

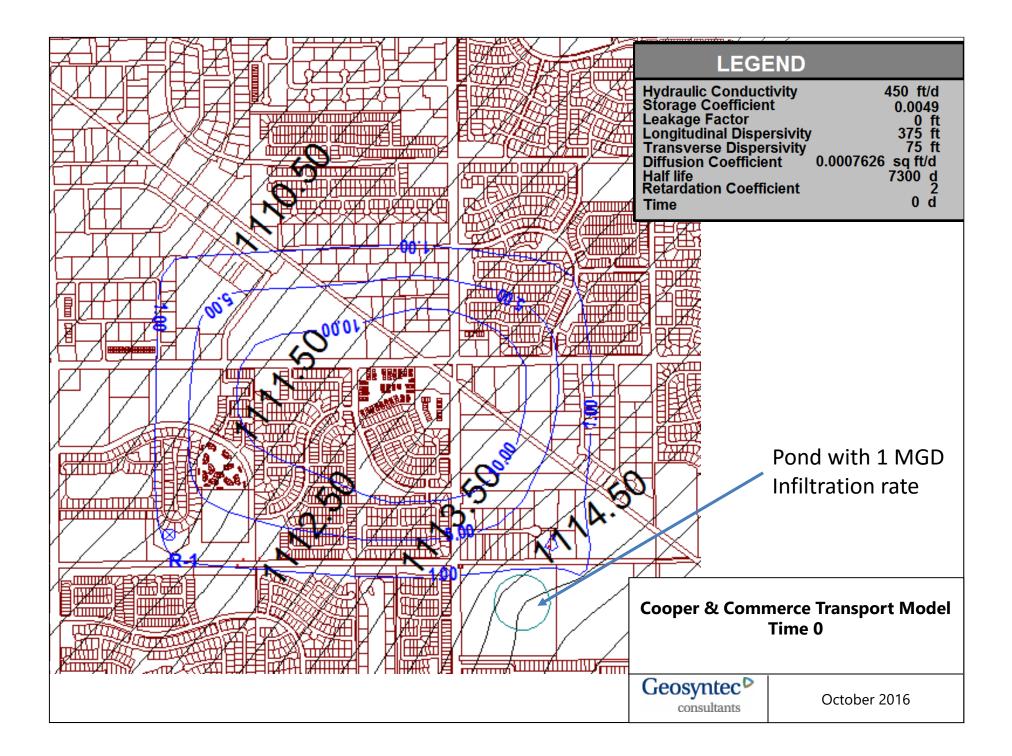
SVE - soil vapor extraction

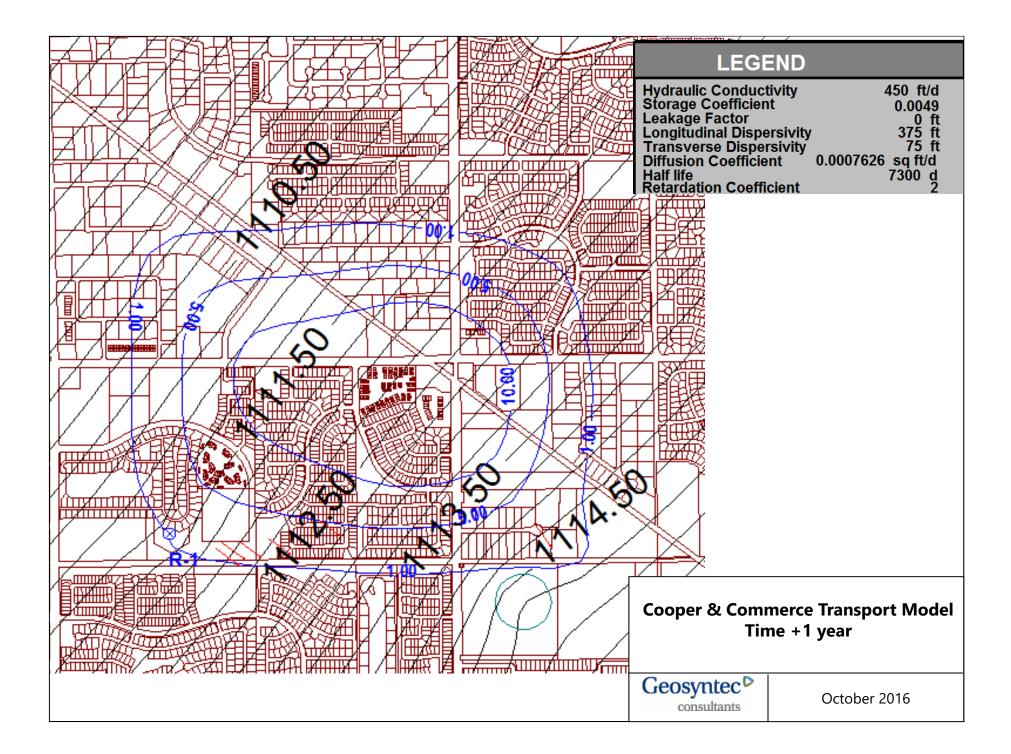

MNA - monitored natural attenuation

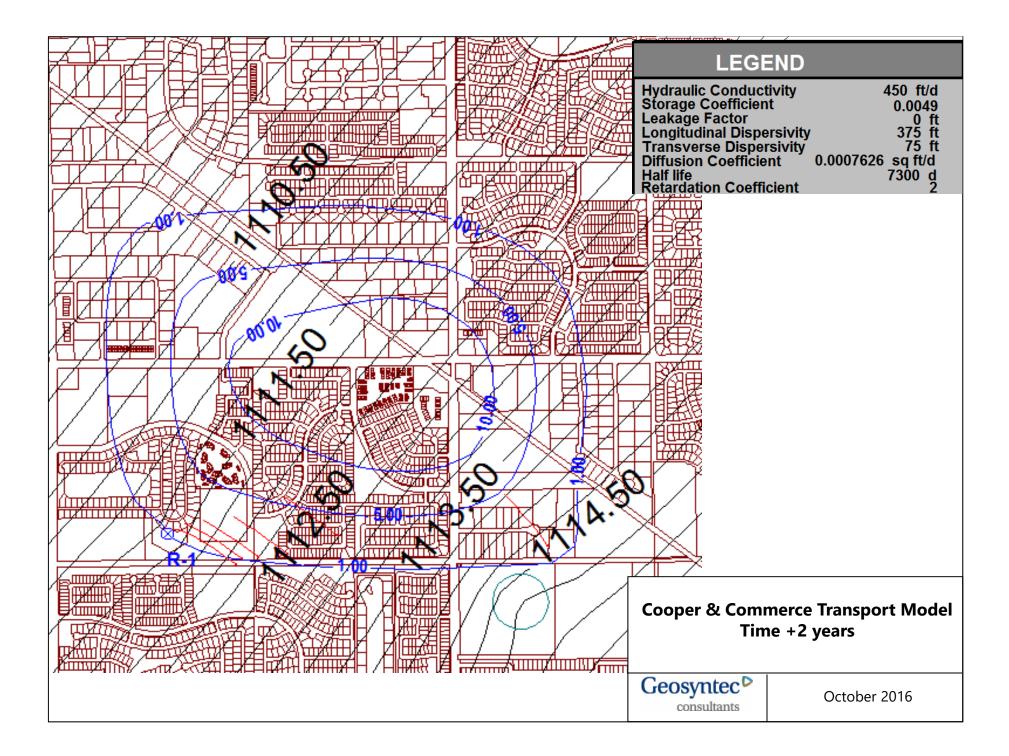

VOCs - volatile organic compounds

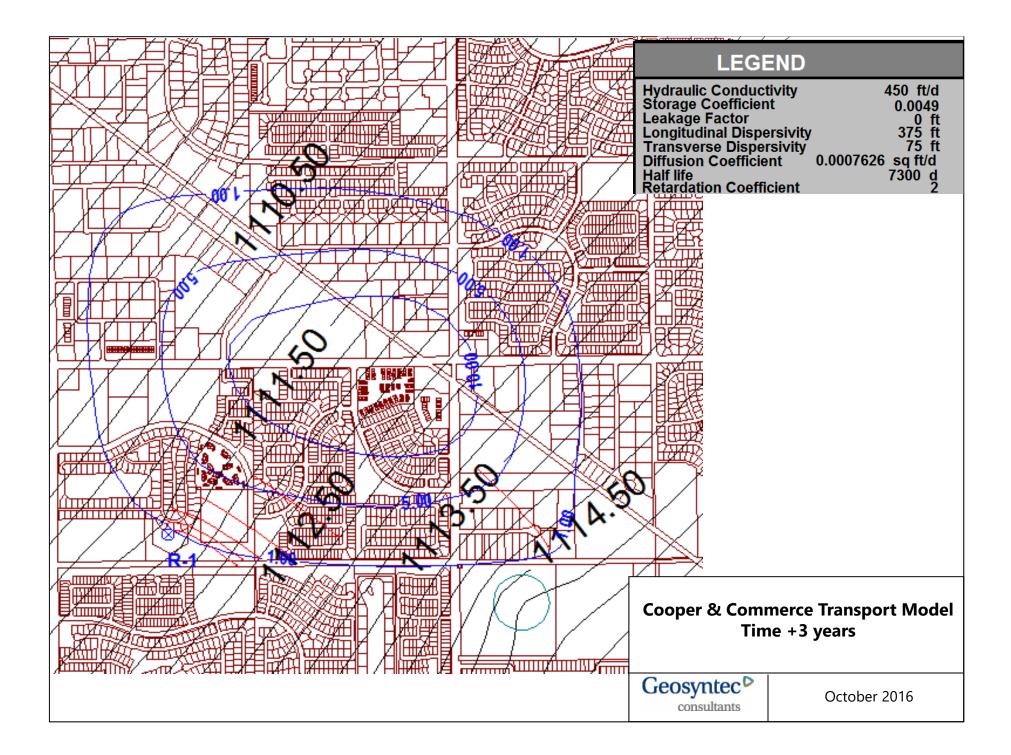

FIGURES

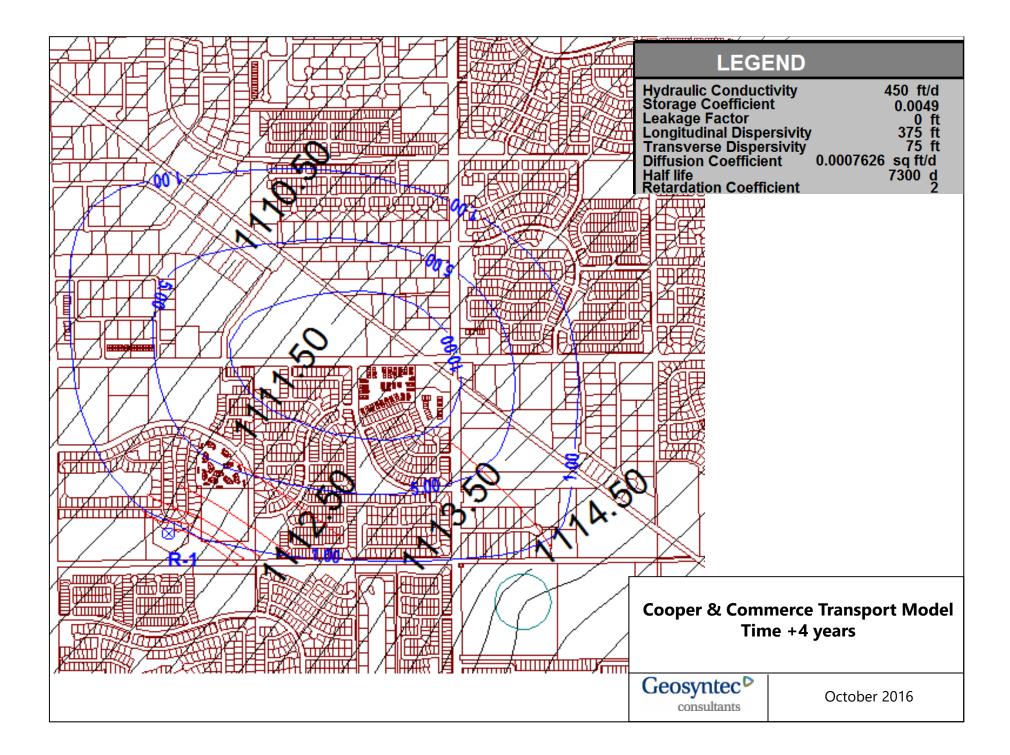
N:\GEOSYNTEC\COOPER AND COMMERCE\VICINITY MAP\CC VICINITY MAP EXHIBIT

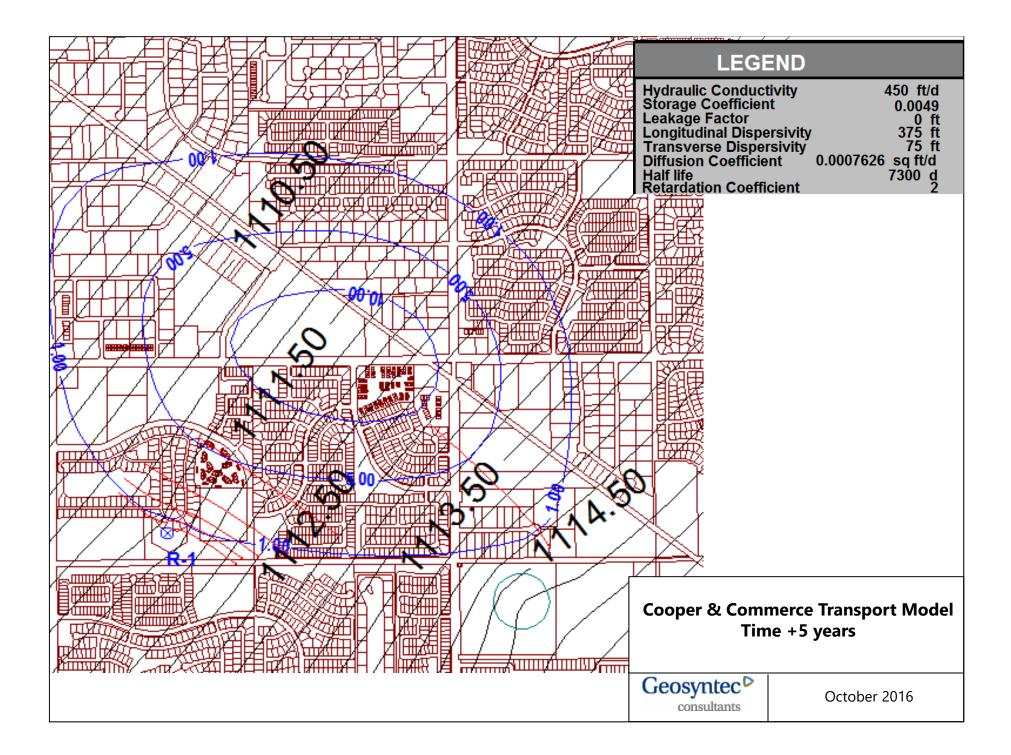


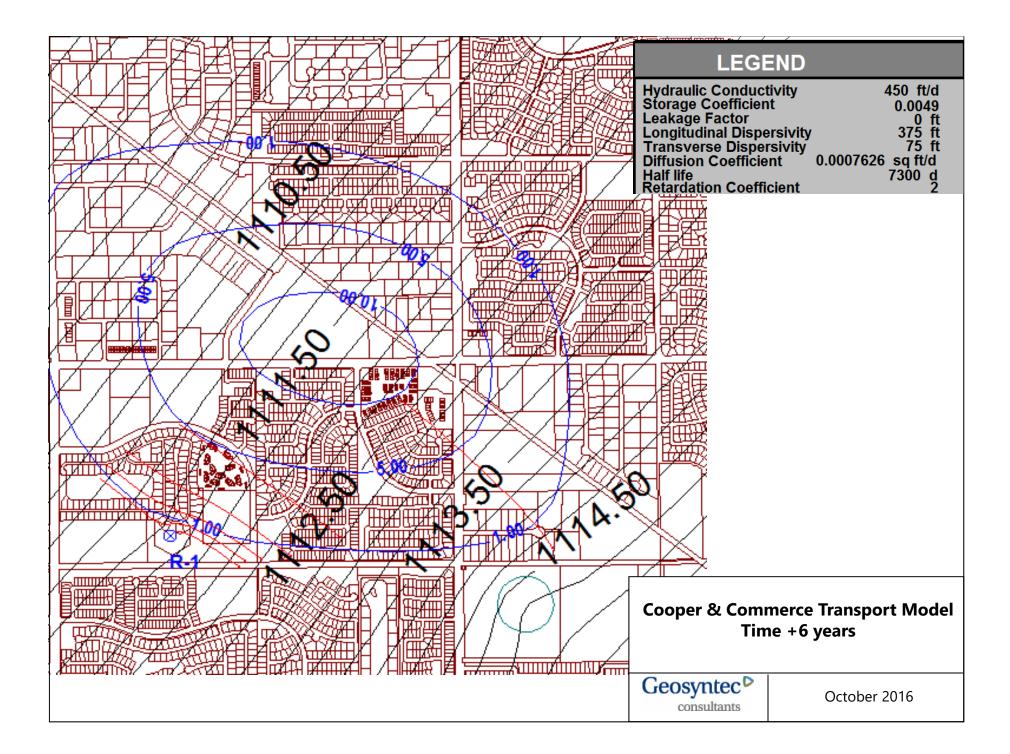


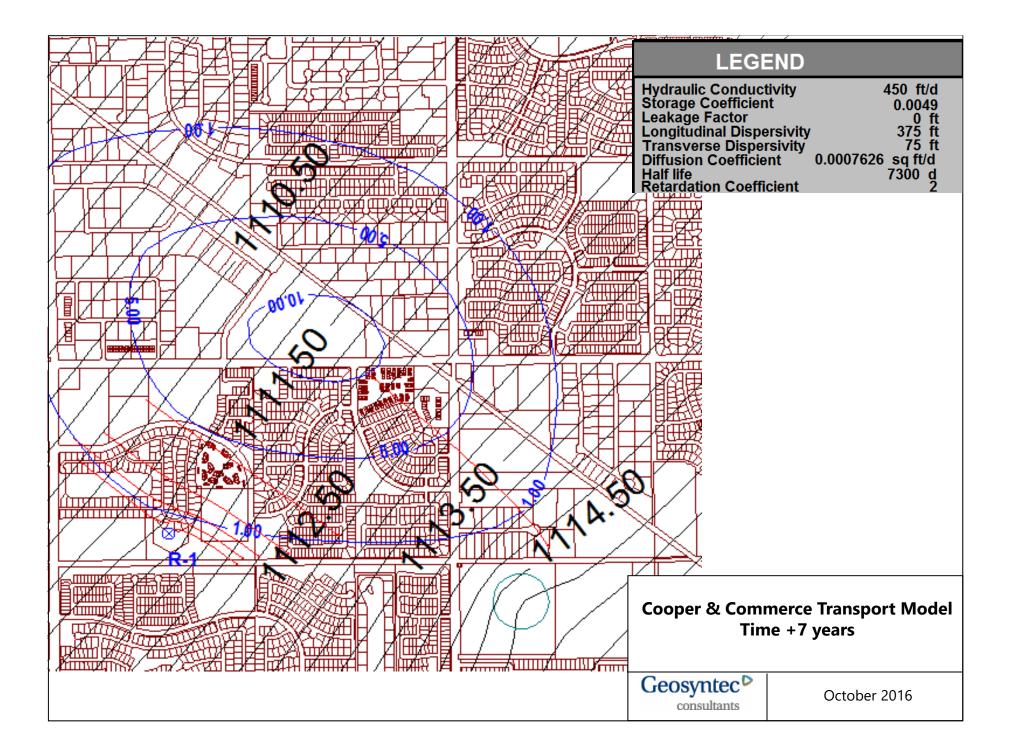

LAYOUT SYSTEM **FIGURES\CNC** COMMERCE\SITE AND

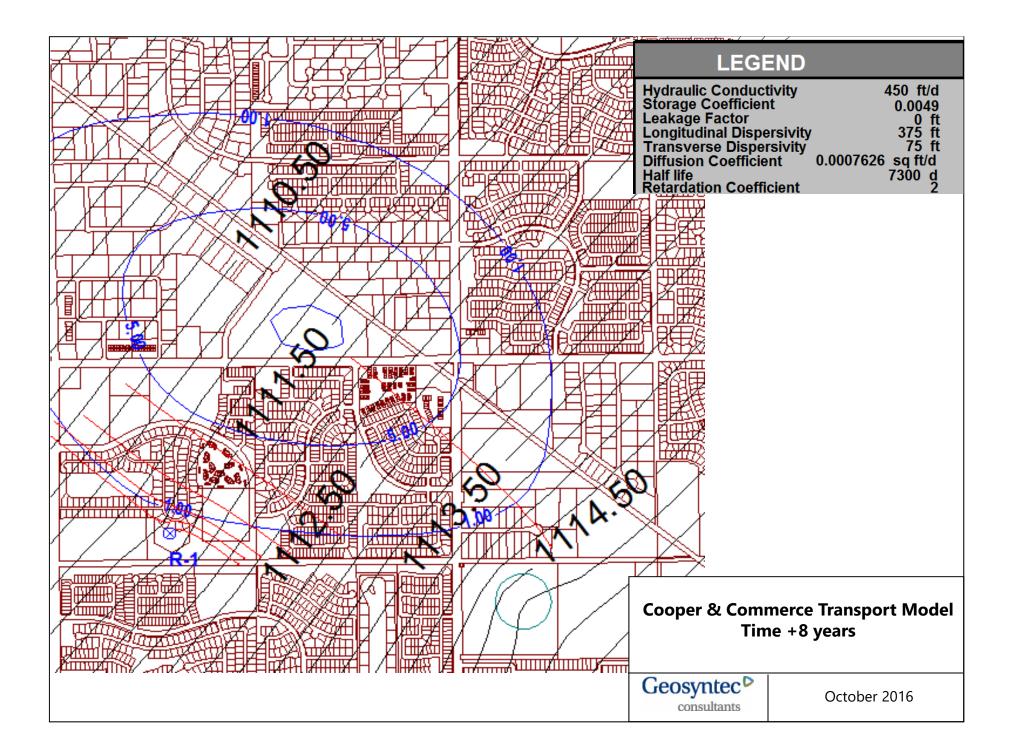

\GEOSYNTEC\COOPER

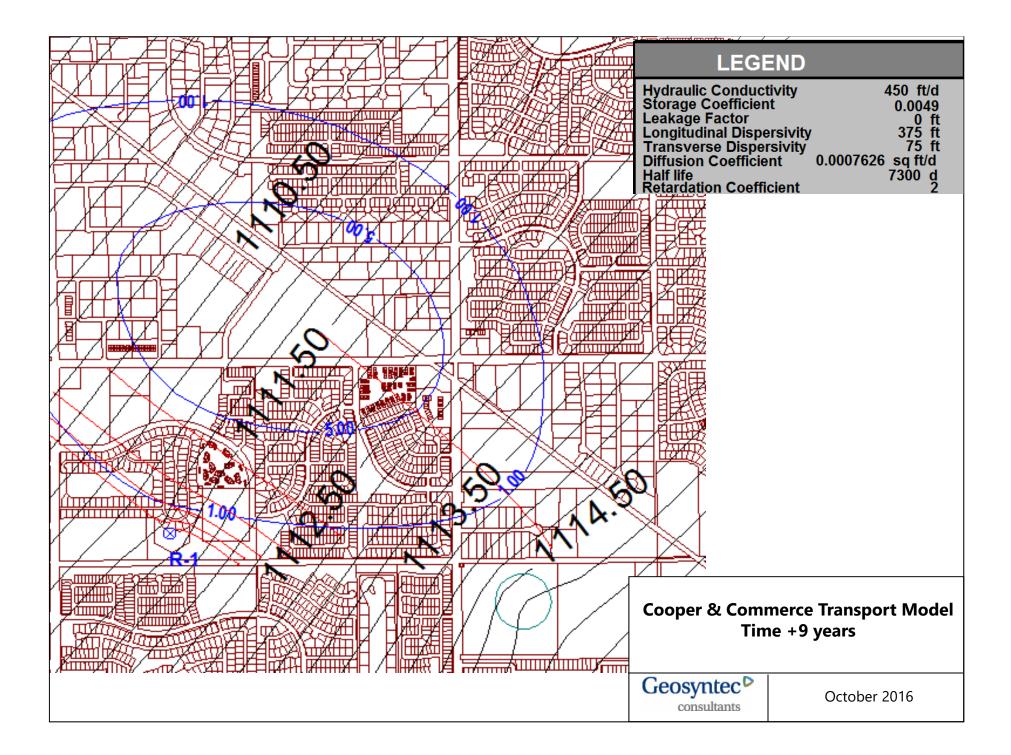

APPENDIX A Updated 2016 Groundwater Model

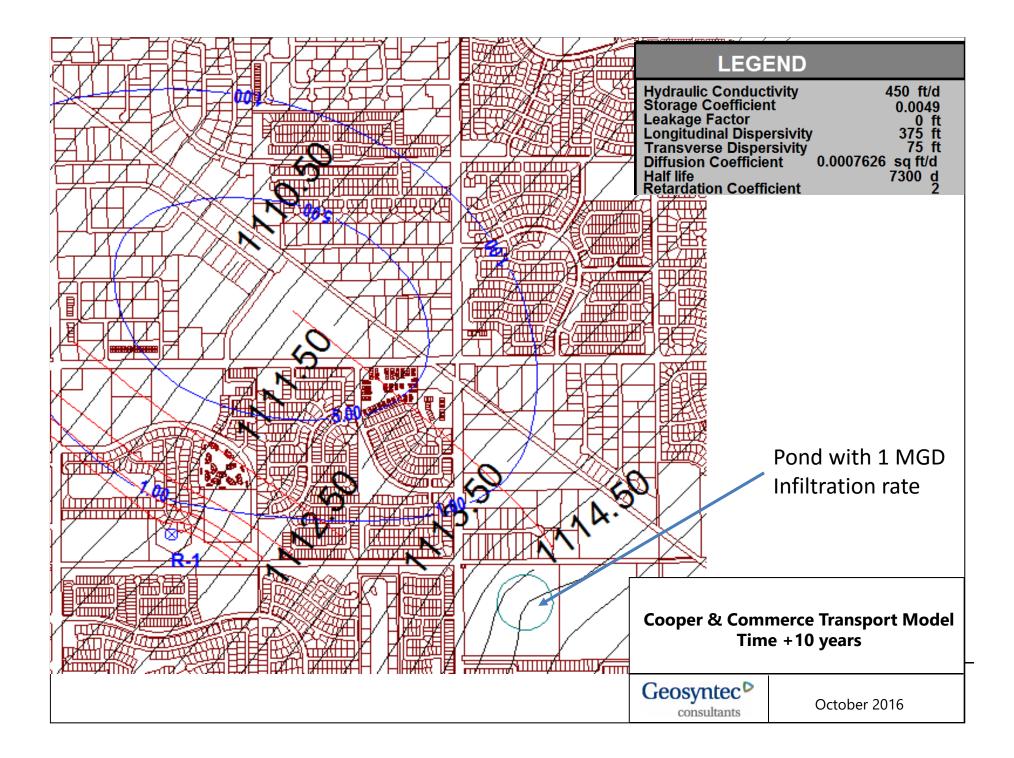












APPENDIX B Technical Memorandum for Soil Borings Near Former Drywell

Memorandum

Date:06 March 2017To:Kyle Johnson, Arizona Department of Environmental QualityFrom:Marla Miller, PE, Geosyntec ConsultantsSubject:Soil Borings Near Former Drywell
Cooper & Commerce WQARF Site

Geosyntec Consultants, Inc. (Geosyntec) is pleased to submit this technical memorandum to the Arizona Department of Environmental Quality (ADEQ) presenting soil and soil vapor results from soil borings drilled near the former drywell at the Cooper and Commerce Water Quality Assurance Revolving Fund (WQARF) Site (the Site).

BACKGROUND AND OBJECTIVES

The main source of soil and groundwater contamination at the Site appears to be a former drywell that was used to discharge spent chemicals from metals processing activities at the former Unichem facility. During previous soil investigations, the maximum tetrachloroethene (PCE) concentration, observed at 70 feet below ground surface (ft bgs), was 24,000 milligrams per kilogram (mg/kg). An Early Response Action (ERA) consisted of a soil vapor extraction (SVE) system that operated continuously from December 2008 to August 2014. In February 2016, the SVE system was restarted in pulse mode (approximately one month on followed by one month off). In November 2016, two soil borings were drilled near the former dry well to assess volatile organic compound (VOC) concentrations present in the soil and soil vapor after SVE operation.

FIELD ACTIVITIES

Figure 1 shows the location of the two soil borings in relation to the drywell (previously located at SVE-104). The drywell was reportedly constructed to a depth of 79 feet. The two soil borings were advanced using a track-mounted sonic drill rig, angled at approximately 20 degrees from vertical, to approximately 75 feet (approximately 70.5 ft bgs). Two soil samples and three soil vapor samples were collected per boring. During drilling, intermittent green stained soil was observed from approximately 51 to 69 ft bgs and noted in the boring logs, suggesting the presence

CooperSoilBoring_Memo.20170306

Soil Borings Near Former Drywell 06 March 2017 Page 2

of copper in soils at depth. Boring logs, indicating the presence of silty clays, are included in Attachment A. Field notes for the soil vapor samples are included in Attachment B.

Soil vapor samples were collected using a SimulProbe® sample collection device. Flexible tubing is connected to the top of the SimulProbe® sampler that is driven into the soil to the sampling depth and retracted slightly, exposing the intake screen. A valve and sampling tee are connected to the flexible tubing with one branch of the tee connected to a 1-liter, batch certified Summa canister and the other to a gauge board with a vacuum pump (lung box) and Tedlar sampling bag. Prior to soil vapor collection, a 'shut-in' test was conducted to demonstrate that the sample train was not leaking. The shut-in test consisted of closing the valve, applying a vacuum to the sampling apparatus, and monitoring that the vacuum did not dissipate over a period of approximately two minutes. No discernable vacuum loss was noted during the shut-in tests, indicating there were no leaks in the sampling apparatus.

Following the shut-in test, approximately three tubing volumes of soil vapor were purged at approximately 200 milliliters per minute (mL/min). During purging, the purged soil vapor was collected in a Tedlar bag that was subsequently screened in the field for total VOCs using a photoionization detector (PID). Following purging, soil vapor samples were collected in the Summa canister at a flow rate of approximately 200 mL/min for 5 minutes.

Soil vapor samples were analyzed for VOCs, using United States Environmental Protection Agency (EPA) Method TO-15, by a TestAmerica Laboratories, Inc. facility in Sacramento, California. Soil samples were analyzed for EPA Method 8260B for VOCs at the Test America Phoenix laboratory. The TestAmerica laboratories are Arizona state-certified. Appendix C presents the laboratory analytical report for the soil vapor and soil samples.

SOIL VAPOR AND SOIL SAMPLING RESULTS

Table 1 summarizes soil sample results from the two soil borings. Trichloroethene (TCE) concentrations in the soil samples were not detected above the laboratory reporting limits. PCE detections ranged from 12 to 77 mg/kg, exceeding the Non-Residential Soil Remediation Level (SRL) of 13 mg/kg and the Minimum Groundwater Protection Limit (GPL) of 1.3 mg/kg. The elevated PCE detections were observed in the deeper samples, ranging between 69 and 75 feet.

The soil vapor sample results, summarized in Table 2, were compared to screening levels to assess for potential vapor intrusion and groundwater impacts. Soil vapor screening levels were calculated using the Johnson and Ettinger (J&E) subsurface vapor intrusion model (EPA, 2004), along with updated chemical physical properties from the EPA Regional Screening Level (RSL) table

Soil Borings Near Former Drywell 06 March 2017 Page 3

(USEPA, 2016). The J&E model uses contaminant partitioning and convective and diffusive mechanisms to estimate subsurface vapor transport into buildings.

For vapor intrusion screening levels, carcinogenic and non-carcinogenic health-protective concentrations for commercial/industrial exposure scenarios (HPC_{C/I-risk} and HPC_{C/I-haz}, respectively) were calculated for each sample depth and detected analyte using the J&E model spreadsheets. Chemical-specific and Site-specific soil parameters are used to estimate attenuation factors that are the ratio of a predicted indoor air concentration to the measured soil vapor concentration. Based on the boring logs, Site-specific soil properties used in the spreadsheets were the J&E default values for silty clay. Table 3 presents the EPA's indoor air RSLs for commercial/industrial exposure based on a target cancer risk of 1×10⁻⁶ and a target noncancer hazard of 1. Table 3 also presents the depth-specific attenuation factors and the resulting analyte-specific HPC_{C/I-risk} and HPC_{C/I-haz} values. Calculations for these screening levels are based on the following formulas:

$$HPC_{C/I-risk} = \frac{Carcinogenic indoor air RSL}{Attenuation Factor} \qquad HPC_{C/I-haz} = \frac{Noncarcinogenic indoor air RSL}{Attenuation Factor}$$

Examples of the J&E model spreadsheets, along with the default and Site-specific model input parameters, are included in Appendix D. As presented in Table 4, the soil vapor concentrations were below the calculated HPC_{C/I-risk} and HPC_{C/I-haz} values. Table 4 also calculates the cumulative noncancer hazard indices (HIs) and Incremental Lifetime Cancer Risks (ILCRs) for each sample, which were below their respective target risk levels of 1 and 1×10^{-6} , respectively. The HIs ranged from 0.00001 to 0.1 while the ILCRs ranged from 2×10^{-9} to 3×10^{-7} .

To assess potential groundwater impacts, the detected soil vapor concentrations were compared to ADEQ's minimum Groundwater Protection Levels (GPLs). Table 3 presents the minimum GPLs converted from micrograms per kilogram (μ g/kg) soil concentrations to micrograms per cubic meter (μ g/m³) in soil vapor using the J&E model spreadsheet and the same chemical-specific and soil physical parameters that were used to derive the soil vapor HPCs above. Table 3 also includes Non-Residential Soil Remediation Limits (RSLs) converted for comparison to the soil vapor results. The soil vapor results were below the converted minimum GPL and SRL values. An example of the J&E spreadsheet converting the soil GPLs to soil vapor concentrations is also included in Appendix D.

Soil Borings Near Former Drywell 06 March 2017 Page 4

CONCLUSION

The November 2016 soil vapor sample results were compared to screening levels to assess the potential for vapor intrusion and potential groundwater impact. For vapor intrusion, the screening levels were derived from carcinogenic and non-carcinogenic EPA indoor air RSLs for commercial/industrial exposure. For potential groundwater impacts, screening levels were based on the minimum GPLs, converted to soil vapor units. The soil vapor results were below the screening levels, as shown in Tables 4 and 5.

Soil sample results were compared to minimum GPLs and Non-Residential SRLs (Table 1). Results at depths greater than 65 ft bgs (sample depth of 69 feet in the angle boring) had PCE concentrations ranging from 46 to 77 mg/kg, exceeding the Non-Residential SRL for PCE of 13 mg/kg and the minimum GPL for PCE of 1.3 mg/kg.

It is recommended that the SVE system continue to be operated in pulse mode to optimize VOC mass removal and that the soil exposure pathway for commercial/industrial workers and potential groundwater impacts be evaluated for completeness in a human health risk assessment.

Tables

- 1 Results Summary for Soil Samples
- 2 Results Summary for Soil Vapor Samples
- 3 Site-Specific Soil Vapor Health-Protective Concentrations
- 4 Soil Vapor Screening for Potential Vapor Intrusion Impacts
- 5 Soil Vapor Screening for Potential Groundwater Impacts

Figures

1 Soil Boring Locations

Attachments

- A Boring Logs
- B Field Notes
- C Analytical Reports

TABLE 1Results Summary for Soil SamplesCooper and Commerce WQARF Site

	Sample	Sample	PCE	TCE
Soil Boring	Date	Depth (feet)	(mg/kg)	(mg/kg)
	N	on-Residential SRLs	13	65
		Minimum GPLs	1.3	0.61
SB-1	11/18/2016	45	<0.095	<0.095
30-1	11/18/2016	75	77	<0.15
	11/18/2016	40	<0.14	<0.14
SB-2	11/18/2016	69	46	<0.11
	11/18/2016	69 (FD)	12	<0.13

Notes:

PCE = tetrachloroethene

TCE = trichloroethene

mg/kg = micrograms per kilogram

SRLs = Soil Remediation Levels, Arizona Adminstrative Code R18-7-2, Appendix A

GPLs = Groundwater Protection Limits from the September 1996 Screening Method to Determine

Soil Concentrations Protective of Groundwater Quality

< - Value is non-detect below the laboratory reporting limit

FD = field duplicate

Bold value indicates value exceeds the non-residential SRL and/or minimum GPL.

Sample depth is listed from top of angle boring drilled at 20 degrees from vertical.

Geosyntec^D

TABLE 2 Results Summary for Soil Vapor Samples Cooper and Commerce WQARF Site

Soil Boring		SB1		SB2					
Sample Depth (ft in boring)	45	60	75	40	60	70	70 (FD)		
Sample Depth (ft bgs)	42.3	56.4	70.5	37.6	56.4	65.8	65.8 (FD)		
Volatile Organic Compounds (µg/m	³)								
Acetone	160	<12	<830	520	<24,000	<3,800	<3,800		
Benzene	13	<1.3	<89	88	<2,600	<410	<410		
2-Butanone	34	<2.4	<170	140	<4,700	<750	<760		
Chloroform	7.6	<1.5	<100	<17	<2,900	<460	<470		
Toluene	15	<1.5	<110	85	<3,000	<480	<490		
TCE	<7.6	<2.1	<150	<24	<4,300	<680	<690		
PCE	<9.6	<2.7	11,000	190	290,000	34,000	48,000		

Notes:

PCE = tetrachloroethene

TCE = trichloroethene

ft = feet

ft bgs = feet below ground surface

 μ g/m³ = micrograms per cubic meter

< - Value is non-detect below the laboratory reporting limit

FD = field duplicate; highest result between sample and field duplicate were used for vapor intrusion and groundwater impact assessments Soil borings were angled at approximately 20 degrees from vertical.

Sample depths are listed as both feet in angled boring and vertical feet below ground surface

Geosyntec Consultants

TABLE 3 Site-Specific Soil Vapor Health-Protective Concentrations Cooper and Commerce WQARF Site

	EPA Indoor Air F	Indoor Air Regional Screening									
	L	evel	40 foot samples		45 foot samples			60 ft samples			
	Carcinogenic Noncarcinogenic		Attenuation	HPC _{C/I-risk}	HPC _{C/I-haz}	Attenuation	HPC _{C/I-risk}	HPC _{C/I-haz}	Attenuation	HPC _{C/I-risk}	HPC _{C/I-haz}
Parameters	RSLs (µg/m³)	RSLs (µg/m³)	Factor	(µg/m³)	(µg/m³)	Factor	(µg/m³)	(µg/m³)	Factor	(µg/m ³)	(µg/m³)
Volatile Organic Compounds											
Acetone	NA	1.4E+05	1.28E-04	NA	1.09E+09	1.15E-04	NA	1.22E+09	8.74E-05	NA	1.60E+09
Benzene	1.6E+00	1.3E+02	1.05E-04	1.52E+04	1.24E+06	9.40E-05	1.70E+04	1.38E+06	7.16E-05	2.24E+04	1.82E+06
2-Butanone	NA	2.2E+04	1.10E-04	NA	2.01E+08	9.82E-05	NA	2.24E+08	7.48E-05	NA	2.94E+08
Chloroform	5.3E-01	4.3E+02	9.07E-05	5.84E+03	4.74E+06	8.12E-05	6.53E+03	5.30E+06	6.17E-05	8.58E+03	6.96E+06
Toluene	NA	2.2E+04	9.17E-05	NA	2.40E+08	8.21E-05	NA	2.68E+08	6.24E-05	NA	3.52E+08
TCE	3.0E+00	8.8E+00	8.13E-05	3.69E+04	1.08E+05	7.27E-05	4.13E+04	1.21E+05	5.52E-05	5.43E+04	1.59E+05
PCE	4.7E+01	1.8E+02	6.03E-05	7.80E+05	2.99E+06	5.39E-05	8.73E+05	3.34E+06	4.08E-05	1.15E+06	4.41E+06

Geosyntec Consultants

TABLE 3 Site-Specific Soil Vapor Health-Protective Concentrations Cooper and Commerce WQARF Site

		Regional Screening evel		0 foot sample	S	75 foot samples			
Parameters	Carcinogenic RSLs (μg/m³)	Noncarcinogenic RSLs (μg/m ³)	Attenuation Factor	HPC _{C/I-risk} (μg/m ³)	HPC _{C/l-haz} (μg/m ³)	Attenuation Factor	HPC _{C/I-risk} (μg/m ³)	HPC _{C/l-haz} (μg/m ³)	
Volatile Organic	Compounds								
Acetone	NA	1.4E+05	7.55E-05	NA	1.85E+09	7.07E-05	NA	1.98E+09	
Benzene	1.6E+00	1.3E+02	6.17E-05	2.59E+04	2.11E+06	5.78E-05	2.77E+04	2.25E+06	
2-Butanone	NA	2.2E+04	6.45E-05	NA	3.41E+08	6.04E-05	NA	3.64E+08	
Chloroform	5.3E-01	4.3E+02	5.32E-05	9.95E+03	8.08E+06	4.98E-05	1.06E+04	8.63E+06	
Toluene	NA	2.2E+04	5.38E-05	NA	4.09E+08	5.04E-05	NA	4.37E+08	
TCE	3.0E+00	8.8E+00	4.76E-05	6.30E+04	1.85E+05	4.45E-05	6.73E+04	1.98E+05	
PCE	4.7E+01	1.8E+02	3.52E-05	1.34E+06	5.12E+06	3.29E-05	1.43E+06	5.47E+06	

Notes:

Carcinogenic Indoor Air RSLs based on target cancer risk (TR) = 1E-06 for commercial/industrial expo Noncarcinogenic Indoor Air RSLs based on target noncancer hazard index (HI) = 1 for commerical/industrial exposure Attenuation Factors were calculated using the J&E model spreadsheet SG-ADV (Ver 3.1, 02/04);

assuming a future building scenario with engineered fil

HPC_{C//risk} = Soil Vapor Health-Protective Concentrations for cancer-endpoint, commercial/industrial exposure;

calculated as Carcinogenic Indoor Air RSL / Attenuation Factor

HPC_{C/l-haz} = Soil Vapor Health-Protective Concentrations for non-cancer-endpoint, commercial/industrial exposures; calculated as Noncarcinogenic Indoor Air RSL / Attenuation Factor

Attenuation factors, $HPC_{C/l-risk}$, and $HPC_{C/l-haz}$ are calculated for each sample depth

 μ g/m³ = micrograms per cubic meter

RSLs = Regional Screening Level

TCE = Trichloroethene

PCE = Tetrachloroethene

NA = Not applicable

TABLE 4Soil Vapor Screening for Potential Vapor Intrusion ImpactsCooper and Commerce WQARF Site

Geosyntec Consultants

		SB1-45			SB1-60	_		SB1-75	
	HPC _{C/I-risk}	HPC _{C/I-haz}	Conc.	HPC _{C/I-risk}	HPC _{C/I-haz}	Conc.	HPC _{C/I-risk}	HPC _{C/I-haz}	Conc.
Parameters	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Volatile Organic Compounds									
Acetone	NA	1.22E+09	160	NA	1.60E+09	<12	NA	1.98E+09	<830
Benzene	1.70E+04	1.38E+06	13	2.24E+04	1.82E+06	<1.3	2.77E+04	2.25E+06	<89
2-Butanone	NA	2.24E+08	34	NA	2.94E+08	<2.4	NA	3.64E+08	<170
Chloroform	6.53E+03	5.30E+06	7.6	8.58E+03	6.96E+06	<1.5	1.06E+04	8.63E+06	<100
Toluene	NA	2.68E+08	15	NA	3.52E+08	<1.5	NA	4.37E+08	<110
TCE	4.13E+04	1.21E+05	<7.6	5.43E+04	1.59E+05	<2.1	6.73E+04	1.98E+05	<150
PCE	8.73E+05	3.34E+06	<9.6	1.15E+06	4.41E+06	<2.7	1.43E+06	5.47E+06	11,000
Cumulative Risks									
Hazard Index (HI)		0.00001			NC			0.002	
Incremental Lifetime Cancer Risk									
(ILCR)		2E-09			NC			8E-09	

TABLE 4 Soil Vapor Screening for Potential Vapor Intrusion Impacts Cooper and Commerce WQARF Site

Geosyntec[▷] consultants

		SB2-40			SB2-60			SB2-70	
	HPC _{C/I-risk}	HPC _{C/I-haz}	Conc.	HPC _{C/I-risk}	HPC _{C/I-haz}	Conc.	HPC _{C/I-risk}	HPC _{C/I-haz}	Conc.
Parameters	(µg/m³)	(µg/m³)	(µg/m ³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)
Volatile Organic Compounds									
Acetone	NA	1.09E+09	520	NA	1.60E+09	<24,000	NA	1.85E+09	<3,800
Benzene	1.52E+04	1.24E+06	88	2.24E+04	1.82E+06	<2,600	2.59E+04	2.11E+06	<410
2-Butanone	NA	2.01E+08	140	NA	2.94E+08	<4,700	NA	3.41E+08	<760
Chloroform	5.84E+03	4.74E+06	<17	8.58E+03	6.96E+06	<2,900	9.95E+03	8.08E+06	<470
Toluene	NA	2.40E+08	85	NA	3.52E+08	<3,000	NA	4.09E+08	<490
TCE	3.69E+04	1.08E+05	<24	5.43E+04	1.59E+05	<4,300	6.30E+04	1.85E+05	<690
PCE	7.80E+05	2.99E+06	190	1.15E+06	4.41E+06	290,000	1.34E+06	5.12E+06	48,000
Cumulative Risks									
Hazard Index (HI)		0.0001			0.1			0.01	
Incremental Lifetime Cancer Risk									
(ILCR)		6E-09			3E-07			4E-08	

Notes:

 $HPC_{C/l-risk} = Soil Vapor Health-Protective Concentrations for cancer-endpoint, commercial/industrial exposures$ $HPC_{C/l-haz} = Soil Vapor Health-Protective Concentrations for non-cancer-endpoint, commercial/industrial exposures$

 $\mu g/m^3$ = micrograms per cubic meter

NA = Not applicable

Hazard Index (HI) = $\sum (C_{sg,i} / HPC_{C/I-haz,i})$ x target noncancer hazard index of 1

Incremental Lifetime Cancer Risk (ILCR) = $\sum (C_{sg,i} / HPC_{C/I-risk,i}) x$ target cancer risk of 1E-06

C_{sg,i} = soil vapor concentration

Nondetected results were not included in the HI and ILCR calculations

NC = Not Calculated

Cummulative ILCR estimates for commercial/industrial workers were compared to a target cancer risk of 1E-0£ Cummulative HI estimates were compared to target noncancer risk of 1

TABLE 5Soil Vapor Screening for Potential Groundwater ImpactsCooper and Commerce WQARF Site

Geosyntec[▷] consultants

	Non- Residential	Converted	Minimum GPL	Converted GPL						
Parameters	SRL (µg/kg)	SRL (µg/m³)	(µg/kg)	(µg/m³)	SB1-45	SB1-60	SB1-75	SB2-40	SB2-60	SB2-70
Volatile Organic Compounds	ug/m³)									
Acetone	5.40E+07	5.43E+08	NA	NC	160	<12	<830	520	<24,000	<3,800
Benzene	1.40E+03	1.22E+06	7.10E+02	6.21E+05	13	<1.3	<89	88	<2,600	<410
2-Butanone	3.40E+07	4.87E+08	NA	NC	34	<2.4	<170	140	<4,700	<760
Chloroform	2.00E+04	1.33E+07	NA	NC	7.6	<1.5	<100	<17	<2,900	<470
Toluene	6.50E+05	4.51E+08	4.00E+05	2.77E+08	15	<1.5	<110	85	<3,000	<490
Trichloroethene	6.50E+04	6.77E+07	6.10E+02	6.35E+05	<7.6	<2.1	<150	<24	<4,300	<690
Tetrachloroethene	1.30E+04	2.41E+07	1.30E+03	2.41E+06	<9.6	<2.7	11,000	190	290,000	48,000

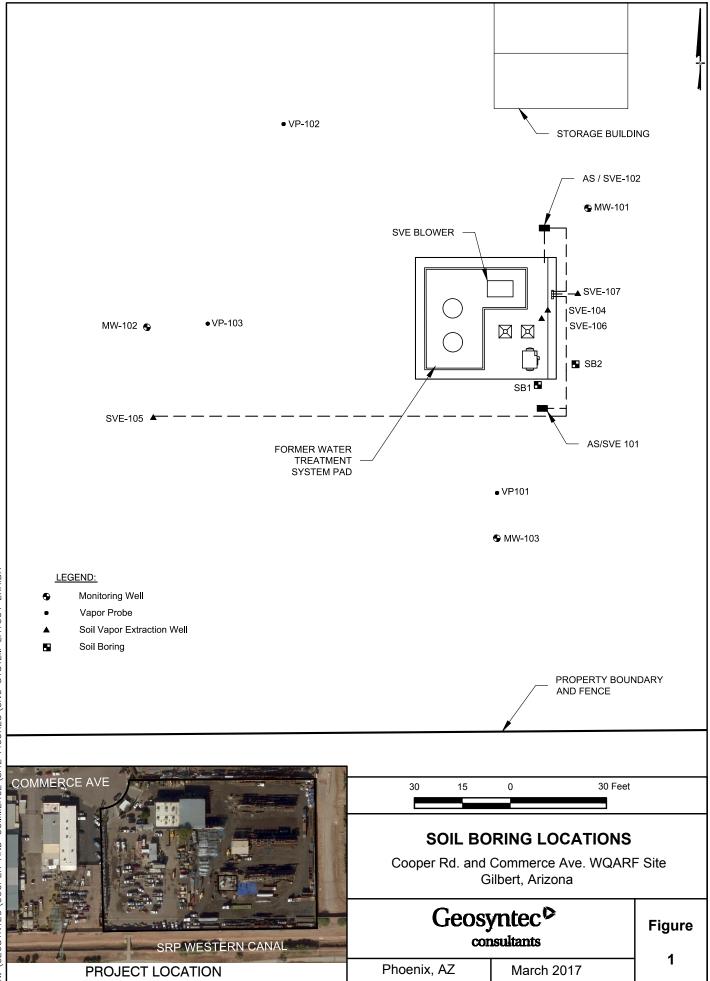
Notes:

Non-Residential SRL = Soil Remediation Levels for non-residential exposure scenarios

Minimum GPL = Minimum Groundwater Protection Levels, Table 3 from 1996 A Screening Method to Determine Soil Concentrations Protective of Groundwater Qualit

SRLs and GPLs were converted to soil vapor units (µg/m³) using a J&E model spreadsheet (SL-Screen, Ver 3.1, 02/04) and the following soil properties (for silty clay):

bulk density = 1.38 g/cm^3 , total porosity = $0.481 \text{ cm}^3/\text{cm}^3$, water-filled porosity = $0.216 \text{ cm}^3/\text{cm}^3$, and fraction organic carbon = 0.001


μg/kg = micrograms per kilogram

 μ g/m³ = micrograms per cubic meter

NA = Not applicable

NC = Not Calculated

"<" = Analyte not detected above the listed reporting limit

ATTACHMENT A Boring Logs

Geosyntec⊳

consult	tants
---------	-------

BORING LOG

Project No.:	SP0146B-03-04	Page	1 of 3
Site Name:	COUPER+ COMMERCE	Date Start & Complete:	11/17/16 - 11/17/16
Boring I.D.:	SB-1	Borehole Diameter:	Ginch
Geologist/Eng.:	Rebecca Brand	Borehole Depth:	75 +4,
Drilling Company:	Cascade	Depth to Water:	
Drilling Method:	Sonic		
Comments:	Angle Boling 20' of	f vertical, Soil Sam	ples analyzed for 82.601

	Depth	USCS Symbol	Lithologic Description	Date & Time	Comments	
0	-		AB Buckfill			1
3		СН	Fat Clay. Brown (7.5YR 4/4) (0,2,98) High plasticity. High to very high dry strength. Fine-medium sand, Moist.			
4	1111		Caliche nodules presentat 4'			
5		CL	Silty Clay, Brown (7.54R 4/4) (0,0,100). Low to Medium plasticity. Low dry strength. Moist.			
7		СН	Fat Clay. Brown (7.54R 4/4) (0,2,98) High plasticity. High to very high dry strength. Fini-medium sand. Moist			
10		CL	Silty Clay Brown (7.548 4/4) (0,0,100 Low to Medium plasticity. Low dry strength, Moist		÷ 3	17.450
12		СН	Fat clay Brown (7.54R 4/4) (6,3,97) High plasticity. High to voy high dry strength. Fine Med. sand. Moist.			
	-					
		Reviewe	ed by: feela RM	R.G.#	51952	

Geosyntec[▷]

		CC	onsultants BORING LOG		
ē	Site	ject No.: Name: nments:	SPOI46B Page Cooper + Commerce Boring ID	2 SE	of 3 3-1
	Depth	USCS Symbol	Lithologic Description	Date & Time	Comments
14 20 21 25		ML	Silty Clay, Brown (2,54R 5/4), (0,5,95) Low to Medium Plasticity, Low dry stiength. Fine sand, Moist. Similar to Above Silt. Light y ellowish brown (104R 6/4) (0,2,98). Non plastic. Low Dry Strength Fine sand. Moist. Caliche nodules present		
30			Similar to Above. Brown (7.54R 414) No caliche nudules present.		
34			Silty Clay, Brown (7,54R 4/4) (0,2,98) Low to Medium Plasticity Low dry strength. Fine sand. Moist		\$
45	1 martine 1	СН	Fat Clay with gravel, Brown (7, syr 414) (15, 2, 83). High Plasticity, High to very kigh dry strength. Fine gravel. Moist		Soil Sample Collected SBI-45-11172016 Soil Vapor sample collect SBI-45-11172016
		Reviewe	d by: Rellin MM	R.G.#	# 51952

Alt in

Geosyntec⊳

24

		CC	onsultants	BORING LO	DG				
.4	Site	ect No.: Name: hments:	SP01468 Cooputc		Page Boring ID	3 5B-1	of 3		
	Depth	USCS Symbol		Lithologic Description		Date & Time	Comments		
17		CH	High Plasticit	y. High to ve M. Trace fine he nodules	gravel+			X	
50			Similar to	Above	-	tbgo	Bright greev observed fr Staining noted on	intern nastain rom Se partic	ning 5-61
160			similar to 7	10000			nud ules. Soil vajoi sami SBt- 60-1117	pic col	
68		CH	Fat Clay W 4/4) (15, 2, 8 to very hig medium a	ithgravel. E 3) High Plast h dry streng ravel. Trace	Brown (7.5% icity. High Th. Fine- five sand				
71		GP	Poorly grad (7.54K 4/4)(angular gro	ed gravel wi (83, 2, 15). Su ivel, Trace s	theby. Brow b angular to and. Wet.	'n			
75		Reviewe	Similar to P End of k ed by: <u>Pur</u>	bove boring.	1		Soil Sample SB-1-75-11 Soil Japol Sa 51952	ample	0
24						ę.	2.150	2	

Geosyntec[▷]

.1	CO	onsultants BORING LOG		de la compañía de la
Site Borin Geo Drilli Drilli	ect No.: Name: ng I.D.: ologist/Eng ing Compa ing Methoo nments:	Cooper 1 Commerce Da 5B-2 Be any: <u>Cascade</u> Da d: Sonic	age ate Start & Complete: orehole Diameter: orehole Depth: epth to Water:	1 of 3 11/12/16 - 11/18/1 6 inches 70 Samples collected
Depth	USCS Symbol	Lithologic Description	Date & Time	Comments
	СН	AB Backfill Fat Clay, Brown (7.54R 414) (Itigh Placheity, High Tovery h strength, Fine sand, Moist	2, 1,99) 1gh dry	
and and		callche laying present.		
	CL	Silty Clay. Brown (7.5484/4 Low to midium plasticity. Low strength. Moist.)(0,0,100) diy	
	CH	Fat clan. Brown (7.54K 4/4) (0 High plasticity, Highto very high strongth. Fine sand. Moist.		
	СС	Silty Clay Brown (7.54R 4/4) (Low to Medium Plasticity Lo strength. Moist		

Geosyntec[▷]

CC	onsultants BORING	LOG		
Project No.: Site Name: Comments:	SPO146B - Cooper + Commercer	Page Boring ID	2 SB	of 3
Depth USCS Symbol	Lithologic Description		Date & Time	Comments
CH CL	Fat clay. Brown (7.54K 4) High plasticity. High to ver strength Fine sand. Mois Silty Clay. Brown (7.54R Low to Medium plasticity strength. Fine sand. Moist present.	4)(0,3,97) y nigh dry it. 414)(0,5,95) Low dry , Caliche 10703		-
MU		0,2,98) Nonples nd. Moist.	ħί	
	Caliche layers present.			
	No callche layers present			
	Similar to those Light Y (104R 6/4)	ellowish from		
1				
	Silty Clay Brown, (7.54) Law to Medium Plasticity strength, Fine sand, M	e 4/4)(0,2,98) . Low dry ist		soil sample calcoted SB-2-40-11182016
) E Reviewe	ed hv: Ricen B-		R.G.#	Soil vapor sample collector SB-2-40-11182016
Keviewe	a by the presence of the prese	~	К.U.#	51952

Geosyntec Consultants

200

BORING LOG

Project No.: Site Name: Comments:	<u>SPG1468</u> <u>Cooper+Commerce</u> Boring ID	3	of 3 5B-2
Depth USCS Symbol	Lithologic Description	Date & Time	Comments
CH CH	Fat clay, Brown (7,54R-414) (5,1,94) High Plasticity, High to very high dry strength. Trace fine gravel. Moist Caliche nodules up to 2" present. Fat claywith gravel. Brown (7,54R 414) (15,2,83) High plasticity. High to very high dry strength. Fine Medium gravel i Trace fine sand. Wet Poorly Graded gravel with clay. Brown (7,54R 019) (83, 2, 15) Sub angular To angular gravel. Trace sand. Wet.		51-69 ft bys Bright green intermittent Staining observed. Staining putticularly noted on caliche nodule Soil vaporsamptr collect SB2-60-1118 2016
Review	End of Boring. Sample pushed ahead to 70Ft bep	R.G.#	Soil Sampits collected SB2-69-11182016 SB2-69-11182016 Tup Soil Vayor Sampl Scollect SB2-70-11182016 SB2-70-11182016 Dup = 51952

ATTACHMENT B Field Notes

Consultants Name: R-Fifield Date: 1-13-16 Page of 1
Project No.: SPONGB Project Description: DRILL 2 Sove Bolicer
Project No.: <u>SPON46B</u> Site Name: Project Description: <u>DRM 2 Sou Bolier</u> Weather: <u>COOL</u>
0600 W DAMER BUY ICR TAUR TO SUTE
0645 AF SITR, FIND JOHN ALLAN, STERL BASE OF
COMPOUND NOT MOURD YRT
OBGO CASAM ONSON HAS MEARING Discres
TRADOU
0900 SET UP DAULUNG BERUPAULT
0930 GRORGE Offson To TAURY
0857 SPMr Munk
1050 AF = 35'
1100 AF = 45' SRE UP SIMI PROBA TOOL
GRORGE ON SITE COLLES
45' SOL SAMAT SBI- 45 - 11172216
CASCADE OND SITE - LUNCU
1130 DRUCIN
1300 AS 55 STOP DUILING HOR UN HOSE
Por writin Supply, HEEP PUSA SOIL OUT OF
CORR BARARC. UARA
1319 AF 59' SRF UP SIMI PROBR FOR 60 SAMPIN
1401 COUME 5B1-60-1117206 UDATON SAMPLE
1745 AF 75' 278' COR IS WAT
COLLREST 5B1-79-11172216 500- SAMPUR
CASCADE INSTALLUS S.P. NOW
1513 COLLIES 581-75-11072016 UADON SAMPLIN
NOTE POSSIBLE MOISTURE IN SAMPLE
1545 GEORGE ORASINE GASCAM PROLAUM SANTAL
1630 DRASCER
Signature: Rent Close Date: 11-17-16
Hours: 9 on-site 1.5 travel 10.5 total

Geosyntec[▷] Name: R. Fifield + R. Brand consultants Date: 11/18/16 Page of DAILY FIELD REPORT Project No.: 5P0146 B - 03-04 Project Description: Drill SB-2 Site Name: Coopert Commerce Weather: 0700 - Arrive onsite. Sonic track rig set up on SB-2. 0715 - Helper from Cascade arrives, Eric. Hemel. Brigham, and his helper Jesus arrive. 0750-New threading on the drill nend. Meeting. Discuss slips, trips, falls, trafficand 0825 - H bring moved. F. Brand bgging B-1. SHE beams drilling SB - 2 Anale horing 20 angle 0835 - B pain collecting soil vapor + soll samples, vertical. R. Fifield 40 ft bap. collect a soil sample 1030to SF soil vapor sample. (used methanol extraction for so a SB-2 to looft bas. 1058-Simul probe didn't open VO 1213 - Drilled Johnson arrives onsite dill deepen. Try again. 1300 -Kyle 1320-70 ft bas. collect a soil valor CB-2 70 Drilled leaves. sample. Kyle sample from SB-2 at 69ft bgg 1330soil lect a VOCS. (used methanol extraction for soils-vocs) Green staining present in the 69 ft sample. Break for lunch 1400 -Back on-Site 1435-B.2. Brand logging with next cement. 1600borings both Growted tor Test America eave sife. L 40 off-at Soil vapor + soil samples 1644-Dron TASTAMERICA. office. back at The 1530 -Arrive Reen Date: 11/18/16 Signature: 10.5 8.5 2 travel total on-site Hours:

Geosyntec^D

TAILGATE SAFETY MEETING

Project Name: COOPRA	Date: //-18-16 Project No.: 500146B
Client:	$\underline{\qquad} Project No.: \underline{\qquad} \underline{\qquad} \underline{\qquad} DI \underline{\qquad} B$
Site Address:	
Items discussed in this meeting: FORL LIRF TRAPPUL TRUCIL TRAPPUL SUPS & TRUPS	
Hospital Location/Directions:	
Attendance/Signatures:	
Print Name/Company ROBRAT FURURUD	Signature Recent Gyren
Rebecca Brand	Recen Brok
Jesus M Villa Gbas Brighan J. Smithoud	- Jose M Vielaldor
ELSE HEMLEL 1941E JOHNSON	BOR
•	
	Project Manager Date

1

SOIL GAS PROBE MEASUREMENTS

.

Pro	oject Number: ield Personnel:	Co- pr 500141 Robras	B FIFIR		03 PLE HI Weather:	Task:	04			bing blank / by PID)	6	Time	N31
Air		- 70°		Atmosph									
									Performe		in H ₂ O	Time	12.05
	PID Model	and Serial No.:				160		-	*	Pass	Fail		
						_150.			Pressur	al Well re/Vacuum to purge)	pr	Time	NL
	Surface Type: bsurface Type:				(e.g., asphalt, (e.g., sand, cla	concrete, dirt, gr ay) 1 Well Head 1		S Coordinates: ace Thickness: Probe Depth:	6	<u>27N III:</u> 5'			
Start Time	End Time	Elapsed Time (min)	Bag Volume (mL)	Purge Rate (mL/Min)	Total Vol (mL)	Vacuum	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	VOCs by PID (ppmv)	min	Tracer Gas (%) max	Sample
1206	1217	5	1	200 RKF	()	(in H ₂ O)	MR	NR	MR	MR	MR	MR	Me
		~											
SAMPLE			```										
Start Time	End Time		Same	ole ID		Summa C	anister ID	Regula	ator ID	Initial Vacuum	Final Vacuum	Tracer	Gas (%)
								5		(in Hg)	(in Hg)	min	max
1213	1218	501-45	- 111720	L		340009	26	7564		30	8.5	NR	NR
										1 1			

Comments

SOIL GAS PROBE MEASUREMENTS

Geosyntec⊳ consultants

**

	Project Name: oject Number: eld Personnel: Date:		1460 F.f.	Phase:	03 Weather:	Task:	04			bing blank v by PID)	0	Time	1,31
Air	Temperature:	and Serial No.:	,0	Atmospi	neric Pressure:				Performe		in H ₂ O Fail	Time	1351
		PID Lamp: and Serial No.: eter Serial No.:				150			Pressur	al Well re/Vacuum to purge)	ME	Time	rir
Sul	r Location ID: Surface Type: Surface Type: GE AND LEA	<u>38-1-</u> <u>Asprov</u> <u> </u>	$\frac{1}{2}$	12010 	(e.g., asphalt, (e.g., sand, cla	concrete, dirt, g yy)	GP (rass) Surf	ace Thickness: Probe Depth:	(6" 60'			' ÈUAN
Start Time	End Time	Elapsed Time (min)	Bag Volume (mL)	Purge Rate (mL/Min)	Total Vol (mL)	Well Head Vacuum (in H ₂ O)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	VOCs by PID (ppmv)	min	Tracer Gas (% max	5) Sample
1354	19.30	630		1000		20	MR	MR	NR	MR	NR	MR	MR
AMPLE													
Start Time	End Time		Samp	ple ID		Summa C	Canister ID	Regul	ator ID	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Tracer min	Gas (%) max
1401.10	1406	58-1-	5B-1-60-11172016 34000					7	445	30	8.0	NR	NR

 \cong

Comments

P:\Administration\Forms & Templates\Field Forms\Soil Vapor Field Forms

SOIL GAS PROBE MEASUREMENTS

Geosyntec[▷] consultants

Project Name: Project Number: Field Personnel: Date: Air Temperature: Phase: 03 Task: 04 Phase: 03 Task: 04 Weather: Atmospheric Pressure:	Field tubing blank (ppmv by PID)	Time	1131
PID Model and Serial No.:	Shut-In TestPerformed at 2.0 in H_2O Pass \Box Fail	Time	1503
PID Lamp: 12.6 Tracer Gas: 1.50 Tracer Gas Detector Model and Serial No.:	Initial Well Pressure/Vacuum (prior to purge)	Time	MR

Probe or Location ID:	3B1-15-1112016	_	C
Surface Type:	Asohow	(e.g., asphalt, concrete, dirt, grass)	Su
Subsurface Type:	Silty Sand / Clay	(e.g., sand, clay)	

GPS Coordinates:	332127 N	111489W
Surface Thickness:	6"	
Probe Depth:	75'	

PROBE PURGE AND LEAK TEST

0	Ded Time	Elapsed Time	Bag Volume	Purge Rate	Total Vol	Well Head Vacuum	CH4 (%)	CO ₂ (%)	O ₂ (%)	VOCs by PID		Fracer Gas (%)	
Start Time	End Time	(min)	(mL)	(mL/Min)	(mL)	(in H ₂ O)	C114 (70)	002(70)	02(70)	(ppmv)	min	max	Sample
1504	1512	8		1000		22	MR	NR	MR	NR	MR	NR	NR

SAMPLE	SA	M	PLE
--------	----	---	-----

Start Time	End Time			Descriptor ID	Initial	Final Vacuum (in Hg)	Tracer Gas (%)	
		Sample ID	Summa Canister ID	Regulator ID	Vacuum (in Hg)		mîn	max
1513	1518	SB1-75-1172016	3400 1541	7555	30	50	NR	MIR

Comments May HAUR MOISSING IN SLAPPIS

SOIL GAS PROBE MEASUREMENTS

	DecisedNeeder	Coopt	$c + c \sigma$	MMCA	P								
Pr	oject Number: ield Personnel:	50146 2-Fi 11/181	Bifield.	Phase:	03		64			bing blank by PID)	P	Time	0930
Air	r Temperature:			Atmosp	heric Pressure:								
	1				19					Shut-In Test			auto
	PID Model	and Serial No :	TIGE	~						l at <u>&O</u> Pass D	in_ H_O Fail Ng	Time	0948
		and Serial No.: PID Lamp:	12.6		Tracer Gas:	150							
	etector Model	and Serial No.: leter Serial No.:			9 0				Pressure	al Well e/Vacuum to purge)	NR	Time	NR
Su	Surface Type:	<u>502 - 4</u> <u>А</u> <u>С</u> <u>А</u> <u>А</u> <u>С</u> <u>А</u> <u></u> <u>А</u> <u>С</u> <u>А</u> <u></u> <u></u> <u>А</u> <u></u> <u></u> <u>А</u> <u></u> <u>А</u> <u></u> <u>А</u> <u></u> <u></u> <u>А</u> <u></u> <u></u> <u>А</u> <u></u>	T			concrete, dirt, g y)		S Coordinates: ace Thickness: Probe Depth:	40	[
		1	Bag Volume	Purge Rate	Total Vol	Well Head		CO (9/)	0 (0/)	VOCs by PIE		Tracer Gas (%)
Start Time	End Time	(min)	(mL)	(mL/Min)	(mL)	Vacuum (in H ₂ O)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	(ppmv)	min	max	Sample
0953	0958	5	1,000	200	1,000	0,5	NA	NA	NA	1.6	NA	NA	NA
t													
SAMPLE										1 1 2 3 3			
Start Time	End Time	Sample ID				Summa Canister ID R			ator ID	Initial Vacuum	Final Vacuum		Gas (%)
									(in Hg		(in Hg)	min	max
0958	1004	SB2-41	0-11182	2016		34000	0776	71	21	30	4	NA	NA

Ŧ.

Comments

P:\Administration\Forms & Templates\Field Forms\Soil Vapor Field Forms

SOIL GAS PROBE MEASUREMENTS

Project Name: COOPLIF COMMETCE			
Project Number: SPO1463 Phase: 03 Task: 04 Field Personnel: R. Brand + R. Fifield Date: 11/18/16 Weather:	Field tubing blank (ppmv by PID)	Time	0930
Air Temperature: Atmospheric Pressure:			
PID Model and Serial No.: 582 500 1182000 TIBRA	Shut-In Test Performed at <u>5</u> in Har Pass D Fail	Time	1204
PID Lamp: 12.6 Tracer Gas: 150			
Tracer Gas Detector Model and Serial No.: GEM 2000 Landfill Gas Meter Serial No.:	Initial Well Pressure/Vacuum (prior to purge)	R Time	NR
Hote of Elecation in	PS Coordinates:		

PROBE PURGE AND LEAK TEST

Subsurface Type:

		Elapsed Time	Bag Volume	Purge Rate	Total Vol	Well Head	CIL (0/)	CO (%)	O ₂ (%)	VOCs by PID		Tracer Gas (%)	
Start Time	End Time	(min)	(mL)	(mL/Min)	(mL)	Vacuum (in H ₂ O)	CH ₄ (%)	CO ₂ (%)	$O_2(70)$	(ppmv)	min	max	Sample
1206	1213	7	1,000	OTO AN	1,400	0.5	NA	NA	NA	4,0	NK	NA	NA

(e.g., sand, clay)

60

Probe Depth:

SAMPLE

Start Time	End Time				Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Tracer Gas (%)	
		Sample ID	Summa Canister ID	Regulator ID			min	max
1213	1218	502-60-1182016	34000762	7127	30	7	NA	NA

Comments

au

SOIL GAS PROBE MEASUREMENTS

Geosyntec[▷] consultants

Pr	Project Name: oject Number: ield Personnel: Date:	SPOI R. B	46B		03.	Task:	04			bing blank v by PID)	¢	Time	930
Aiı	r Temperature: PID Model	and Serial No.:		r	heric Pressure:	150				Shut-In Test ed at <u>5</u> Pass 0	in U20 Fail Ng	Time	1305
		and Serial No.:							Pressur	al Well e/Vacuum to purge)	NR	Time	NR
	Surface Type: bsurface Type:		Aspha	Giavel	(e.g., asphalt,	concrete, dirt, g ay)		S Coordinates: àce Thickness: Probe Depth:		6" 70			
Start Time	End Time	Elapsed Time (min)	Bag Volume (mL)	Purge Rate (mL/Min)	Total Vol (mL)	Vacuum (in H ₂ O)	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	VOCs by PID (ppmv)	min	Tracer Gas (% max	s) Sample
1312	1320	8	1,000	200	1,600	2.4	NA	NA	NA	7,0	NA	NA	NA
SAMPLE Start Time	End Time		Samp	le ID		Summa C	anister ID	Regula	tor ID	Initial Vacuum (in Hg)	Final Vacuum (in Hg)	Tracer	Gas (%) max
1320 1320	1325	502-7 502-7	10-1118			34000		723 748		30 30	7 6,5	NA NA	NA NA

Comments May HASE MOISTURE IN SLUPER

ATTACHMENT C Analytical Reports

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Sacramento 880 Riverside Parkway West Sacramento, CA 95605 Tel: (916)373-5600

TestAmerica Job ID: 320-23751-1 Client Project/Site: Cooper & Commerce SP0146B

For:

Geosyntec Consultants, Inc. 11811 N Tatum Blvd Ste P186 Phoenix, Arizona 85028

Attn: Marla Miller

Authorized for release by: 12/5/2016 1:55:23 PM Camille Murray, Project Manager I (949)261-1022 camille.murray@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	24
QC Sample Results	25
QC Association Summary	33
Lab Chronicle	34
Certification Summary	36
Method Summary	37
Sample Summary	38
Chain of Custody	39
Receipt Checklists	40
Clean Canister Certification	41
Pre-Ship Certification	41
Clean Canister Data	44

Client: Geosyntec Consultants, Inc. Project/Site: Cooper & Commerce SP0146B

3

5

Qualifiers

Air - GC/MS VOA

Qualifier	Qualifier Description
T2	Cited ADHS licensed method does not contain this analyte as part of the method compound list.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Job ID: 320-23751-1

Laboratory: TestAmerica Sacramento

Narrative

Job Narrative 320-23751-1

Comments

No additional comments.

Receipt

The samples were received on 11/22/2016 9:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice.

Receipt Exceptions

The container label for the following sample did not match the information listed on the Chain-of-Custody (COC): SB2-40-11182016 (320-23751-4). The container label lists SB2-45-11182016, while the COC lists SB2-40-11182016.

Air - GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper & Commerce SP0146B

Client Sample ID: SB1-45-11172016

Lab Sample ID: 320-23751-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone	67	T2	18		ppb v/v	3.53	TO-15	Total/NA
Benzene	4.0		1.4		ppb v/v	3.53	TO-15	Total/NA
2-Butanone (MEK)	11		2.8		ppb v/v	3.53	TO-15	Total/NA
Chloroform	1.6		1.1		ppb v/v	3.53	TO-15	Total/NA
Toluene	4.0		1.4		ppb v/v	3.53	TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Acetone	160	T2	42		ug/m3	3.53	TO-15	Total/NA
Benzene	13		4.5		ug/m3	3.53	TO-15	Total/NA
2-Butanone (MEK)	34		8.3		ug/m3	3.53	TO-15	Total/NA
Chloroform	7.6		5.2		ug/m3	3.53	TO-15	Total/NA
Toluene	15		5.3		ug/m3	3.53	TO-15	Total/NA

Client Sample ID: SB1-60-11172016

No Detections.

Client Sample ID: SB1-75-11172016						Lab Sample ID: 320-23751-3				
Analyte Tetrachloroethene		Qualifier	RL	MDL	Unit ppb v/v	Dil Fac	D	Method TO-15	Prep Type Total/NA	
Analyte Tetrachloroethene		Qualifier	RL 190	MDL	Unit ug/m3	Dil Fac 70	D	Method TO-15	Prep Type Total/NA	

Client Sample ID: SB2-40-11182016

Analyte **Result Qualifier** RL MDL Unit Dil Fac D Method Prep Type Acetone 220 T2 57 ppb v/v 11.3 TO-15 Total/NA Benzene 28 4.5 ppb v/v 11.3 TO-15 Total/NA 2-Butanone (MEK) 47 9.0 ppb v/v TO-15 Total/NA 11.3 Tetrachloroethene 29 TO-15 Total/NA 4.5 ppb v/v 11.3 Total/NA Toluene 23 TO-15 4.5 ppb v/v 11.3 Result Qualifier Dil Fac D Method Analyte RL MDL Unit Prep Type T2 TO-15 Acetone 520 130 ug/m3 11.3 Total/NA Benzene 88 ug/m3 11.3 TO-15 Total/NA 14 2-Butanone (MEK) 140 27 ug/m3 11.3 TO-15 Total/NA Tetrachloroethene 190 31 ug/m3 11.3 TO-15 Total/NA Toluene 85 17 11.3 TO-15 Total/NA ug/m3

Client Sample ID: SB2-60-11182016 Lab Sample ID: 320-23751-5 Result Qualifier MDL Analyte RL Unit Dil Fac D Method Prep Type 800 Tetrachloroethene 43000 ppb v/v 2010 TO-15 Total/NA RL Analyte **Result Qualifier** MDL Unit Dil Fac D Method Prep Type Tetrachloroethene 290000 5500 ug/m3 2010 TO-15 Total/NA

Client Sample ID: SB2	-70-11182016		Lab Sample ID:	320-23751-6	
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Tetrachloroethene	5000	130	ppb v/v	<u>317</u>	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Sacramento

5

Lab Sample ID: 320-23751-4

Lab Sample ID: 320-23751-2

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper & Commerce SP0146B

Tetrachloroethene

Tetrachloroethene

Analyte

TestAmerica Job ID: 320-23751-1

TO-15

TO-15

322

322

Dil Fac D Method

Client Sample ID: SB2-70-11182016 (Continued) Lab Sample ID: 320-23751-6

7100

48000

Result Qualifier

Analyte Tetrachloroethene	Result Qualifier 34000	RL 860	MDL Unit ug/m3	<u>Dil Fac</u> <u>D</u> <u>Method</u> 317 D-15	Prep Type Total/NA
Client Sample ID: SB	Lab Sample ID:	320-23751-7			
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type

130

RL

870

ppb v/v

ug/m3

MDL Unit

TestAmerica Sacramento

Total/NA

Total/NA

Prep Type

2 Lab Sample ID: 320-23751-1 Matrix: Air 4 5 <u>Prepared</u> Analyzed Dil Fac 12/02/16 02:30 3.53 12/02/16 02:30 3.53

	ľ.

Client Sample ID: SB1-45-11172016
Date Collected: 11/17/16 12:18
Date Received: 11/22/16 09:50
Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organi Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	67 T2	18	ppb v/v		12/02/16 02:30	3.53
Benzene	4.0	1.4	ppb v/v		12/02/16 02:30	3.53
Benzyl chloride	ND	2.8	ppb v/v		12/02/16 02:30	3.53
Bromodichloromethane	ND T2	1.1	ppb v/v		12/02/16 02:30	3.53
Bromoform	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Bromomethane	ND	2.8	ppb v/v		12/02/16 02:30	3.53
2-Butanone (MEK)	11	2.8	ppb v/v		12/02/16 02:30	3.53
Carbon disulfide	ND	2.8	ppb v/v		12/02/16 02:30	3.53
Carbon tetrachloride	ND	2.8	ppb v/v		12/02/16 02:30	3.53
Chlorobenzene	ND	1.1	ppb v/v		12/02/16 02:30	3.53
Dibromochloromethane	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Chloroethane	ND	2.8	ppb v/v		12/02/16 02:30	3.53
Chloroform	1.6	1.1	ppb v/v		12/02/16 02:30	3.53
Chloromethane	ND	2.8	ppb v/v		12/02/16 02:30	3.53
1,2-Dibromoethane (EDB)	ND	2.8	ppb v/v		12/02/16 02:30	3.53
1,2-Dichlorobenzene	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
1,3-Dichlorobenzene	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
1,4-Dichlorobenzene	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Dichlorodifluoromethane	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
1,1-Dichloroethane	ND	1.1	ppb v/v		12/02/16 02:30	3.53
1,2-Dichloroethane	ND	2.8	ppb v/v		12/02/16 02:30	3.53
1,1-Dichloroethene	ND	2.8	ppb v/v		12/02/16 02:30	3.53
cis-1,2-Dichloroethene	ND T2	1.4	ppb v/v ppb v/v		12/02/16 02:30	3.53
trans-1,2-Dichloroethene	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
1,2-Dichloropropane	ND ND	1.4	ppb v/v ppb v/v		12/02/16 02:30	3.53
cis-1,3-Dichloropropene	ND	1.4	ppb v/v ppb v/v		12/02/16 02:30	3.53
trans-1,3-Dichloropropene	ND T2	1.4	ppb v/v ppb v/v		12/02/16 02:30	3.53
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND T2	1.4			12/02/16 02:30	3.53
	ND 12 ND	1.4	ppb v/v		12/02/16 02:30	3.53
Ethylbenzene		1.4	ppb v/v			
4-Ethyltoluene	ND T2		ppb v/v		12/02/16 02:30	3.53
Hexachlorobutadiene	ND TO	7.1	ppb v/v		12/02/16 02:30	3.53
2-Hexanone	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
Methylene Chloride	ND	1.4	ppb v/v		12/02/16 02:30	3.53
4-Methyl-2-pentanone (MIBK)	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Styrene	ND	1.4	ppb v/v		12/02/16 02:30	3.53
1,1,2,2-Tetrachloroethane	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Tetrachloroethene	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Toluene	4.0	1.4	ppb v/v		12/02/16 02:30	3.53
1,2,4-Trichlorobenzene	ND	7.1	ppb v/v		12/02/16 02:30	3.53
1,1,1-Trichloroethane	ND	1.1	ppb v/v		12/02/16 02:30	3.53
1,1,2-Trichloroethane	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Trichloroethene	ND	1.4	ppb v/v		12/02/16 02:30	3.53
Trichlorofluoromethane	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
1,1,2-Trichloro-1,2,2-trifluoroethane	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
1,2,4-Trimethylbenzene	ND T2	2.8	ppb v/v		12/02/16 02:30	3.53
1,3,5-Trimethylbenzene	ND T2	1.4	ppb v/v		12/02/16 02:30	3.53
Vinyl acetate	ND	2.8	ppb v/v		12/02/16 02:30	3.53
Vinyl chloride	ND	1.4	ppb v/v		12/02/16 02:30	3.53

Client Sample ID: SB1-45-11172016

Lab Sample ID: 320-23751-1 Matrix: Air

5

6

Date Collected: 11/17/16 12:18 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Analyte	Result	Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fa
m,p-Xylene	ND		2.8	p	opb v/v			12/02/16 02:30	3.5
o-Xylene	ND		1.4	p	opb v/v			12/02/16 02:30	3.5
Analyte	Result	Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	160		42		ug/m3			12/02/16 02:30	3.5
Benzene	13		4.5		ug/m3			12/02/16 02:30	3.5
Benzyl chloride	ND		15		ug/m3			12/02/16 02:30	3.5
Bromodichloromethane		T2	7.1		ug/m3			12/02/16 02:30	3.5
Bromoform	ND		15		ug/m3			12/02/16 02:30	3.5
Bromomethane	ND		11		ug/m3			12/02/16 02:30	3.5
2-Butanone (MEK)	34		8.3		ug/m3			12/02/16 02:30	3.5
Carbon disulfide	ND		8.8		ug/m3			12/02/16 02:30	3.5
Carbon tetrachloride	ND		18		ug/m3			12/02/16 02:30	3.5
Chlorobenzene	ND		4.9		ug/m3			12/02/16 02:30	3.5
Dibromochloromethane	ND		12		ug/m3			12/02/16 02:30	3.5
Chloroethane	ND		7.5		ug/m3			12/02/16 02:30	3.5
Chloroform	7.6		5.2		ug/m3			12/02/16 02:30	3.5
Chloromethane	ND		5.8		ug/m3			12/02/16 02:30	3.5
1,2-Dibromoethane (EDB)	ND		22		ug/m3			12/02/16 02:30	3.5
1,2-Dichlorobenzene		T2	8.5		ug/m3			12/02/16 02:30	3.5
1,3-Dichlorobenzene		T2	8.5		ug/m3			12/02/16 02:30	3.5
1,4-Dichlorobenzene	ND		8.5		ug/m3			12/02/16 02:30	3.5
Dichlorodifluoromethane		T2	7.0		ug/m3			12/02/16 02:30	3.5
1,1-Dichloroethane	ND		4.3		ug/m3			12/02/16 02:30	3.5
1,2-Dichloroethane	ND		11		ug/m3			12/02/16 02:30	3.5
1,1-Dichloroethene	ND		11		ug/m3			12/02/16 02:30	3.5
cis-1,2-Dichloroethene	ND	T2	5.6		ug/m3			12/02/16 02:30	3.5
trans-1,2-Dichloroethene		T2	5.6		ug/m3			12/02/16 02:30	3.5
1,2-Dichloropropane	ND		6.5		ug/m3			12/02/16 02:30	3.5
cis-1,3-Dichloropropene	ND		6.4		ug/m3			12/02/16 02:30	3.5
trans-1,3-Dichloropropene		T2	6.4		ug/m3			12/02/16 02:30	3.5
1,2-Dichloro-1,1,2,2-tetrafluoroethane		T2	9.9		ug/m3			12/02/16 02:30	3.5
Ethylbenzene	ND		6.1		ug/m3			12/02/16 02:30	3.5
4-Ethyltoluene		Т2	6.9		ug/m3			12/02/16 02:30	3.5
Hexachlorobutadiene	ND		75		ug/m3			12/02/16 02:30	3.5
2-Hexanone		T2	5.8		ug/m3			12/02/16 02:30	3.5
Methylene Chloride	ND		4.9		ug/m3			12/02/16 02:30	3.5
4-Methyl-2-pentanone (MIBK)	ND		5.8		ug/m3			12/02/16 02:30	3.5
Styrene	ND		6.0		ug/m3			12/02/16 02:30	3.5
1,1,2,2-Tetrachloroethane	ND		9.7		ug/m3			12/02/16 02:30	3.5
Tetrachloroethene	ND		9.6		ug/m3			12/02/16 02:30	3.5
Toluene	15		5.3		ug/m3			12/02/16 02:30	3.5
1,2,4-Trichlorobenzene	ND		52		ug/m3			12/02/16 02:30	3.5
1,1,1-Trichloroethane	ND		5.8		ug/m3			12/02/16 02:30	3.5
1,1,2-Trichloroethane	ND		7.7		ug/m3			12/02/16 02:30	3.5
Trichloroethene	ND		7.6		ug/m3			12/02/16 02:30	3.5
Trichlorofluoromethane		T2	7.9		ug/m3			12/02/16 02:30	3.5
1,1,2-Trichloro-1,2,2-trifluoroethane		T2 T2	11		ug/m3			12/02/16 02:30	3.5
1,2,4-Trimethylbenzene		T2	14		ug/m3			12/02/16 02:30	3.5

Analyte	Result Qu	ualifier RL	MDL Únit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND T2	2 6.9	ug/m3			12/02/16 02:30	3.53
Vinyl acetate	ND	9.9	ug/m3			12/02/16 02:30	3.53
Vinyl chloride	ND	3.6	ug/m3			12/02/16 02:30	3.53
m,p-Xylene	ND	12	ug/m3			12/02/16 02:30	3.53
o-Xylene	ND	6.1	ug/m3			12/02/16 02:30	3.53
Surrogate	%Recovery Qu	ualifier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102	70 - 130				12/02/16 02:30	3.53

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
4-Bromofluorobenzene (Surr)	102		70 - 130	-		12/02/16 02:30
1,2-Dichloroethane-d4 (Surr)	92		70 - 130			12/02/16 02:30
Toluene-d8 (Surr)	95		70 - 130			12/02/16 02:30

Client Sample ID: SB1-60-11172016 Date Collected: 11/17/16 14:06 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

95	70 - 130	
172016		

Lab Sample ID: 320-23751-2

TestAmerica Job ID: 320-23751-1

Lab Sample ID: 320-23751-1

Matrix: Air

3.53

3.53

Matrix: Air

_ Method: TO-15 - Volatile Organ	ic Compou	unds in Am	bient Air						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	5.0		ppb v/v			12/02/16 03:30	1
Benzene	ND		0.40		ppb v/v			12/02/16 03:30	1
Benzyl chloride	ND		0.80		ppb v/v			12/02/16 03:30	1
Bromodichloromethane	ND	T2	0.30		ppb v/v			12/02/16 03:30	1
Bromoform	ND		0.40		ppb v/v			12/02/16 03:30	1
Bromomethane	ND		0.80		ppb v/v			12/02/16 03:30	1
2-Butanone (MEK)	ND		0.80		ppb v/v			12/02/16 03:30	1
Carbon disulfide	ND		0.80		ppb v/v			12/02/16 03:30	1
Carbon tetrachloride	ND		0.80		ppb v/v			12/02/16 03:30	1
Chlorobenzene	ND		0.30		ppb v/v			12/02/16 03:30	1
Dibromochloromethane	ND		0.40		ppb v/v			12/02/16 03:30	1
Chloroethane	ND		0.80		ppb v/v			12/02/16 03:30	1
Chloroform	ND		0.30		ppb v/v			12/02/16 03:30	1
Chloromethane	ND		0.80		ppb v/v			12/02/16 03:30	1
1,2-Dibromoethane (EDB)	ND		0.80		ppb v/v			12/02/16 03:30	1
1,2-Dichlorobenzene	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
1,3-Dichlorobenzene	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
1,4-Dichlorobenzene	ND		0.40		ppb v/v			12/02/16 03:30	1
Dichlorodifluoromethane	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
1,1-Dichloroethane	ND		0.30		ppb v/v			12/02/16 03:30	1
1,2-Dichloroethane	ND		0.80		ppb v/v			12/02/16 03:30	1
1,1-Dichloroethene	ND		0.80		ppb v/v			12/02/16 03:30	1
cis-1,2-Dichloroethene	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
trans-1,2-Dichloroethene	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
1,2-Dichloropropane	ND		0.40		ppb v/v			12/02/16 03:30	1
cis-1,3-Dichloropropene	ND		0.40		ppb v/v			12/02/16 03:30	1
trans-1,3-Dichloropropene	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
Ethylbenzene	ND		0.40		ppb v/v			12/02/16 03:30	1
4-Ethyltoluene	ND	T2	0.40		ppb v/v			12/02/16 03:30	1
Hexachlorobutadiene	ND		2.0		ppb v/v			12/02/16 03:30	1

Client Sample ID: SB1-60-11172016

Lab Sample ID: 320-23751-2 Matrix: Air

5

6

Date Collected: 11/17/16 14:06 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Analyte		Qualifier	RL	o <mark>ntinued)</mark> MDL Unit	D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND	T2	0.40	ppb v/v		-	12/02/16 03:30	1
Methylene Chloride	ND		0.40	ppb v/v			12/02/16 03:30	1
4-Methyl-2-pentanone (MIBK)	ND		0.40	ppb v/v			12/02/16 03:30	1
Styrene	ND		0.40	ppb v/v			12/02/16 03:30	1
1,1,2,2-Tetrachloroethane	ND		0.40	ppb v/v			12/02/16 03:30	1
Tetrachloroethene	ND		0.40	ppb v/v			12/02/16 03:30	1
Toluene	ND		0.40	ppb v/v			12/02/16 03:30	1
1,2,4-Trichlorobenzene	ND		2.0	ppb v/v			12/02/16 03:30	1
1,1,1-Trichloroethane	ND		0.30	ppb v/v			12/02/16 03:30	1
1,1,2-Trichloroethane	ND		0.40	ppb v/v			12/02/16 03:30	1
Trichloroethene	ND		0.40	ppb v/v			12/02/16 03:30	1
Trichlorofluoromethane	ND	T2	0.40	ppb v/v			12/02/16 03:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	0.40	ppb v/v			12/02/16 03:30	1
1,2,4-Trimethylbenzene	ND	T2	0.80	ppb v/v			12/02/16 03:30	1
1,3,5-Trimethylbenzene	ND	T2	0.40	ppb v/v			12/02/16 03:30	1
Vinyl acetate	ND		0.80	ppb v/v			12/02/16 03:30	1
Vinyl chloride	ND		0.40	ppb v/v			12/02/16 03:30	1
m,p-Xylene	ND		0.80	ppb v/v			12/02/16 03:30	1
o-Xylene	ND		0.40	ppb v/v			12/02/16 03:30	1
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		12	ug/m3			12/02/16 03:30	1
Benzene	ND		1.3	ug/m3			12/02/16 03:30	1
Benzyl chloride	ND		4.1	ug/m3			12/02/16 03:30	1
Bromodichloromethane	ND	T2	2.0	ug/m3			12/02/16 03:30	1
Bromoform	ND		4.1	ug/m3			12/02/16 03:30	1
Bromomethane	ND		3.1	ug/m3			12/02/16 03:30	1
2-Butanone (MEK)	ND		2.4	ug/m3			12/02/16 03:30	1
Carbon disulfide	ND		2.5	ug/m3			12/02/16 03:30	1
Carbon tetrachloride	ND		5.0	ug/m3			12/02/16 03:30	1
Chlorobenzene	ND		1.4	ug/m3			12/02/16 03:30	1
Dibromochloromethane	ND		3.4	ug/m3			12/02/16 03:30	1
Chloroethane	ND		2.1	ug/m3			12/02/16 03:30	1
Chloroform	ND		1.5	ug/m3			12/02/16 03:30	1
Chloromethane	ND		1.7	ug/m3			12/02/16 03:30	1
1,2-Dibromoethane (EDB)	ND		6.1	ug/m3			12/02/16 03:30	1
1,2-Dichlorobenzene	ND	T2	2.4	ug/m3			12/02/16 03:30	1
1,3-Dichlorobenzene	ND		2.4	ug/m3			12/02/16 03:30	1
1,4-Dichlorobenzene	ND		2.4	ug/m3			12/02/16 03:30	1
Dichlorodifluoromethane	ND	T2	2.0	ug/m3			12/02/16 03:30	1
1,1-Dichloroethane	ND		1.2	ug/m3			12/02/16 03:30	1
1,2-Dichloroethane	ND		3.2	ug/m3			12/02/16 03:30	1
1,1-Dichloroethene	ND		3.2	ug/m3			12/02/16 03:30	1
cis-1,2-Dichloroethene	ND	T2	1.6	ug/m3			12/02/16 03:30	1
trans-1,2-Dichloroethene	ND		1.6	ug/m3			12/02/16 03:30	1
1,2-Dichloropropane	ND		1.8	ug/m3			12/02/16 03:30	1
cis-1,3-Dichloropropene	ND		1.8	ug/m3			12/02/16 03:30	1
trans-1,3-Dichloropropene	ND	T2	1.8	ug/m3			12/02/16 03:30	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.8	ug/m3			12/02/16 03:30	1

Lab Sample ID: 320-23751-2 Matrix: Air

Client Sample ID: SB1-60-11172016 Date Collected: 11/17/16 14:06 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		1.7		ug/m3			12/02/16 03:30	1
4-Ethyltoluene	ND	T2	2.0		ug/m3			12/02/16 03:30	1
Hexachlorobutadiene	ND		21		ug/m3			12/02/16 03:30	1
2-Hexanone	ND	T2	1.6		ug/m3			12/02/16 03:30	1
Methylene Chloride	ND		1.4		ug/m3			12/02/16 03:30	1
4-Methyl-2-pentanone (MIBK)	ND		1.6		ug/m3			12/02/16 03:30	1
Styrene	ND		1.7		ug/m3			12/02/16 03:30	1
1,1,2,2-Tetrachloroethane	ND		2.7		ug/m3			12/02/16 03:30	1
Tetrachloroethene	ND		2.7		ug/m3			12/02/16 03:30	1
Toluene	ND		1.5		ug/m3			12/02/16 03:30	1
1,2,4-Trichlorobenzene	ND		15		ug/m3			12/02/16 03:30	1
1,1,1-Trichloroethane	ND		1.6		ug/m3			12/02/16 03:30	1
1,1,2-Trichloroethane	ND		2.2		ug/m3			12/02/16 03:30	1
Trichloroethene	ND		2.1		ug/m3			12/02/16 03:30	1
Trichlorofluoromethane	ND	T2	2.2		ug/m3			12/02/16 03:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	3.1		ug/m3			12/02/16 03:30	1
1,2,4-Trimethylbenzene	ND	T2	3.9		ug/m3			12/02/16 03:30	1
1,3,5-Trimethylbenzene	ND	T2	2.0		ug/m3			12/02/16 03:30	1
Vinyl acetate	ND		2.8		ug/m3			12/02/16 03:30	1
Vinyl chloride	ND		1.0		ug/m3			12/02/16 03:30	1
m,p-Xylene	ND		3.5		ug/m3			12/02/16 03:30	1
o-Xylene	ND		1.7		ug/m3			12/02/16 03:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130					12/02/16 03:30	1
1,2-Dichloroethane-d4 (Surr)	87		70 - 130					12/02/16 03:30	1
Toluene-d8 (Surr)	100		70 - 130					12/02/16 03:30	1

Client Sample ID: SB1-75-11172016 Date Collected: 11/17/16 15:18 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Lab Sample ID: 320-23751-3 Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	350		ppb v/v			12/02/16 04:23	70
Benzene	ND		28		ppb v/v			12/02/16 04:23	70
Benzyl chloride	ND		56		ppb v/v			12/02/16 04:23	70
Bromodichloromethane	ND	T2	21		ppb v/v			12/02/16 04:23	70
Bromoform	ND		28		ppb v/v			12/02/16 04:23	70
Bromomethane	ND		56		ppb v/v			12/02/16 04:23	70
2-Butanone (MEK)	ND		56		ppb v/v			12/02/16 04:23	70
Carbon disulfide	ND		56		ppb v/v			12/02/16 04:23	70
Carbon tetrachloride	ND		56		ppb v/v			12/02/16 04:23	70
Chlorobenzene	ND		21		ppb v/v			12/02/16 04:23	70
Dibromochloromethane	ND		28		ppb v/v			12/02/16 04:23	70
Chloroethane	ND		56		ppb v/v			12/02/16 04:23	70
Chloroform	ND		21		ppb v/v			12/02/16 04:23	70
Chloromethane	ND		56		ppb v/v			12/02/16 04:23	70

Lab Sample ID: 320-23751-3

5 6

Matrix: Air

70	
70	
70	
70	
70	
70	
70	
70	

Client Sample ID: SB1-75-11172016
Date Collected: 11/17/16 15:18
Date Received: 11/22/16 09:50
Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organi Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		56		ppb v/v			12/02/16 04:23	70
1,2-Dichlorobenzene	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,3-Dichlorobenzene	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,4-Dichlorobenzene	ND		28		ppb v/v			12/02/16 04:23	70
Dichlorodifluoromethane	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,1-Dichloroethane	ND		21		ppb v/v			12/02/16 04:23	70
1,2-Dichloroethane	ND		56		ppb v/v			12/02/16 04:23	70
1,1-Dichloroethene	ND		56		ppb v/v			12/02/16 04:23	70
cis-1,2-Dichloroethene	ND	T2	28		ppb v/v			12/02/16 04:23	70
trans-1,2-Dichloroethene	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,2-Dichloropropane	ND		28		ppb v/v			12/02/16 04:23	70
cis-1,3-Dichloropropene	ND		28		ppb v/v			12/02/16 04:23	70
trans-1,3-Dichloropropene	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	28		ppb v/v			12/02/16 04:23	70
Ethylbenzene	ND		28		ppb v/v			12/02/16 04:23	70
4-Ethyltoluene	ND	T2	28		ppb v/v			12/02/16 04:23	70
Hexachlorobutadiene	ND		140		ppb v/v			12/02/16 04:23	70
2-Hexanone	ND	T2	28		ppb v/v			12/02/16 04:23	70
Methylene Chloride	ND		28		ppb v/v			12/02/16 04:23	70
4-Methyl-2-pentanone (MIBK)	ND		28		ppb v/v			12/02/16 04:23	70
Styrene	ND		28		ppb v/v			12/02/16 04:23	70
1,1,2,2-Tetrachloroethane	ND		28		ppb v/v			12/02/16 04:23	70
Tetrachloroethene	1600		28		ppb v/v			12/02/16 04:23	70
Toluene	ND		28		ppb v/v			12/02/16 04:23	70
1,2,4-Trichlorobenzene	ND		140		ppb v/v			12/02/16 04:23	70
1,1,1-Trichloroethane	ND		21		ppb v/v			12/02/16 04:23	70
1,1,2-Trichloroethane	ND		28		ppb v/v			12/02/16 04:23	70
Trichloroethene	ND		28		ppb v/v			12/02/16 04:23	70
Trichlorofluoromethane	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	28		ppb v/v			12/02/16 04:23	70
1,2,4-Trimethylbenzene	ND	T2	56		ppb v/v			12/02/16 04:23	70
1,3,5-Trimethylbenzene	ND	T2	28		ppb v/v			12/02/16 04:23	70
Vinyl acetate	ND		56		ppb v/v			12/02/16 04:23	70
√inyl chloride	ND		28		ppb v/v			12/02/16 04:23	70
m,p-Xylene	ND		56		ppb v/v			12/02/16 04:23	70
o-Xylene	ND		28		ppb v/v			12/02/16 04:23	70
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	830		ug/m3			12/02/16 04:23	70
Benzene	ND		89		ug/m3			12/02/16 04:23	70
Benzyl chloride	ND		290		ug/m3			12/02/16 04:23	70
Bromodichloromethane	ND	T2	140		ug/m3			12/02/16 04:23	70
Bromoform	ND		290		ug/m3			12/02/16 04:23	70
Bromomethane	ND		220		ug/m3			12/02/16 04:23	70
2-Butanone (MEK)	ND		170		ug/m3			12/02/16 04:23	70
Carbon disulfide	ND		170		ug/m3			12/02/16 04:23	70
Carbon tetrachloride	ND		350		ug/m3			12/02/16 04:23	70
Chlorobenzene	ND		97		ug/m3			12/02/16 04:23	70
Dibromochloromethane	ND		240		ug/m3			12/02/16 04:23	70

Client Sample ID: SB1-75-11172016

Lab Sample ID: 320-23751-3 Matrix: Air

5

6

Date Collected: 11/17/16 15:18 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Orga Analyte		Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloroethane	ND		150	ug/m3			12/02/16 04:23	70
Chloroform	ND		100	ug/m3			12/02/16 04:23	70
Chloromethane	ND		120	ug/m3			12/02/16 04:23	70
1,2-Dibromoethane (EDB)	ND		430	ug/m3			12/02/16 04:23	70
1,2-Dichlorobenzene	ND	T2	170	ug/m3			12/02/16 04:23	70
1,3-Dichlorobenzene	ND	T2	170	ug/m3			12/02/16 04:23	70
1,4-Dichlorobenzene	ND		170	ug/m3			12/02/16 04:23	70
Dichlorodifluoromethane	ND	T2	140	ug/m3			12/02/16 04:23	70
1,1-Dichloroethane	ND		85	ug/m3			12/02/16 04:23	70
1,2-Dichloroethane	ND		230	ug/m3			12/02/16 04:23	70
1,1-Dichloroethene	ND		220	ug/m3			12/02/16 04:23	70
cis-1,2-Dichloroethene	ND	T2	110	ug/m3			12/02/16 04:23	70
trans-1,2-Dichloroethene	ND	T2	110	ug/m3			12/02/16 04:23	70
1,2-Dichloropropane	ND		130	ug/m3			12/02/16 04:23	70
cis-1,3-Dichloropropene	ND		130	ug/m3			12/02/16 04:23	70
trans-1,3-Dichloropropene	ND	T2	130	ug/m3			12/02/16 04:23	70
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	200	ug/m3			12/02/16 04:23	70
Ethylbenzene	ND		120	ug/m3			12/02/16 04:23	70
4-Ethyltoluene	ND	T2	140	ug/m3			12/02/16 04:23	70
Hexachlorobutadiene	ND		1500	ug/m3			12/02/16 04:23	70
2-Hexanone	ND	T2	110	ug/m3			12/02/16 04:23	70
Methylene Chloride	ND		97	ug/m3			12/02/16 04:23	70
4-Methyl-2-pentanone (MIBK)	ND		110	ug/m3			12/02/16 04:23	70
Styrene	ND		120	ug/m3			12/02/16 04:23	70
1,1,2,2-Tetrachloroethane	ND		190	ug/m3			12/02/16 04:23	70
Tetrachloroethene	11000		190	ug/m3			12/02/16 04:23	70
Toluene	ND		110	ug/m3			12/02/16 04:23	70
1,2,4-Trichlorobenzene	ND		1000	ug/m3			12/02/16 04:23	70
1,1,1-Trichloroethane	ND		110	ug/m3			12/02/16 04:23	70
1,1,2-Trichloroethane	ND		150	ug/m3			12/02/16 04:23	70
Trichloroethene	ND		150	ug/m3			12/02/16 04:23	70
Trichlorofluoromethane	ND	T2	160	ug/m3			12/02/16 04:23	70
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	210	ug/m3			12/02/16 04:23	70
1,2,4-Trimethylbenzene	ND	T2	280	ug/m3			12/02/16 04:23	70
1,3,5-Trimethylbenzene	ND	T2	140	ug/m3			12/02/16 04:23	70
Vinyl acetate	ND		200	ug/m3			12/02/16 04:23	70
Vinyl chloride	ND		72	ug/m3			12/02/16 04:23	70
m,p-Xylene	ND		240	ug/m3			12/02/16 04:23	70
o-Xylene	ND		120	ug/m3			12/02/16 04:23	70
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130		_		12/02/16 04:23	70
1,2-Dichloroethane-d4 (Surr)	89		70 - 130				12/02/16 04:23	70
Toluene-d8 (Surr)	100		70 - 130				12/02/16 04:23	70

Client Sample ID: SB2-40-11182016

Lab Sample ID: 320-23751-4 Matrix: Air

5

6

Date Collected: 11/18/16 10:04 Date Received: 11/22/16 09:50

Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organic	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Acetone	220	T2	57		ppb v/v			12/02/16 05:15	11.3
Benzene	28		4.5		ppb v/v			12/02/16 05:15	11.3
Benzyl chloride	ND		9.0		ppb v/v			12/02/16 05:15	11.3
Bromodichloromethane	ND	T2	3.4		ppb v/v			12/02/16 05:15	11.3
Bromoform	ND		4.5		ppb v/v			12/02/16 05:15	11.3
Bromomethane	ND		9.0		ppb v/v			12/02/16 05:15	11.3
2-Butanone (MEK)	47		9.0		ppb v/v			12/02/16 05:15	11.3
Carbon disulfide	ND		9.0		ppb v/v			12/02/16 05:15	11.3
Carbon tetrachloride	ND		9.0		ppb v/v			12/02/16 05:15	11.3
Chlorobenzene	ND		3.4		ppb v/v			12/02/16 05:15	11.3
Dibromochloromethane	ND		4.5		ppb v/v			12/02/16 05:15	11.3
Chloroethane	ND		9.0		ppb v/v			12/02/16 05:15	11.3
Chloroform	ND		3.4		ppb v/v			12/02/16 05:15	11.3
Chloromethane	ND		9.0		ppb v/v			12/02/16 05:15	11.3
1,2-Dibromoethane (EDB)	ND		9.0		ppb v/v			12/02/16 05:15	11.3
1,2-Dichlorobenzene	ND	T2	4.5		ppb v/v			12/02/16 05:15	11.3
1,3-Dichlorobenzene	ND	T2	4.5		ppb v/v			12/02/16 05:15	11.3
1,4-Dichlorobenzene	ND		4.5		ppb v/v			12/02/16 05:15	11.3
Dichlorodifluoromethane	ND	T2	4.5		ppb v/v			12/02/16 05:15	11.3
1,1-Dichloroethane	ND		3.4		ppb v/v			12/02/16 05:15	11.3
1,2-Dichloroethane	ND		9.0		ppb v/v			12/02/16 05:15	11.3
1.1-Dichloroethene	ND		9.0		ppb v/v			12/02/16 05:15	11.3
cis-1,2-Dichloroethene	ND	T2	4.5		ppb v/v			12/02/16 05:15	11.3
trans-1,2-Dichloroethene	ND		4.5		ppb v/v			12/02/16 05:15	11.3
1,2-Dichloropropane	ND		4.5		ppb v/v			12/02/16 05:15	11.3
cis-1,3-Dichloropropene	ND		4.5		ppb v/v			12/02/16 05:15	11.3
trans-1,3-Dichloropropene	ND	T2	4.5		ppb v/v			12/02/16 05:15	11.3
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		4.5		ppb v/v			12/02/16 05:15	11.3
Ethylbenzene	ND		4.5		ppb v/v			12/02/16 05:15	11.3
4-Ethyltoluene		T2	4.5		ppb v/v			12/02/16 05:15	11.3
Hexachlorobutadiene	ND	· · · · · · · · · · · · · · · · · · ·	23		ppb v/v			12/02/16 05:15	11.3
2-Hexanone	ND	Т2	4.5		ppb v/v			12/02/16 05:15	11.3
Methylene Chloride	ND		4.5		ppb v/v			12/02/16 05:15	11.3
4-Methyl-2-pentanone (MIBK)	ND		4.5		ppb v/v			12/02/16 05:15	11.3
Styrene	ND		4.5		ppb v/v ppb v/v			12/02/16 05:15	11.3
1,1,2,2-Tetrachloroethane	ND		4.5		ppb v/v ppb v/v			12/02/16 05:15	11.3
Tetrachloroethene			4.5		ppb v/v ppb v/v			12/02/16 05:15	11.3
Toluene	29 23		4.5		ppb v/v ppb v/v			12/02/16 05:15	11.3
1,2,4-Trichlorobenzene	Z3 ND		23		ppb v/v ppb v/v			12/02/16 05:15	11.3
1,1,1-Trichloroethane	ND		3.4		ppb v/v ppb v/v			12/02/16 05:15	11.3
	ND		4.5					12/02/16 05:15	
1,1,2-Trichloroethane Trichloroethene					ppb v/v			12/02/16 05:15	11.3
	ND	Τ2	4.5		ppb v/v				11.3
Trichlorofluoromethane	ND		4.5		ppb v/v			12/02/16 05:15	11.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.5		ppb v/v			12/02/16 05:15	11.3
1,2,4-Trimethylbenzene	ND		9.0		ppb v/v			12/02/16 05:15	11.3
1,3,5-Trimethylbenzene	ND	12	4.5		ppb v/v			12/02/16 05:15	11.3
Vinyl acetate Vinyl chloride	ND ND		9.0 4.5		ppb v/v ppb v/v			12/02/16 05:15 12/02/16 05:15	11.3 11.3

Client Sample ID: SB2-40-11182016

Lab Sample ID: 320-23751-4 Matrix: Air

5

6

Date Collected: 11/18/16 10:04 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organi Analyte		Qualifier	RL	MDL Ún	nit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		9.0	рр	b v/v			12/02/16 05:15	11.3
o-Xylene	ND		4.5	рр	b v/v			12/02/16 05:15	11.3
Analyte	Result	Qualifier	RL	MDL Un	nit	D	Prepared	Analyzed	Dil Fac
Acetone	520	T2 -	130	uq	J/m3		•	12/02/16 05:15	11.3
Benzene	88		14	-	/m3			12/02/16 05:15	11.3
Benzyl chloride	ND		47	-	/m3			12/02/16 05:15	11.3
Bromodichloromethane		T2	23	.	, /m3			12/02/16 05:15	11.3
Bromoform	ND		47	-	/m3			12/02/16 05:15	11.3
Bromomethane	ND		35	-	, j/m3			12/02/16 05:15	11.3
2-Butanone (MEK)	140		27		, /m3			12/02/16 05:15	11.3
Carbon disulfide	ND		28	-	j/m3			12/02/16 05:15	11.3
Carbon tetrachloride	ND		57	-	j/m3			12/02/16 05:15	11.3
Chlorobenzene	ND		16		/m3			12/02/16 05:15	11.3
Dibromochloromethane	ND		39	-	j/m3			12/02/16 05:15	11.3
Chloroethane	ND		24	-	j/m3			12/02/16 05:15	11.3
Chloroform	ND		17		/m3			12/02/16 05:15	11.3
Chloromethane	ND		19	-	j/m3			12/02/16 05:15	11.3
1,2-Dibromoethane (EDB)	ND		69	-	ı/m3			12/02/16 05:15	11.3
1,2-Dichlorobenzene	ND	Т2	27		/m3			12/02/16 05:15	11.3
1,3-Dichlorobenzene	ND		27	-	/m3			12/02/16 05:15	11.3
1,4-Dichlorobenzene	ND	12	27	0	/m3			12/02/16 05:15	11.
Dichlorodifluoromethane	ND	то	27	.	/m3			12/02/16 05:15	11.3
1,1-Dichloroethane	ND	12	14	-				12/02/16 05:15	11.
1,2-Dichloroethane	ND		37	-	ı/m3			12/02/16 05:15	11.3
					ı/m3				
1,1-Dichloroethene	ND	то	36	-	ı/m3 √m2			12/02/16 05:15	11.:
cis-1,2-Dichloroethene	ND		18	-	J/m3			12/02/16 05:15	11.:
trans-1,2-Dichloroethene	ND	12	18		J/m3			12/02/16 05:15	11.:
1,2-Dichloropropane	ND		21	-	J/m3			12/02/16 05:15	11.:
cis-1,3-Dichloropropene	ND		21	-	J/m3			12/02/16 05:15	11.3
trans-1,3-Dichloropropene	ND		21	.	ı/m3			12/02/16 05:15	11.3
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	12	32	-	J/m3			12/02/16 05:15	11.3
Ethylbenzene	ND		20	-	J/m3			12/02/16 05:15	11.3
4-Ethyltoluene	ND	Т2	22	.	ı/m3			12/02/16 05:15	11.3
Hexachlorobutadiene	ND		240		J/m3			12/02/16 05:15	11.3
2-Hexanone	ND	T2	19	-	J/m3			12/02/16 05:15	11.3
Methylene Chloride	ND		16		ı/m3			12/02/16 05:15	11.:
4-Methyl-2-pentanone (MIBK)	ND		19	ug	J/m3			12/02/16 05:15	11.3
Styrene	ND		19	ug	J/m3			12/02/16 05:15	11.3
1,1,2,2-Tetrachloroethane	ND		31	ug	J/m3			12/02/16 05:15	11.:
Tetrachloroethene	190		31	ug	J/m3			12/02/16 05:15	11.3
Toluene	85		17	ug	J/m3			12/02/16 05:15	11.3
1,2,4-Trichlorobenzene	ND		170	ug	ı/m3			12/02/16 05:15	11.3
1,1,1-Trichloroethane	ND		18	ug	/m3			12/02/16 05:15	11.:
1,1,2-Trichloroethane	ND		25	ug	ı/m3			12/02/16 05:15	11.:
Trichloroethene	ND		24	ug	J/m3			12/02/16 05:15	11.3
Trichlorofluoromethane	ND	T2	25	ug	j/m3			12/02/16 05:15	11.3
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	35	ug	ı/m3			12/02/16 05:15	11.3
1,2,4-Trimethylbenzene	ND	T2	44	ua	J/m3			12/02/16 05:15	11.3

Client Sample ID: SB2-40-11182016

Lab Sample ID: 320-23751-4 Matrix: Air

Date Collected: 11/18/16 10:04 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND T2	22	ug/m3			12/02/16 05:15	11.3
Vinyl acetate	ND	32	ug/m3			12/02/16 05:15	11.3
Vinyl chloride	ND	12	ug/m3			12/02/16 05:15	11.3
m,p-Xylene	ND	39	ug/m3			12/02/16 05:15	11.3
o-Xylene	ND	20	ug/m3			12/02/16 05:15	11.3
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101	70 - 130				12/02/16 05:15	11.3

-	•	
4-Bromofluorobenzene (Surr)	101	70 - 130
1,2-Dichloroethane-d4 (Surr)	92	70 - 130
Toluene-d8 (Surr)	97	70 - 130

Client Sample ID: SB2-60-11182016 Date Collected: 11/18/16 12:18 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Hexachlorobutadiene

Lab Sample ID: 320-23751-5

12/02/16 05:15

12/02/16 05:15

Matrix: Air

Method: TO-15 - Volatile Organi ^{Analyte}	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	10000		ppb v/v			12/02/16 06:09	2010
Benzene	ND		800		ppb v/v			12/02/16 06:09	2010
Benzyl chloride	ND		1600		ppb v/v			12/02/16 06:09	2010
Bromodichloromethane	ND	T2	600		ppb v/v			12/02/16 06:09	2010
Bromoform	ND		800		ppb v/v			12/02/16 06:09	2010
Bromomethane	ND		1600		ppb v/v			12/02/16 06:09	2010
2-Butanone (MEK)	ND		1600		ppb v/v			12/02/16 06:09	2010
Carbon disulfide	ND		1600		ppb v/v			12/02/16 06:09	2010
Carbon tetrachloride	ND		1600	1	ppb v/v			12/02/16 06:09	2010
Chlorobenzene	ND		600		ppb v/v			12/02/16 06:09	2010
Dibromochloromethane	ND		800	1	ppb v/v			12/02/16 06:09	2010
Chloroethane	ND		1600	1	ppb v/v			12/02/16 06:09	2010
Chloroform	ND		600		ppb v/v			12/02/16 06:09	2010
Chloromethane	ND		1600	1	ppb v/v			12/02/16 06:09	2010
1,2-Dibromoethane (EDB)	ND		1600	1	ppb v/v			12/02/16 06:09	2010
1,2-Dichlorobenzene	ND	T2	800		ppb v/v			12/02/16 06:09	2010
1,3-Dichlorobenzene	ND	Т2	800	1	ppb v/v			12/02/16 06:09	2010
1,4-Dichlorobenzene	ND		800		ppb v/v			12/02/16 06:09	2010
Dichlorodifluoromethane	ND	T2	800		ppb v/v			12/02/16 06:09	2010
1,1-Dichloroethane	ND		600		ppb v/v			12/02/16 06:09	2010
1,2-Dichloroethane	ND		1600		ppb v/v			12/02/16 06:09	2010
1,1-Dichloroethene	ND		1600		ppb v/v			12/02/16 06:09	2010
cis-1,2-Dichloroethene	ND	T2	800		ppb v/v			12/02/16 06:09	2010
trans-1,2-Dichloroethene	ND	T2	800	1	ppb v/v			12/02/16 06:09	2010
1,2-Dichloropropane	ND		800		ppb v/v			12/02/16 06:09	2010
cis-1,3-Dichloropropene	ND		800	1	ppb v/v			12/02/16 06:09	2010
trans-1,3-Dichloropropene	ND	T2	800	1	ppb v/v			12/02/16 06:09	2010
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	800		ppb v/v			12/02/16 06:09	2010
Ethylbenzene	ND		800		ppb v/v			12/02/16 06:09	2010
4-Ethyltoluene	ND	T2	800		ppb v/v			12/02/16 06:09	2010

TestAmerica Sacramento

12/02/16 06:09

4000

ppb v/v

ND

2010

Client Sample ID: SB2-60-11182016

Lab Sample ID: 320-23751-5 Matrix: Air

5

6

Date Collected: 11/18/16 12:18 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organ Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
2-Hexanone	ND	T2	800		ppb v/v		•	12/02/16 06:09	2010
Methylene Chloride	ND		800		ppb v/v			12/02/16 06:09	2010
4-Methyl-2-pentanone (MIBK)	ND		800		ppb v/v			12/02/16 06:09	2010
Styrene	ND		800		ppb v/v			12/02/16 06:09	2010
1,1,2,2-Tetrachloroethane	ND		800		ppb v/v			12/02/16 06:09	2010
Tetrachloroethene	43000		800		ppb v/v			12/02/16 06:09	2010
Toluene	ND		800		ppb v/v			12/02/16 06:09	2010
1,2,4-Trichlorobenzene	ND		4000		ppb v/v			12/02/16 06:09	2010
1,1,1-Trichloroethane	ND		600		ppb v/v			12/02/16 06:09	2010
1,1,2-Trichloroethane	ND		800		ppb v/v			12/02/16 06:09	2010
Trichloroethene	ND		800		ppb v/v			12/02/16 06:09	2010
Trichlorofluoromethane	ND	T2	800		ppb v/v			12/02/16 06:09	2010
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	800		ppb v/v			12/02/16 06:09	2010
1,2,4-Trimethylbenzene	ND	T2	1600		ppb v/v			12/02/16 06:09	2010
1,3,5-Trimethylbenzene	ND	T2	800		ppb v/v			12/02/16 06:09	2010
Vinyl acetate	ND		1600		ppb v/v			12/02/16 06:09	2010
Vinyl chloride	ND		800		ppb v/v			12/02/16 06:09	2010
m,p-Xylene	ND		1600		ppb v/v			12/02/16 06:09	2010
o-Xylene	ND		800		ppb v/v			12/02/16 06:09	2010
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	24000		ug/m3			12/02/16 06:09	2010
Benzene	ND		2600		ug/m3			12/02/16 06:09	2010
Benzyl chloride	ND		8300		ug/m3			12/02/16 06:09	2010
Bromodichloromethane	ND	T2	4000		ug/m3			12/02/16 06:09	2010
Bromoform	ND		8300		ug/m3			12/02/16 06:09	2010
Bromomethane	ND		6200		ug/m3			12/02/16 06:09	2010
2-Butanone (MEK)	ND		4700		ug/m3			12/02/16 06:09	2010
Carbon disulfide	ND		5000		ug/m3			12/02/16 06:09	2010
Carbon tetrachloride	ND		10000		ug/m3			12/02/16 06:09	2010
Chlorobenzene	ND		2800		ug/m3			12/02/16 06:09	2010
Dibromochloromethane	ND		6800		ug/m3			12/02/16 06:09	2010
Chloroethane	ND		4200		ug/m3			12/02/16 06:09	2010
Chloroform	ND		2900		ug/m3			12/02/16 06:09	2010
Chloromethane	ND		3300		ug/m3			12/02/16 06:09	2010
1,2-Dibromoethane (EDB)	ND		12000		ug/m3			12/02/16 06:09	2010
1,2-Dichlorobenzene	ND	T2	4800		ug/m3			12/02/16 06:09	2010
1,3-Dichlorobenzene	ND	T2	4800		ug/m3			12/02/16 06:09	2010
1,4-Dichlorobenzene	ND		4800		ug/m3			12/02/16 06:09	2010
Dichlorodifluoromethane	ND	T2	4000		ug/m3			12/02/16 06:09	2010
1,1-Dichloroethane	ND		2400		ug/m3			12/02/16 06:09	2010
1,2-Dichloroethane	ND		6500		ug/m3			12/02/16 06:09	2010
1,1-Dichloroethene	ND		6400		ug/m3			12/02/16 06:09	2010
cis-1,2-Dichloroethene	ND	T2	3200		ug/m3			12/02/16 06:09	2010
trans-1,2-Dichloroethene	ND	Т2	3200		ug/m3			12/02/16 06:09	2010
1,2-Dichloropropane	ND		3700		ug/m3			12/02/16 06:09	2010
cis-1,3-Dichloropropene	ND		3600		ug/m3			12/02/16 06:09	2010
trans-1,3-Dichloropropene	ND	Т2	3600		ug/m3			12/02/16 06:09	2010
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	Т2	5600		ug/m3			12/02/16 06:09	2010

Client Sample ID: SB2-60-11182016

Lab Sample ID: 320-23751-5 Matrix: Air

Date Collected: 11/18/16 12:18 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	ND		3500	ug/m3			12/02/16 06:09	2010
4-Ethyltoluene	ND	T2	4000	ug/m3			12/02/16 06:09	2010
Hexachlorobutadiene	ND		43000	ug/m3			12/02/16 06:09	2010
2-Hexanone	ND	T2	3300	ug/m3			12/02/16 06:09	2010
Methylene Chloride	ND		2800	ug/m3			12/02/16 06:09	2010
4-Methyl-2-pentanone (MIBK)	ND		3300	ug/m3			12/02/16 06:09	2010
Styrene	ND		3400	ug/m3			12/02/16 06:09	2010
1,1,2,2-Tetrachloroethane	ND		5500	ug/m3			12/02/16 06:09	2010
Tetrachloroethene	290000		5500	ug/m3			12/02/16 06:09	2010
Toluene	ND		3000	ug/m3			12/02/16 06:09	2010
1,2,4-Trichlorobenzene	ND		30000	ug/m3			12/02/16 06:09	2010
1,1,1-Trichloroethane	ND		3300	ug/m3			12/02/16 06:09	2010
1,1,2-Trichloroethane	ND		4400	ug/m3			12/02/16 06:09	2010
Trichloroethene	ND		4300	ug/m3			12/02/16 06:09	2010
Trichlorofluoromethane	ND	T2	4500	ug/m3			12/02/16 06:09	2010
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	6200	ug/m3			12/02/16 06:09	2010
1,2,4-Trimethylbenzene	ND	T2	7900	ug/m3			12/02/16 06:09	2010
1,3,5-Trimethylbenzene	ND	T2	4000	ug/m3			12/02/16 06:09	2010
Vinyl acetate	ND		5700	ug/m3			12/02/16 06:09	2010
Vinyl chloride	ND		2100	ug/m3			12/02/16 06:09	2010
m,p-Xylene	ND		7000	ug/m3			12/02/16 06:09	2010
o-Xylene	ND		3500	ug/m3			12/02/16 06:09	2010
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				12/02/16 06:09	2010
1,2-Dichloroethane-d4 (Surr)	85		70 - 130				12/02/16 06:09	2010
Toluene-d8 (Surr)	100		70 - 130				12/02/16 06:09	2010

Client Sample ID: SB2-70-11182016 Date Collected: 11/18/16 13:25 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Lab Sample ID: 320-23751-6 Matrix: Air

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	1600		ppb v/v			12/02/16 07:01	317
Benzene	ND		130		ppb v/v			12/02/16 07:01	317
Benzyl chloride	ND		250		ppb v/v			12/02/16 07:01	317
Bromodichloromethane	ND	T2	95		ppb v/v			12/02/16 07:01	317
Bromoform	ND		130		ppb v/v			12/02/16 07:01	317
Bromomethane	ND		250		ppb v/v			12/02/16 07:01	317
2-Butanone (MEK)	ND		250		ppb v/v			12/02/16 07:01	317
Carbon disulfide	ND		250		ppb v/v			12/02/16 07:01	317
Carbon tetrachloride	ND		250		ppb v/v			12/02/16 07:01	317
Chlorobenzene	ND		95		ppb v/v			12/02/16 07:01	317
Dibromochloromethane	ND		130		ppb v/v			12/02/16 07:01	317
Chloroethane	ND		250		ppb v/v			12/02/16 07:01	317
Chloroform	ND		95		ppb v/v			12/02/16 07:01	317
Chloromethane	ND		250		v/v dqq			12/02/16 07:01	317

Client Sample ID: SB2-70-11182016

Lab Sample ID: 320-23751-6 Matrix: Air

5

6

Date Collected: 11/18/16 13:25 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organ Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		250		ppb v/v			12/02/16 07:01	317
1,2-Dichlorobenzene	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,3-Dichlorobenzene	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,4-Dichlorobenzene	ND		130		ppb v/v			12/02/16 07:01	317
Dichlorodifluoromethane	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,1-Dichloroethane	ND		95		ppb v/v			12/02/16 07:01	317
1,2-Dichloroethane	ND		250		ppb v/v			12/02/16 07:01	317
1,1-Dichloroethene	ND		250		ppb v/v			12/02/16 07:01	317
cis-1,2-Dichloroethene	ND	T2	130		ppb v/v			12/02/16 07:01	317
trans-1,2-Dichloroethene	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,2-Dichloropropane	ND		130		ppb v/v			12/02/16 07:01	317
cis-1,3-Dichloropropene	ND		130		ppb v/v			12/02/16 07:01	317
trans-1,3-Dichloropropene	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	130		ppb v/v			12/02/16 07:01	317
Ethylbenzene	ND		130		ppb v/v			12/02/16 07:01	317
4-Ethyltoluene	ND	T2	130		ppb v/v			12/02/16 07:01	317
Hexachlorobutadiene	ND		630		ppb v/v			12/02/16 07:01	317
2-Hexanone	ND	T2	130		ppb v/v			12/02/16 07:01	317
Methylene Chloride	ND		130		ppb v/v			12/02/16 07:01	317
4-Methyl-2-pentanone (MIBK)	ND		130		ppb v/v			12/02/16 07:01	317
Styrene	ND		130		ppb v/v			12/02/16 07:01	317
1,1,2,2-Tetrachloroethane	ND		130		ppb v/v			12/02/16 07:01	317
Tetrachloroethene	5000		130		ppb v/v			12/02/16 07:01	317
Toluene	ND		130		ppb v/v			12/02/16 07:01	317
1,2,4-Trichlorobenzene	ND		630		ppb v/v			12/02/16 07:01	317
1,1,1-Trichloroethane	ND		95		ppb v/v			12/02/16 07:01	317
1,1,2-Trichloroethane	ND		130		ppb v/v			12/02/16 07:01	317
Trichloroethene	ND		130		ppb v/v			12/02/16 07:01	317
Trichlorofluoromethane	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	T2	130		ppb v/v			12/02/16 07:01	317
1,2,4-Trimethylbenzene	ND	T2	250		ppb v/v			12/02/16 07:01	317
1,3,5-Trimethylbenzene	ND	T2	130		ppb v/v			12/02/16 07:01	317
Vinyl acetate	ND		250		ppb v/v			12/02/16 07:01	317
Vinyl chloride	ND		130		ppb v/v			12/02/16 07:01	317
m,p-Xylene	ND		250		ppb v/v			12/02/16 07:01	317
o-Xylene	ND		130		ppb v/v			12/02/16 07:01	317
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	3800		ug/m3			12/02/16 07:01	317
Benzene	ND		410		ug/m3			12/02/16 07:01	317
Benzyl chloride	ND		1300		ug/m3			12/02/16 07:01	317
Bromodichloromethane	ND	T2	640		ug/m3			12/02/16 07:01	317
Bromoform	ND		1300		ug/m3			12/02/16 07:01	317
Bromomethane	ND		980		ug/m3			12/02/16 07:01	317
2-Butanone (MEK)	ND		750		ug/m3			12/02/16 07:01	317
Carbon disulfide	ND		790		ug/m3			12/02/16 07:01	317
Carbon tetrachloride	ND		1600		ug/m3			12/02/16 07:01	317
Chlorobenzene	ND		440		ug/m3			12/02/16 07:01	317
Dibromochloromethane	ND		1100		ug/m3			12/02/16 07:01	317

Client Sample ID: SB2-70-11182016

Lab Sample ID: 320-23751-6 Matrix: Air

5

6

Date Collected: 11/18/16 13:25 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Orga Analyte	Result	Qualifier	RL	MDL Únit	D Prepared	Analyzed	Dil Fac
Chloroethane	ND		670	ug/m3		12/02/16 07:01	317
Chloroform	ND		460	ug/m3		12/02/16 07:01	317
Chloromethane	ND		520	ug/m3		12/02/16 07:01	317
1,2-Dibromoethane (EDB)	ND		1900	ug/m3		12/02/16 07:01	317
1,2-Dichlorobenzene	ND	T2	760	ug/m3		12/02/16 07:01	317
1,3-Dichlorobenzene	ND	T2	760	ug/m3		12/02/16 07:01	317
1,4-Dichlorobenzene	ND		760	ug/m3		12/02/16 07:01	317
Dichlorodifluoromethane	ND	T2	630	ug/m3		12/02/16 07:01	317
1,1-Dichloroethane	ND		380	ug/m3		12/02/16 07:01	317
1,2-Dichloroethane	ND		1000	ug/m3		12/02/16 07:01	317
1,1-Dichloroethene	ND		1000	ug/m3		12/02/16 07:01	317
cis-1,2-Dichloroethene	ND	Т2	500	ug/m3		12/02/16 07:01	317
trans-1,2-Dichloroethene	ND	Т2	500	ug/m3		12/02/16 07:01	317
1,2-Dichloropropane	ND		590	ug/m3		12/02/16 07:01	317
cis-1,3-Dichloropropene	ND		580	ug/m3		12/02/16 07:01	317
trans-1,3-Dichloropropene	ND	T2	580	ug/m3		12/02/16 07:01	317
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	890	ug/m3		12/02/16 07:01	317
Ethylbenzene	ND		550	ug/m3		12/02/16 07:01	317
4-Ethyltoluene	ND	T2	620	ug/m3		12/02/16 07:01	317
Hexachlorobutadiene	ND		6800	ug/m3		12/02/16 07:01	317
2-Hexanone	ND	T2	520	ug/m3		12/02/16 07:01	317
Methylene Chloride	ND		440	ug/m3		12/02/16 07:01	317
4-Methyl-2-pentanone (MIBK)	ND		520	ug/m3		12/02/16 07:01	317
Styrene	ND		540	ug/m3		12/02/16 07:01	317
1,1,2,2-Tetrachloroethane	ND		870	ug/m3		12/02/16 07:01	317
Tetrachloroethene	34000		860	ug/m3		12/02/16 07:01	317
Toluene	ND		480	ug/m3		12/02/16 07:01	317
1,2,4-Trichlorobenzene	ND		4700	ug/m3		12/02/16 07:01	317
1,1,1-Trichloroethane	ND		520	ug/m3		12/02/16 07:01	317
1,1,2-Trichloroethane	ND		690	ug/m3		12/02/16 07:01	317
Trichloroethene	ND		680	•		12/02/16 07:01	317
Trichlorofluoromethane	ND	то	710	ug/m3		12/02/16 07:01	317
				ug/m3			
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		970 1200	ug/m3		12/02/16 07:01	317
1,2,4-Trimethylbenzene	ND		1200	ug/m3		12/02/16 07:01	317
1,3,5-Trimethylbenzene	ND	T2	620	ug/m3		12/02/16 07:01	317
Vinyl acetate	ND		890	ug/m3		12/02/16 07:01	317
Vinyl chloride	ND		320	ug/m3		12/02/16 07:01	317
m,p-Xylene	ND		1100	ug/m3		12/02/16 07:01	317
o-Xylene	ND		550	ug/m3		12/02/16 07:01	317
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			12/02/16 07:01	317
1,2-Dichloroethane-d4 (Surr)	89		70 - 130			12/02/16 07:01	317
Toluene-d8 (Surr)	102		70 - 130			12/02/16 07:01	317

RL

1600

130

260

97

130

260

260

260

260

MDL Unit

ppb v/v

D

Prepared

Analyte

Acetone

Benzene

Bromoform

Benzyl chloride

Bromomethane

Carbon disulfide

2-Butanone (MEK)

Carbon tetrachloride

Bromodichloromethane

Client Sample ID: SB2-70-11182016 DUP Date Collected: 11/18/16 13:25 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Result Qualifier

ND T2

ND T2

ND

ND

ND

ND

ND

ND

ND

Lab Sample ID: 320-23751-7 Matrix: Air

Analyzed

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

12/02/16 07:54

6

Dil Fac

322

322

322

322

322 322

322

322

322

Chlorobenzene	ND	97	nnh v/v	10/00/10 07 51		
		01	ppb v/v	12/02/16 07:54	322	
Dibromochloromethane	ND	130	ppb v/v	12/02/16 07:54	322	
Chloroethane	ND	260	ppb v/v	12/02/16 07:54	322	
Chloroform	ND	97	ppb v/v	12/02/16 07:54	322	
Chloromethane	ND	260	ppb v/v	12/02/16 07:54	322	
1,2-Dibromoethane (EDB)	ND	260	ppb v/v	12/02/16 07:54	322	
1,2-Dichlorobenzene	ND T2	130	ppb v/v	12/02/16 07:54	322	13
1,3-Dichlorobenzene	ND T2	130	ppb v/v	12/02/16 07:54	322	
1,4-Dichlorobenzene	ND	130	ppb v/v	12/02/16 07:54	322	
Dichlorodifluoromethane	ND T2	130	ppb v/v	12/02/16 07:54	322	
1,1-Dichloroethane	ND	97	ppb v/v	12/02/16 07:54	322	
1,2-Dichloroethane	ND	260	ppb v/v	12/02/16 07:54	322	
1,1-Dichloroethene	ND	260	ppb v/v	12/02/16 07:54	322	
cis-1,2-Dichloroethene	ND T2	130	ppb v/v	12/02/16 07:54	322	
trans-1,2-Dichloroethene	ND T2	130	ppb v/v	12/02/16 07:54	322	
1,2-Dichloropropane	ND	130	ppb v/v	12/02/16 07:54	322	
cis-1,3-Dichloropropene	ND	130	ppb v/v	12/02/16 07:54	322	
trans-1,3-Dichloropropene	ND T2	130	ppb v/v	12/02/16 07:54	322	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND T2	130	ppb v/v	12/02/16 07:54	322	
Ethylbenzene	ND	130	ppb v/v	12/02/16 07:54	322	
4-Ethyltoluene	ND T2	130	ppb v/v	12/02/16 07:54	322	
Hexachlorobutadiene	ND	640	ppb v/v	12/02/16 07:54	322	
2-Hexanone	ND T2	130	ppb v/v	12/02/16 07:54	322	
Methylene Chloride	ND	130	ppb v/v	12/02/16 07:54	322	
4-Methyl-2-pentanone (MIBK)	ND	130	ppb v/v	12/02/16 07:54	322	
Styrene	ND	130	ppb v/v	12/02/16 07:54	322	
1,1,2,2-Tetrachloroethane	ND	130	ppb v/v	12/02/16 07:54	322	
Tetrachloroethene	7100	130	ppb v/v	12/02/16 07:54	322	
Toluene	ND	130	ppb v/v	12/02/16 07:54	322	
1,2,4-Trichlorobenzene	ND	640	ppb v/v	12/02/16 07:54	322	
1,1,1-Trichloroethane	ND	97	ppb v/v	12/02/16 07:54	322	
1,1,2-Trichloroethane	ND	130	ppb v/v	12/02/16 07:54	322	
Trichloroethene	ND	130	ppb v/v	12/02/16 07:54	322	
Trichlorofluoromethane	ND T2	130	ppb v/v	12/02/16 07:54	322	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND T2	130	ppb v/v	12/02/16 07:54	322	
1,2,4-Trimethylbenzene	ND T2	260	ppb v/v	12/02/16 07:54	322	
1,3,5-Trimethylbenzene	ND T2	130	ppb v/v	12/02/16 07:54	322	
Vinyl acetate	ND	260	ppb v/v	12/02/16 07:54	322	
		130	ppb v/v	12/02/16 07:54	322	

Client Sample ID: SB2-70-11182016 DUP

TestAmerica Job ID: 320-23751-1

Lab Sample ID: 320-23751-7 Matrix: Air

Date Collected: 11/18/16 13:25 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Method: TO-15 - Volatile Organi Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		260		ppb v/v		-	12/02/16 07:54	322
o-Xylene	ND		130		ppb v/v			12/02/16 07:54	322
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND	T2	3800		ug/m3		•	12/02/16 07:54	322
Benzene	ND		410		ug/m3			12/02/16 07:54	322
Benzyl chloride	ND		1300		ug/m3			12/02/16 07:54	322
Bromodichloromethane	ND	T2	650		ug/m3			12/02/16 07:54	322
Bromoform	ND		1300		ug/m3			12/02/16 07:54	322
Bromomethane	ND		1000		ug/m3			12/02/16 07:54	322
2-Butanone (MEK)	ND		760		ug/m3			12/02/16 07:54	322
Carbon disulfide	ND		800		ug/m3			12/02/16 07:54	322
Carbon tetrachloride	ND		1600		ug/m3			12/02/16 07:54	322
Chlorobenzene	ND		440		ug/m3			12/02/16 07:54	322
Dibromochloromethane	ND		1100		ug/m3			12/02/16 07:54	322
Chloroethane	ND		680		ug/m3			12/02/16 07:54	322
Chloroform	ND		470		ug/m3			12/02/16 07:54	322
Chloromethane	ND		530		ug/m3			12/02/16 07:54	322
1,2-Dibromoethane (EDB)	ND		2000		ug/m3			12/02/16 07:54	322
1.2-Dichlorobenzene	ND	T2	770		ug/m3			12/02/16 07:54	322
1.3-Dichlorobenzene	ND	T2	770		ug/m3			12/02/16 07:54	322
1,4-Dichlorobenzene	ND		770		ug/m3			12/02/16 07:54	322
Dichlorodifluoromethane	ND	T2	640		ug/m3			12/02/16 07:54	322
1,1-Dichloroethane	ND		390		ug/m3			12/02/16 07:54	322
1,2-Dichloroethane	ND		1000		ug/m3			12/02/16 07:54	322
1,1-Dichloroethene	ND		1000		ug/m3			12/02/16 07:54	322
cis-1,2-Dichloroethene	ND	T2	510		ug/m3			12/02/16 07:54	322
trans-1,2-Dichloroethene	ND	Т2	510		ug/m3			12/02/16 07:54	322
1,2-Dichloropropane	ND		600		ug/m3			12/02/16 07:54	322
cis-1,3-Dichloropropene	ND		580		ug/m3			12/02/16 07:54	322
trans-1,3-Dichloropropene	ND	Т2	580		ug/m3			12/02/16 07:54	322
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	T2	900		ug/m3			12/02/16 07:54	322
Ethylbenzene	ND		560		ug/m3			12/02/16 07:54	322
4-Ethyltoluene	ND	Т2	630		ug/m3			12/02/16 07:54	322
Hexachlorobutadiene	ND		6900		ug/m3			12/02/16 07:54	322
2-Hexanone	ND	Т2	530		ug/m3			12/02/16 07:54	322
Methylene Chloride	ND		450		ug/m3			12/02/16 07:54	322
4-Methyl-2-pentanone (MIBK)	ND		530		ug/m3			12/02/16 07:54	322
Styrene	ND		550		ug/m3			12/02/16 07:54	322
1,1,2,2-Tetrachloroethane	ND		880		ug/m3			12/02/16 07:54	322
Tetrachloroethene	48000		870		ug/m3			12/02/16 07:54	322
Toluene	ND		490		ug/m3			12/02/16 07:54	322
1,2,4-Trichlorobenzene	ND		4800		ug/m3			12/02/16 07:54	322
1,1,1-Trichloroethane	ND		530		ug/m3			12/02/16 07:54	322
1,1,2-Trichloroethane	ND		700		ug/m3			12/02/16 07:54	322
Trichloroethene	ND		690		ug/m3			12/02/16 07:54	322
Trichlorofluoromethane	ND	T2	720		ug/m3			12/02/16 07:54	322
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	Т2	990		ug/m3			12/02/16 07:54	322
1,2,4-Trimethylbenzene	ND	T2	1300		ug/m3			12/02/16 07:54	322

Client Sample ID: SB2-70-11182016 DUP

Lab Sample ID: 320-23751-7

Date Collected: 11/18/16 13:25 Date Received: 11/22/16 09:50 Sample Container: Summa Canister 1L

Matrix: Air

Method: TO-15 - Volatile O	rganic Compo	unds in Ar	nbient Air (Co	ontinue	d)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	ND	T2	630		ug/m3			12/02/16 07:54	322
Vinyl acetate	ND		910		ug/m3			12/02/16 07:54	322
Vinyl chloride	ND		330		ug/m3			12/02/16 07:54	322
m,p-Xylene	ND		1100		ug/m3			12/02/16 07:54	322
o-Xylene	ND		560		ug/m3			12/02/16 07:54	322
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130					12/02/16 07:54	322
1,2-Dichloroethane-d4 (Surr)	88		70 - 130					12/02/16 07:54	322
Toluene-d8 (Surr)	101		70 - 130					12/02/16 07:54	322

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Aatrix: Air					Ргер Туре: То
-			Pe	ercent Surrog	gate Recovery (Acceptance Limits)
		BFB	12DCE	TOL	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	
320-23751-1	SB1-45-11172016	102	92	95	
320-23751-2	SB1-60-11172016	99	87	100	
320-23751-3	SB1-75-11172016	91	89	100	
320-23751-4	SB2-40-11182016	101	92	97	
320-23751-5	SB2-60-11182016	87	85	100	
320-23751-6	SB2-70-11182016	91	89	102	
320-23751-7	SB2-70-11182016 DUP	92	88	101	
LCS 320-140204/3	Lab Control Sample	105	90	99	
LCSD 320-140204/4	Lab Control Sample Dup	106	88	99	
MB 320-140204/6	Method Blank	95	88	100	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 320-140204/6 Matrix: Air

Analysis	Batch:	140204

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		5.0		ppb v/v			12/01/16 17:40	1
Benzene	ND		0.40		ppb v/v			12/01/16 17:40	1
Benzyl chloride	ND		0.80		ppb v/v			12/01/16 17:40	1
Bromodichloromethane	ND		0.30		ppb v/v			12/01/16 17:40	1
Bromoform	ND		0.40		ppb v/v			12/01/16 17:40	1
Bromomethane	ND		0.80		ppb v/v			12/01/16 17:40	1
2-Butanone (MEK)	ND		0.80		ppb v/v			12/01/16 17:40	1
Carbon disulfide	ND		0.80		ppb v/v			12/01/16 17:40	1
Carbon tetrachloride	ND		0.80		ppb v/v			12/01/16 17:40	1
Chlorobenzene	ND		0.30		ppb v/v			12/01/16 17:40	1
Dibromochloromethane	ND		0.40		ppb v/v			12/01/16 17:40	1
Chloroethane	ND		0.80		ppb v/v			12/01/16 17:40	1
Chloroform	ND		0.30		ppb v/v			12/01/16 17:40	1
Chloromethane	ND		0.80		ppb v/v			12/01/16 17:40	1
1,2-Dibromoethane (EDB)	ND		0.80		ppb v/v			12/01/16 17:40	1
1,2-Dichlorobenzene	ND		0.40		ppb v/v			12/01/16 17:40	1
1,3-Dichlorobenzene	ND		0.40		ppb v/v			12/01/16 17:40	1
1,4-Dichlorobenzene	ND		0.40		ppb v/v			12/01/16 17:40	1
Dichlorodifluoromethane	ND		0.40		ppb v/v			12/01/16 17:40	
1.1-Dichloroethane	ND		0.30		ppb v/v			12/01/16 17:40	1
1,2-Dichloroethane	ND		0.80		ppb v/v			12/01/16 17:40	1
1,1-Dichloroethene	ND		0.80		ppb v/v			12/01/16 17:40	
cis-1,2-Dichloroethene	ND		0.40		ppb v/v			12/01/16 17:40	1
trans-1,2-Dichloroethene	ND		0.40		ppb v/v			12/01/16 17:40	1
1,2-Dichloropropane	ND		0.40		ppb v/v			12/01/16 17:40	· · · · · · · · · · · · · · · · · · ·
cis-1,3-Dichloropropene	ND		0.40		ppb v/v			12/01/16 17:40	1
trans-1,3-Dichloropropene	ND		0.40		ppb v/v			12/01/16 17:40	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		0.40		ppb v/v			12/01/16 17:40	
Ethylbenzene	ND		0.40		ppb v/v			12/01/16 17:40	1
4-Ethyltoluene	ND		0.40		ppb v/v			12/01/16 17:40	1
Hexachlorobutadiene	ND		2.0		ppb v/v			12/01/16 17:40	
2-Hexanone	ND		0.40		ppb v/v ppb v/v			12/01/16 17:40	1
Methylene Chloride	ND		0.40		ppb v/v ppb v/v			12/01/16 17:40	1
4-Methyl-2-pentanone (MIBK)	ND		0.40		ppb v/v			12/01/16 17:40	
Styrene	ND		0.40		ppb v/v ppb v/v			12/01/16 17:40	1
1,1,2,2-Tetrachloroethane	ND		0.40					12/01/16 17:40	1
Tetrachloroethene					ppb v/v				
Toluene	ND ND		0.40 0.40		ppb v/v			12/01/16 17:40 12/01/16 17:40	1
1,2,4-Trichlorobenzene	ND		2.0		ppb v/v ppb v/v			12/01/16 17:40	1
									· · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane	ND		0.30		ppb v/v			12/01/16 17:40	1
1,1,2-Trichloroethane	ND		0.40		ppb v/v			12/01/16 17:40	1
Trichloroethene	ND		0.40		ppb v/v			12/01/16 17:40	۱ ۲
Trichlorofluoromethane	ND		0.40		ppb v/v			12/01/16 17:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.40		ppb v/v			12/01/16 17:40	1
1,2,4-Trimethylbenzene	ND		0.80		ppb v/v			12/01/16 17:40	1
1,3,5-Trimethylbenzene	ND		0.40		ppb v/v			12/01/16 17:40	1
Vinyl acetate	ND		0.80		ppb v/v			12/01/16 17:40	1
Vinyl chloride	ND		0.40		ppb v/v			12/01/16 17:40	1

8

U									
Lab Sample ID: MB 320-140204/6 Matrix: Air								ple ID: Method Prep Type: To	
Analysis Batch: 140204									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
m,p-Xylene	ND		0.80		ppb v/v			12/01/16 17:40	1
o-Xylene	ND		0.40		ppb v/v			12/01/16 17:40	1
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		12		ug/m3			12/01/16 17:40	1
Benzene	ND		1.3		ug/m3			12/01/16 17:40	1
Benzyl chloride	ND		4.1		ug/m3			12/01/16 17:40	1
Bromodichloromethane	ND		2.0		ug/m3			12/01/16 17:40	1
Bromoform	ND		4.1		ug/m3			12/01/16 17:40	1
Bromomethane	ND		3.1		ug/m3			12/01/16 17:40	1
2-Butanone (MEK)	ND		2.4		ug/m3			12/01/16 17:40	1
Carbon disulfide	ND		2.5		ug/m3			12/01/16 17:40	1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

		2.0	ug/mo		
Carbon tetrachloride	ND	5.0	ug/m3	12/01/16 17:40	1
Chlorobenzene	ND	1.4	ug/m3	12/01/16 17:40	1
Dibromochloromethane	ND	3.4	ug/m3	12/01/16 17:40	1
Chloroethane	ND	2.1	ug/m3	12/01/16 17:40	1
Chloroform	ND	1.5	ug/m3	12/01/16 17:40	1
Chloromethane	ND	1.7	ug/m3	12/01/16 17:40	1
1,2-Dibromoethane (EDB)	ND	6.1	ug/m3	12/01/16 17:40	1
1,2-Dichlorobenzene	ND	2.4	ug/m3	12/01/16 17:40	1
1,3-Dichlorobenzene	ND	2.4	ug/m3	12/01/16 17:40	1
1,4-Dichlorobenzene	ND	2.4	ug/m3	12/01/16 17:40	1
Dichlorodifluoromethane	ND	2.0	ug/m3	12/01/16 17:40	1
1,1-Dichloroethane	ND	1.2	ug/m3	12/01/16 17:40	1
1,2-Dichloroethane	ND	3.2	ug/m3	12/01/16 17:40	1
1,1-Dichloroethene	ND	3.2	ug/m3	12/01/16 17:40	1
cis-1,2-Dichloroethene	ND	1.6	ug/m3	12/01/16 17:40	1
trans-1,2-Dichloroethene	ND	1.6	ug/m3	12/01/16 17:40	1
1,2-Dichloropropane	ND	1.8	ug/m3	12/01/16 17:40	1
cis-1,3-Dichloropropene	ND	1.8	ug/m3	12/01/16 17:40	1
trans-1,3-Dichloropropene	ND	1.8	ug/m3	12/01/16 17:40	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	2.8	ug/m3	12/01/16 17:40	1
Ethylbenzene	ND	1.7	ug/m3	12/01/16 17:40	1
4-Ethyltoluene	ND	2.0	ug/m3	12/01/16 17:40	1
Hexachlorobutadiene	ND	21	ug/m3	12/01/16 17:40	1
2-Hexanone	ND	1.6	ug/m3	12/01/16 17:40	1
Methylene Chloride	ND	1.4	ug/m3	12/01/16 17:40	1
4-Methyl-2-pentanone (MIBK)	ND	1.6	ug/m3	12/01/16 17:40	1
Styrene	ND	1.7	ug/m3	12/01/16 17:40	1
1,1,2,2-Tetrachloroethane	ND	2.7	ug/m3	12/01/16 17:40	1
Tetrachloroethene	ND	2.7	ug/m3	12/01/16 17:40	1
Toluene	ND	1.5	ug/m3	12/01/16 17:40	1
1,2,4-Trichlorobenzene	ND	15	ug/m3	12/01/16 17:40	1
1,1,1-Trichloroethane	ND	1.6	ug/m3	12/01/16 17:40	1
1,1,2-Trichloroethane	ND	2.2	ug/m3	12/01/16 17:40	1
Trichloroethene	ND	2.1	ug/m3	12/01/16 17:40	1
Trichlorofluoromethane	ND	2.2	ug/m3	12/01/16 17:40	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	3.1	ug/m3	12/01/16 17:40	1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

MB MB **Result Qualifier**

ND

ND

ND

ND

ND

ND

95

88

100

%Recovery

MB MB

Qualifier

Lab Sample ID: MB 320-140204/6

Analysis Batch: 140204

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Matrix: Air

Analvte

Vinyl acetate

Vinyl chloride

m,p-Xylene

o-Xylene

Surrogate

Toluene-d8 (Surr)

Analyzed

12/01/16 17:40

12/01/16 17:40

12/01/16 17:40

12/01/16 17:40

12/01/16 17:40

12/01/16 17:40

Analyzed

12/01/16 17:40

12/01/16 17:40

12/01/16 17:40

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank Prep Type: Total/NA Dil Fac 1

1

1

1

1

1

1

1

1

Dil Fac

8

Lab Sample ID: LCS 320-140204/3 Matrix: Air

Analysis Batch: 140204

4-Bromofluorobenzene (Surr)

1,2-Dichloroethane-d4 (Surr)

· ·····, · · · · · · · · · · · · · · ·	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	20.0	16.1		ppb v/v		81	71 - 131	
Benzene	20.0	19.7		ppb v/v		98	68 - 128	
Benzyl chloride	20.0	15.8		ppb v/v		79	58 ₋ 120	
Bromodichloromethane	20.0	19.2		ppb v/v		96	65 - 130	
Bromoform	20.0	20.4		ppb v/v		102	64 - 144	
Bromomethane	20.0	21.5		ppb v/v		108	70 - 131	
2-Butanone (MEK)	20.0	19.1		ppb v/v		96	71 - 131	
Carbon disulfide	20.0	18.8		ppb v/v		94	63 - 123	
Carbon tetrachloride	20.0	18.6		ppb v/v		93	67 - 127	
Chlorobenzene	20.0	20.0		ppb v/v		100	70 - 132	
Dibromochloromethane	20.0	19.8		ppb v/v		99	68 - 128	
Chloroethane	20.0	20.2		ppb v/v		101	70 - 131	
Chloroform	20.0	19.2		ppb v/v		96	69 - 129	
Chloromethane	20.0	17.3		ppb v/v		86	67 _ 127	
1,2-Dibromoethane (EDB)	20.0	20.5		ppb v/v		103	68 - 131	
1,2-Dichlorobenzene	20.0	21.0		ppb v/v		105	73 - 143	
1,3-Dichlorobenzene	20.0	21.0		ppb v/v		105	77 - 136	
1,4-Dichlorobenzene	20.0	21.2		ppb v/v		106	73 - 143	
Dichlorodifluoromethane	20.0	18.4		ppb v/v		92	69 - 129	
1,1-Dichloroethane	20.0	18.2		ppb v/v		91	65 - 125	
1,2-Dichloroethane	20.0	17.9		ppb v/v		89	71 - 131	
1,1-Dichloroethene	20.0	16.7		ppb v/v		83	53 ₋ 128	
cis-1,2-Dichloroethene	20.0	20.1		ppb v/v		101	68 - 128	
trans-1,2-Dichloroethene	20.0	18.0		ppb v/v		90	70 - 130	
1,2-Dichloropropane	20.0	19.4		ppb v/v		97	74 - 128	
cis-1,3-Dichloropropene	20.0	21.3		ppb v/v		106	78 - 132	
trans-1,3-Dichloropropene	20.0	17.6		ppb v/v		88	56 - 136	
1,2-Dichloro-1,1,2,2-tetrafluoroet	20.0	21.5		ppb v/v		108	64 - 124	
hane								
Ethylbenzene	20.0	20.1		ppb v/v		100	76 - 136	
4-Ethyltoluene	20.0	20.5		ppb v/v		102	62 - 136	

TestAmerica Sacramento

RL

3.9

2.0

2.8

1.0

3.5

1.7

Limits

70 - 130

70 - 130

70 - 130

MDL Unit

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

D

Prepared

Prepared

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 320-140204/3				Clien	t Sai	nple ID	: Lab Control	Sample
Matrix: Air							Prep Type: T	otal/NA
Analysis Batch: 140204								
	Spike		LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Hexachlorobutadiene	20.0	17.0		ppb v/v		85	42 - 150	
2-Hexanone	20.0	19.6		ppb v/v		98	70 - 128	
Methylene Chloride	20.0	15.7		ppb v/v		79	65 - 125	
4-Methyl-2-pentanone (MIBK)	20.0	17.6		ppb v/v		88	73 - 133	
Styrene	20.0	20.8		ppb v/v		104	76 ₋ 144	
1,1,2,2-Tetrachloroethane	20.0	20.7		ppb v/v		104	75 - 135	
Tetrachloroethene	20.0	20.0		ppb v/v		100	56 - 138	
Toluene	20.0	20.0		ppb v/v		100	71 ₋ 132	
1,2,4-Trichlorobenzene	20.0	18.0		ppb v/v		90	59 - 150	
1,1,1-Trichloroethane	20.0	18.9		ppb v/v		94	65 - 124	
1,1,2-Trichloroethane	20.0	21.1		ppb v/v		105	71 - 131	
Trichloroethene	20.0	20.7		ppb v/v		103	64 - 127	
Trichlorofluoromethane	20.0	19.3		ppb v/v		96	68 - 128	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	18.1		ppb v/v		91	50 - 132	
1,2,4-Trimethylbenzene	20.0	20.1		ppb v/v		101	61 - 145	
1,3,5-Trimethylbenzene	20.0	20.0		ppb v/v		100	65 ₋ 136	
Vinyl acetate	20.0	17.3		ppb v/v		87	77 - 134	
Vinyl chloride	20.0	18.9		ppb v/v		95	69 - 129	
m,p-Xylene	40.0	39.6		ppb v/v		99	75 - 138	
o-Xylene	20.0	20.0		ppb v/v		100	77 - 132	
	Spike		LCS	pp			%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Acetone	48	38.3		ug/m3		81	71 - 131	
Benzene	64	62.8		ug/m3		98	68 - 128	
Benzyl chloride	100			-		79	58 - 120	
Benzyl chloride Bromodichloromethane	100 130	81.9		ug/m3		79 96	58 - 120 65 - 130	
Bromodichloromethane	130	81.9 129		ug/m3 ug/m3		96	65 - 130	
Bromodichloromethane Bromoform	130 210	81.9 129 211		ug/m3 ug/m3 ug/m3		96 102	65 - 130 64 - 144	
Bromodichloromethane Bromoform Bromomethane	130 210 78	81.9 129 211 83.5		ug/m3 ug/m3 ug/m3 ug/m3		96 102 108	65 - 130 64 - 144 70 - 131	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK)	130 210 78 59	81.9 129 211 83.5 56.4		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96	65 - 130 64 - 144 70 - 131 71 - 131	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide	130 210 78 59 62	81.9 129 211 83.5 56.4 58.7		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	130 210 78 59 62 130	81.9 129 211 83.5 56.4 58.7 117		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	130 210 78 59 62 130 92	81.9 129 211 83.5 56.4 58.7 117 92.0		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane	130 210 78 59 62 130 92 170	81.9 129 211 83.5 56.4 58.7 117 92.0 169		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane	130 210 78 59 62 130 92 170 53	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform	130 210 78 59 62 130 92 170 53 98	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloromethane	130 210 78 59 62 130 92 170 53 98 41	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloromthane 1,2-Dibromoethane (EDB)	130 210 78 59 62 130 92 170 53 98 41 150	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloroform Chloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	130 210 78 59 62 130 92 170 53 98 41 150 120	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene	130 210 78 59 62 130 92 170 53 98 41 150 120 120	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroethane Chloroform Chloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 106	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120 99	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128 91.0		ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 105 106 92	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143 69 - 129	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroform Chloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120 99 81	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128 91.0 73.8		ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 105 106 92 91	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143 69 - 129 65 - 125	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120 120 99 81 81 81	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128 91.0 73.8 72.3		ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 105 106 92 91 89	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143 69 - 129 65 - 125 71 - 131	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120 120 99 81 81 81 79	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128 91.0 73.8 72.3 66.1		ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 106 92 91 89 83	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143 69 - 129 65 - 125 71 - 131 53 - 128	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120 120 99 81 81 81 79 79	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128 91.0 73.8 72.3 66.1 79.8		ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 106 92 91 89 83 101	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143 69 - 129 65 - 125 71 - 131 53 - 128 68 - 128	
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Dibromochloromethane Chloroethane Chloroethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	130 210 78 59 62 130 92 170 53 98 41 150 120 120 120 120 99 81 81 81 79	81.9 129 211 83.5 56.4 58.7 117 92.0 169 53.3 93.5 35.7 158 126 127 128 91.0 73.8 72.3 66.1		ug/m3 ug/m3		96 102 108 96 94 93 100 99 101 96 86 103 105 105 106 92 91 89 83	65 - 130 64 - 144 70 - 131 71 - 131 63 - 123 67 - 127 70 - 132 68 - 128 70 - 131 69 - 129 67 - 127 68 - 131 73 - 143 77 - 136 73 - 143 69 - 129 65 - 125 71 - 131 53 - 128	

1 ---

5

12/5/2016

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 320-140204/3 Matrix: Air	Client Sample ID: Lab Control Sa Prep Type: Tota						
Analysis Batch: 140204							
	Spike	LCS			%Rec.		
Analyte	Added		Qualifier Unit	<u>D</u> %Rec	Limits	_	
cis-1,3-Dichloropropene	91	96.7	ug/m3	106	78 - 132		
trans-1,3-Dichloropropene	91	79.9	ug/m3	88	56 - 136		
1,2-Dichloro-1,1,2,2-tetrafluoroet	140	150	ug/m3	108	64 - 124		
hane Ethylbenzene	87	87.2	ua/m2	100	76 - 136		
4-Ethyltoluene	98	101	ug/m3 ug/m3	100	62 - 136		
4-EnryRoluene Hexachlorobutadiene		101		85	62 - 130 42 - 150	- 1	
	210		ug/m3				
2-Hexanone	82	80.3	ug/m3	98	70 - 128		
Methylene Chloride	69	54.6	ug/m3	79	65 - 125		
4-Methyl-2-pentanone (MIBK)	82	72.2	ug/m3	88	73 - 133		
Styrene	85	88.5	ug/m3	104	76 - 144		
1,1,2,2-Tetrachloroethane	140	142	ug/m3	104	75 - 135		
Tetrachloroethene	140	136	ug/m3	100	56 - 138		
Toluene	75	75.3	ug/m3	100	71 - 132		
1,2,4-Trichlorobenzene	150	134	ug/m3	90	59 - 150		
1,1,1-Trichloroethane	110	103	ug/m3	94	65 - 124		
1,1,2-Trichloroethane	110	115	ug/m3	105	71 - 131	- 1	
Trichloroethene	110	111	ug/m3	103	64 - 127		
Trichlorofluoromethane	110	108	ug/m3	96	68 - 128		
1,1,2-Trichloro-1,2,2-trifluoroetha	150	139	ug/m3	91	50 - 132		
ne							
1,2,4-Trimethylbenzene	98	98.8	ug/m3	101	61 - 145		
1,3,5-Trimethylbenzene	98	98.5	ug/m3	100	65 - 136		
Vinyl acetate	70	61.1	ug/m3	87	77 - 134		
Vinyl chloride	51	48.4	ug/m3	95	69 - 129		
m,p-Xylene	170	172	ug/m3	99	75 ₋ 138		
o-Xylene	87	86.8	ug/m3	100	77 - 132		

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,2-Dichloroethane-d4 (Surr)	90		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: LCSD 320-140204/4 Matrix: Air Analysis Batch: 140204

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	20.0	15.7		ppb v/v		78	71 - 131	3	25
Benzene	20.0	19.7		ppb v/v		98	68 - 128	0	25
Benzyl chloride	20.0	15.8		ppb v/v		79	58 - 120	0	25
Bromodichloromethane	20.0	19.1		ppb v/v		95	65 - 130	1	25
Bromoform	20.0	20.5		ppb v/v		102	64 - 144	0	25
Bromomethane	20.0	21.3		ppb v/v		106	70 - 131	1	25
2-Butanone (MEK)	20.0	18.9		ppb v/v		94	71 - 131	1	25
Carbon disulfide	20.0	18.7		ppb v/v		93	63 - 123	1	25
Carbon tetrachloride	20.0	18.4		ppb v/v		92	67 - 127	1	25
Chlorobenzene	20.0	20.0		ppb v/v		100	70 - 132	0	25

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCSD 320-140204/4 Matrix: Air		Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA								
Analysis Batch: 140204	o						~ -			
Analyte	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit	
Dibromochloromethane		19.9		ppb v/v		100	68 - 128	1	25	
Chloroethane	20.0	20.0		ppb v/v		100	70 - 131	1	25	
Chloroform	20.0	18.9		ppb v/v		94	69 - 129	1	25	
Chloromethane	20.0	17.5		ppb v/v		88	67 - 127	1	25	
1,2-Dibromoethane (EDB)	20.0	20.6		ppb v/v		103	68 - 131	0	25	
1,2-Dichlorobenzene	20.0	21.1		ppb v/v		106	73 - 143	0	25	
1,3-Dichlorobenzene	20.0	21.1		ppb v/v		106	77 - 136	0	25	
1,4-Dichlorobenzene	20.0	21.2		ppb v/v		106	73 - 143	0	25	
Dichlorodifluoromethane	20.0	18.1		ppb v/v		91	69 - 129	1	25	
1,1-Dichloroethane	20.0	18.0		ppb v/v		90	65 - 125	1	25	
1,2-Dichloroethane	20.0	17.9		ppb v/v		89	71 - 131	0	25	
1,1-Dichloroethene	20.0	16.4		ppb v/v		82	53 - 128	1	25	
cis-1,2-Dichloroethene	20.0	19.9		ppb v/v		99	68 - 128	1	25	
trans-1,2-Dichloroethene	20.0	17.7		ppb v/v		89	70 - 130	1	25	
1,2-Dichloropropane	20.0	19.3		ppb v/v		96	74 - 128		25	
cis-1,3-Dichloropropene	20.0	21.3		ppb v/v		107	78 - 132	0	25	
trans-1,3-Dichloropropene	20.0	17.5		ppb v/v		88	56 - 136	0	25	
1,2-Dichloro-1,1,2,2-tetrafluoroet	20.0	21.1		ppb v/v		106	64 - 124	2	25	
hane	20.0	2		PP0 1/1		100	01-121	-	20	
Ethylbenzene	20.0	20.1		ppb v/v		101	76 - 136	0	25	
4-Ethyltoluene	20.0	20.4		ppb v/v		102	62 - 136	0	25	
Hexachlorobutadiene	20.0	16.5		ppb v/v		82	42 - 150	3	25	
2-Hexanone	20.0	19.6		ppb v/v		98	70 - 128	0	25	
Methylene Chloride	20.0	15.4		ppb v/v		77	65 - 125	2	25	
4-Methyl-2-pentanone (MIBK)	20.0	17.7		ppb v/v		88	73 - 133	0	25	
Styrene	20.0	21.1		ppb v/v		105	76 - 144	2	25	
1,1,2,2-Tetrachloroethane	20.0	20.9		ppb v/v		105	75 - 135	1	25	
Tetrachloroethene	20.0	20.1		ppb v/v		101	56 - 138	1	25	
Toluene	20.0	20.0		ppb v/v		100	71 - 132	0	25	
1,2,4-Trichlorobenzene	20.0	17.7		ppb v/v		88	59 ₋ 150	2	25	
1,1,1-Trichloroethane	20.0	18.6		ppb v/v		93	65 - 124	2	25	
1,1,2-Trichloroethane	20.0	21.1		ppb v/v		106	71 - 131	0	25	
Trichloroethene	20.0	20.7		ppb v/v		103	64 - 127	0	25	
Trichlorofluoromethane	20.0	19.0		ppb v/v		95	68 - 128	1	25	
1,1,2-Trichloro-1,2,2-trifluoroetha ne	20.0	17.9		ppb v/v		90	50 - 132	1	25	
1,2,4-Trimethylbenzene	20.0	20.2		ppb v/v		101	61 - 145	0	25	
1,3,5-Trimethylbenzene	20.0	20.2		ppb v/v		101	65 - 136	1	25	
Vinyl acetate	20.0	17.1		ppb v/v		85	77 - 134	2	25	
Vinyl chloride	20.0	19.2		ppb v/v		96	69 - 129	2	25	
m,p-Xylene	40.0	39.7		ppb v/v		99	75 - 138	0	25	
o-Xylene	20.0	20.1		ppb v/v		101	77 - 132	1	25	
	Spike		LCSD				%Rec.		RPD	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Acetone	48	37.2		ug/m3		78	71 - 131	3	25	
Benzene	64	62.9		ug/m3		98	68 - 128	0	25	
Benzyl chloride	100	81.9		ug/m3		79	58 - 120	0	25	
Bromodichloromethane	130	128		ug/m3		95	65 - 130	1	25	
Bromoform	210	212		ug/m3		102	64 - 144	0	25	

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCSD 320-140204/4Client Sample ID: Lab Control Sample DMatrix: AirPrep Type: Total/N									
Analysis Batch: 140204	Online	1.000					0/ D = =		
Analyta	Spike Added		LCSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	RPD Limit
Analyte	Added	82.6	Quaimer	ug/m3		106	70 - 131	1	25
2-Butanone (MEK)	59	55.6		ug/m3		94	71 - 131	1	25
Carbon disulfide	62	58.1		ug/m3		93	63 - 123	1	25
Carbon distincte	130	116		-		93 92	67 - 127	1	25
Chlorobenzene	92	92.3		ug/m3		92 100	70 - 132		25
Dibromochloromethane	92 170	92.3 170		ug/m3		100	68 - 128	1	25
Chloroethane	53	52.8		ug/m3		100	00 - 120 70 - 131	1	25 25
Chloroform	98	92.8 92.3		ug/m3		94	69 - 129	1	25
		92.3 36.2		ug/m3					
Chloromethane	41 150	36.2 159		ug/m3		88	67 - 127 68 - 121	1	25 25
1,2-Dibromoethane (EDB)				ug/m3		103	68 - 131	0	
1,2-Dichlorobenzene	120	127		ug/m3		106	73 - 143	0	25
1,3-Dichlorobenzene	120	127		ug/m3		106	77 - 136	0	25
1,4-Dichlorobenzene	120	128		ug/m3		106	73 - 143	0	25
Dichlorodifluoromethane	99	89.7		ug/m3		91	69 - 129	1	25
1,1-Dichloroethane	81	72.9		ug/m3		90	65 - 125	1	25
1,2-Dichloroethane	81	72.3		ug/m3		89	71 - 131	0	25
1,1-Dichloroethene	79	65.1		ug/m3		82	53 - 128	1	25
cis-1,2-Dichloroethene	79	78.8		ug/m3		99	68 - 128	1	25
trans-1,2-Dichloroethene	79	70.4		ug/m3		89	70 - 130	1	25
1,2-Dichloropropane	92	89.0		ug/m3		96	74 - 128	1	25
cis-1,3-Dichloropropene	91	96.7		ug/m3		107	78 - 132	0	25
trans-1,3-Dichloropropene	91	79.6		ug/m3		88	56 - 136	0	25
1,2-Dichloro-1,1,2,2-tetrafluoroet	140	148		ug/m3		106	64 - 124	2	25
hane							=0.400	•	
Ethylbenzene	87	87.3		ug/m3		101	76 - 136	0	25
4-Ethyltoluene	98	100		ug/m3		102	62 - 136	0	25
Hexachlorobutadiene	210	176		ug/m3		82	42 - 150	3	25
2-Hexanone	82	80.3		ug/m3		98	70 - 128	0	25
Methylene Chloride	69	53.5		ug/m3		77	65 - 125	2	25
4-Methyl-2-pentanone (MIBK)	82	72.4		ug/m3		88	73 - 133	0	25
Styrene	85	89.8		ug/m3		105	76 - 144	2	25
1,1,2,2-Tetrachloroethane	140	144		ug/m3		105	75 - 135	1	25
Tetrachloroethene	140	137		ug/m3		101	56 - 138	1	25
Toluene	75	75.4		ug/m3		100	71 - 132	0	25
1,2,4-Trichlorobenzene	150	131		ug/m3		88	59 ₋ 150	2	25
1,1,1-Trichloroethane	110	101		ug/m3		93	65 - 124	2	25
1,1,2-Trichloroethane	110	115		ug/m3		106	71 ₋ 131	0	25
Trichloroethene	110	111		ug/m3		103	64 - 127	0	25
Trichlorofluoromethane	110	107		ug/m3		95	68 - 128	1	25
1,1,2-Trichloro-1,2,2-trifluoroetha ne	150	137		ug/m3		90	50 - 132	1	25
1,2,4-Trimethylbenzene	98	99.3		ug/m3		101	61 - 145	0	25
1,3,5-Trimethylbenzene	98	99.3		ug/m3		101	65 - 136	1	25
Vinyl acetate	70	60.1		ug/m3		85	77 - 134	2	25
Vinyl chloride	51	49.1		ug/m3		96	69 - 129	2	25
m,p-Xylene	170	172		ug/m3		99	75 - 138	0	25
o-Xylene	87	87.3		ug/m3		101	77 - 132	1	25

8

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCSD 320-140204/4 Matrix: Air Analysis Batch: 140204

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,2-Dichloroethane-d4 (Surr)	88		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client: Geosyntec Consultants, Inc. Project/Site: Cooper & Commerce SP0146B

Air - GC/MS VOA

Analysis Batch: 140204

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-23751-1	SB1-45-11172016	Total/NA	Air	TO-15	
320-23751-2	SB1-60-11172016	Total/NA	Air	TO-15	
320-23751-3	SB1-75-11172016	Total/NA	Air	TO-15	
320-23751-4	SB2-40-11182016	Total/NA	Air	TO-15	
320-23751-5	SB2-60-11182016	Total/NA	Air	TO-15	
320-23751-6	SB2-70-11182016	Total/NA	Air	TO-15	
320-23751-7	SB2-70-11182016 DUP	Total/NA	Air	TO-15	
MB 320-140204/6	Method Blank	Total/NA	Air	TO-15	
LCS 320-140204/3	Lab Control Sample	Total/NA	Air	TO-15	
LCSD 320-140204/4	Lab Control Sample Dup	Total/NA	Air	TO-15	

10

Client Sam Date Collecte Date Received	d: 11/17/16 1	2:18	016				L	ab Sample	ID: 32()-23751-1 Matrix: Air
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		3.53	170 mL	250 mL	140204	12/02/16 02:30	RS1	TAL SAC
Client Sam Date Collecte Date Received	d: 11/17/16 1	4:06	016				L	ab Sample	ID: 320)-23751-2 Matrix: Aii
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1	595 mL	250 mL	140204	12/02/16 03:30	RS1	TAL SAC
-										
Client Sam			016				L	ab Sample	ID: 320	
Date Collecte										Matrix: Aiı
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		70	7.67 mL	250 mL	140204	12/02/16 04:23	RS1	TAL SAC
Client Sam	ole ID: SB2	2-40-111820	016				L	ab Sample	ID: 320)-23751-4
Date Collecte Date Received	d: 11/18/16 1	0:04						•	_	Matrix: Air
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		11.3	42 mL	250 mL	140204	12/02/16 05:15	-	TAL SAC
Client Sam	ole ID: SB2	2-60-111820	016				L	ab Sample	ID: 320)-23751-{
Date Collecte Date Received	d: 11/18/16 1	2:18								Matrix: Aiı
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		2010	0.27 mL	250 mL	140204	12/02/16 06:09	RS1	TAL SAC
Client Sam	ole ID: SB2	2-70-111820	016				L	ab Sample	ID: 320)-23751-6
Date Collecte Date Received	d: 11/18/16 1	3:25						•		Matrix: Air
										
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Batch Type Analysis	Batch Method TO-15	Run	Dil Factor 317	Amount 1.78 mL	Amount 250 mL	Batch Number 140204	Prepared or Analyzed 12/02/16 07:01	Analyst RS1	 TAL SAC

Client Sample ID: SB2-70-11182016 DUP Date Collected: 11/18/16 13:25

Lab Sample	ID:	320-23751-7
		Matrix: Air

10

	d: 11/18/16 1 d: 11/22/16 0									Matrix: A
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
otal/NA	Analysis	TO-15		322	1.72 mL	250 mL	140204	12/02/16 07:54	RS1	TAL SAC
Laboratory Ref	erences:									
AL SAC = Tes	America Sacram	ento, 880 Rivers	side Parkway,	West Sacra	mento, CA 95	605, TEL (916	6)373-5600			

Laboratory: TestAmerica Sacramento

Unless otherwise noted, all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
Arizona	State Pro	gram	9	AZ0708	08-11-17
The following analytes	s are included in this repo	ort, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analy	te	
TO-15		Air	1,1,2-	Trichloro-1,2,2-trifluoroe	thane
TO-15		Air	1,2,4-	Trimethylbenzene	
TO-15		Air	1,2-Di	ichloro-1,1,2,2-tetrafluor	oethane
TO-15		Air	1,2-Di	chlorobenzene	
TO-15		Air	1,3,5-	Trimethylbenzene	
TO-15		Air	1,3-Di	chlorobenzene	
TO-15		Air	2-Hex	anone	
TO-15		Air	4-Ethy	ltoluene	
TO-15		Air	Aceto	ne	
TO-15		Air	Bromo	odichloromethane	
TO-15		Air	cis-1,2	2-Dichloroethene	
TO-15		Air	Dibror	nochloromethane	
TO-15		Air	Dichlo	prodifluoromethane	
TO-15		Air	trans-	1,2-Dichloroethene	
TO-15		Air	trans-	1,3-Dichloropropene	
TO-15		Air	Trichle	orofluoromethane	

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Client: Geosyntec Consultants, Inc. Project/Site: Cooper & Commerce SP0146B

Method Description

EPA = US Environmental Protection Agency

Volatile Organic Compounds in Ambient Air

Method

TO-15

Protocol References:

Laboratory References:

Laboratory

TAL SAC

Protocol

EPA

5
8
9
12
13

TestAmerica Sacramento

12/5/2016

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper & Commerce SP0146B

TestAmerica Job ID: 320-23751-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-23751-1	SB1-45-11172016	Air	11/17/16 12:18 1	1/22/16 09:50
320-23751-2	SB1-60-11172016	Air	11/17/16 14:06 1	1/22/16 09:50
320-23751-3	SB1-75-11172016	Air	11/17/16 15:18 1	1/22/16 09:50
320-23751-4	SB2-40-11182016	Air	11/18/16 10:04 1	1/22/16 09:50
320-23751-5	SB2-60-11182016	Air	11/18/16 12:18 1	1/22/16 09:50
320-23751-6	SB2-70-11182016	Air	11/18/16 13:25 1	1/22/16 09:50
320-23751-7	SB2-70-11182016 DUP	Air	11/18/16 13:25 1	1/22/16 09:50

TestAmerica Sacramento

B Chrectide Pativation Bet Sacramento, CA 5605 West Sacramento, CA 5605 Sacramento, CA 5605 Sacrame	c. assumes no liability with respect Samples Collected By: C.C. C.	TestAmerica Laboratories, Inc. assumes no liability with respect to the collection and shipment of these samples.	THE LEADER IN EWITCHMENT AL TESTING
cramento, CA 95605 Formation Project Manager: C 16.374.4378 fax 916.372.1059 Phome: COL Phome: COL ontact Information Project Manager: C Phome: COL v Name: C-OQVATEC Phome: COL Phome: COL v Name: C-OQVATEC Phome: COL Phome: COL i: USU: A TARK- Stad PSE Email: M. N. W. EeZP Phome: COL i: USU: A TARK- Stad PSE Email: M. N. Tage of the stan stan standard (Specify i: USD: C-OPE- E CONTACT Standard (Specify ation: Sample Identification Sample Alme: C-OPE- E CONTACT Name(Specify Alme: C-OPE- E CONTACT Namble Sample Identification Sample Name(Specify Alme: C-OPE- E CONTACT Namble Sample Identification Sample Name(Specify Alme: C-OPE- E CONTACT Name(Specify Almonication Sample Name(Specify Almonication Name(Specify Name(Specify Almonication Name(Specify	Cc. Co. Cc. Co. El Controller Bid. 'Hg Controller D D D	dBY: Cococ A Highman	
Ontact Information Project Manager: No. 130 - COS 2 VNameC-FORVATEC Phone: Col. 170 - COS 2 Pittin: N. Tranco Bud Rage Email: M. N. Vue C O C-COS 1 Phone: Col. 170 - COS 1 Pittin: N. Tranco Bud Rage Email: M. N. Vue C O C-COS 1 Translatic State Contact: Particip Process: A R2 BSC18 BSC18 Particip Process: A R2 BSC18 State Contact: Particip Process: A R2 BSC18 State Contact: Particip Process: A R2 BSC18 Standard Vision Process: A R2 BSC18 Process: A R2 BSC18 Process: A R2 BSC18 Process: A R2 BSC18 <		FURNEUD	TestAmerica Laboratories, Inc
$\label{eq:contact:} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Contro D	- FURIEUD	COC No:
$\label{eq:control_control of the contact:} \end{tabular} \label{eq:contact:} \end{tabular} ta$	Controller		t of t cocs
BelZip Frage.is. A.2. 3562.58 Site Contact: Anarylsis Turnaround Time stantiscope Contact: Anarylsis Turnaround Time stantiscope Anarylsis Turnaround Time (stantiscope) Jame: Coope E Contact: Anarylsis Turnaround Time stantiscope) Anarylsis Turnaround Time (stantiscope) Sample ILA Contact: Anarylsis Turnaround Time sample Event (stantiscope) Anarylsis Turnaround Time (stantiscope) Sample Identification Sample ILA Contact: (stantiscope) Canister Sample Identification Sample ILA Contact: (stantiscope) Canister Victor U112016 ILA-15 20 20 20 20 20 And Table U112016 N 17106 And 1713 20 20 20 50 <	C Flow D D		
Interface Contract: Interface Analysis Turnaround Time Into: The Standard (Specific): 人 The Standard (Specific): 人 Sample Identification Interfor Intention Interfor Interfo	Flow D D	(uo	For Lab Use Only:
Cline Carper E Connect Analytis Turnaround Time Carlots E Connect Specific). K Analytis Turnaround Time Canitae Canitae Specific). K Rush (Specific). K Rush (Specific) (Specific	Elow D D		-
Time Standard (Specific): Kush (Specific):	Flow D D	885	_
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Flow Controller ID	C / S	I Job / SDG No.:
Sample IdentificationSample sample sample IdentificationSample sample sample sampleTime startCanister start startCanister start startCanister start startCanister start startCanister start startCanister start startCanister start startCanister start startCanister start startCanister startCani	Flow Controller ID	Ajiper	_
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		B B TO-75 (Med / S PH-APH EPA 3C E	Soli Gas Soli Gas Other (Please sp Sobecific S
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	v	2666 V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 7445	Real/	
$ \frac{2 - 40 - 1112}{3 - 50 - 1112} \frac{201}{3} \frac{1}{3} \frac{1}{12} \frac{1}{11} \frac{1}$	2550 0	241	Poeside mon
A- 60 - 1(11 3 みついし 1(13/k 1 入13 1 21 3 3 7.0 7/ 2 - 70 - 111 3 みついし 1/13/k 1 入13 131 3 3 7.0 7.0 72 A - 70 - 111 3 201 5 10 1320 1325 3 0.5 74 A - 70 - 111 3 201 - セック 1/13/k 1320 1325 3 0.5 74 A - 70 - 111 3 201 - セック 1/13/k 1320 1325 3 0.5 74 A - 70 - 111 3 201 - セック 1/13/k 1320 1325 3 0.5 74 A - 70 - 111 3 201 - エーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	1211 01	all all	
2-70-1113 えつしと 1/13/16 1320 1325 30 7.0 72 3-70-11132016- Dup 1/13/16 1320 1325 30 6.5 74 1320 1325 30 6.5 74 1320 1325 30 6.5 74 1320 1320 1325 130 132 1320 1320 1325 130 132 1320 1320 1325 130 132 1320 1325 30 6.5 74 1440 1320 1325 130 1325 130 1440 1320 120 130 130 130 1440 1320 1325 130 130 130 1440 1320 1320 1325 130 130 130 130 1440 1320 1320 1325 130 130 130 130 130 130 130 130 130 130	N	282	
Yra(us) 1320 1320 1320 5 5 5 Image: start Interior Temperature (Fahrenheit) Start Interior Ambient	72	297	MORTHE PRESENS
Start Interior Stop Start Interior Stop Interior Stop	S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOUSTOR. ARESEN
Start Interior Stop Start Interior Start Interior Stop			
Start Interior Stop Start Star			
Start Interior Stop Interior Start Interior Stop			
Stop meerior Start Interior Stop	nneit)		
Start Interior Stop			
Start Interior Stop	nheit)		
Stop		320-23751 Chain	Chain of Custody
A house of it too is all the lister	9100	Julice in a	K
Date / Time: Samples F	Samples F	ph:	() 7 nr Yamp
Samples Belinguistree by and ull bate Time: 1646 Received	Received by:		andura
Date 7 176/21/16 17:00	Received by:	2 Julian martine	350 110 100
Lab Use Only: Shipper Name: Opened by: Condition	Condition:		二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二

12/5/2016

Client: Geosyntec Consultants, Inc.

Login Number: 23751 List Number: 1 Creator: Nelson, Kym D

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	911061
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 320-23751-1

List Source: TestAmerica Sacramento

TestAmeric THE LEADER IN ENVIRONMENTAL TES		Sacramento Canister QC Certification Batch Certification
Certification Type Date Cleaned/Batch ID	70-15 SCAN DD-14-10	+ ADD ONS
Date of QC Data File Number	10/17/2016 C:\msDauen\.\OATA)	i 61017
5	CANISTER ID NUMBERS	1
* 8514	34000963	
8509	34000313	
34000730	34000667	
34000951	34000986	
34000956	34001107	
34000762	34000993	
34000770	34001541	
34000235	34001075	

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "*Certification Type*" indicated above.

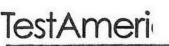
" INDICATES THE CAN OR CANS WHICH WERE SCREENED.

1st level Reviewed By:

mon

2nd level Reviewed By:

10 Date:


10 18/10

Date:

Q:\FORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814

ERS 7/29/2013

THE LEADER IN ENVIRONMENTAL TESTING

Sacramento Canister QC Certification **Batch Certification**

Certification Type

Date Cleaned/Batch ID

Date of QC

Data File Number

SULAN 320-23657 18/16 161112) MGDWEW 1 DATA MS7111813.d CANISTER ID NUMBERS 4001858 34001884 34001810 7509 34001821 34001958 4001894 34001913 0017 +001469 00171 34001684

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "Certification Type" indicated above.

INDICATES THE CAN OR CANS WHICH WERE SCREENED.

11/21/16 Date:

12/2/ne

Date:

1st level Reviewed By:

2nd level Reviewed By:

Q:\FORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814

ERS 7/29/2013

Custod

THE LEADER IN ENVIRONMENTAL TESTING

Sacramento Canister QC Certification Batch Certification

Certification Type

Date Cleaned/Batch ID

Date of QC

Data File Number

TOIS	Sim	
Ilizil	320-2367	1
11/18/16	2	
MS9 111	821	

CANISTER ID NUMBERS

5* 3 02

The above canisters were cleaned as a batch. This certifies this batch contains no target analyte concentration greater than or equal to the method criteria for the "*Certification Type*" indicated above.

"*" INDICATES THE CAN OR CANS WHICH WERE SCREENED.

1st level Reviewed By:

2nd level Reviewed By:

Q:\FORMS\QA-814 BATCH CAN QC 20130729.DOC QA-814 11/21//6 Date:

Date:

ERS 7/29/2013

Lab Name: TestAmerica Sacramento	Job No.: <u>320-22713-1</u>		
SDG No.:			
Client Sample ID: <u>8514</u>	Lab Sample ID: <u>320-22713-1</u>		
Matrix: Air	Lab File ID: MS7101722.D		
Analysis Method: TO-15	Date Collected: 10/14/2016 00:00		
Sample wt/vol: 500(mL)	Date Analyzed: 10/18/2016 05:49		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: <u>0.32(mm)</u>		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 132885	Units: ppb v/v		

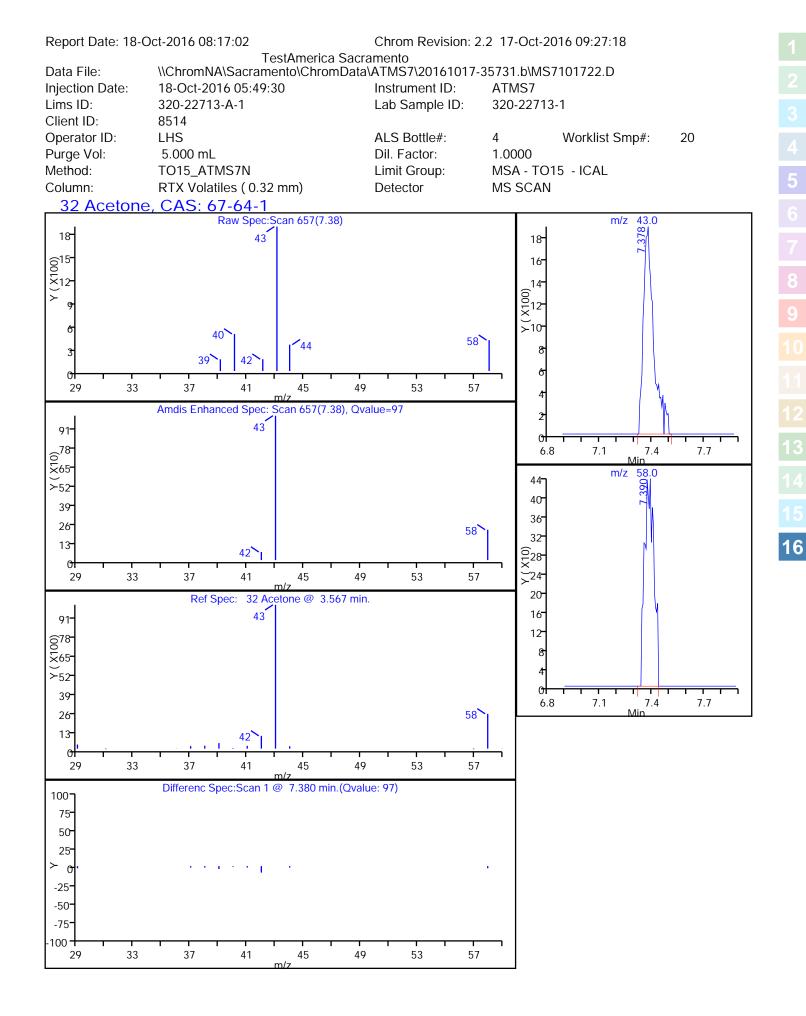
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	0.42	J	5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	ND		0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.11
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

Lab Name: TestAmerica Sacramento	Job No.: <u>320-22713-1</u>		
SDG No.:			
Client Sample ID: 8514	Lab Sample ID: <u>320-22713-1</u>		
Matrix: Air	Lab File ID: MS7101722.D		
Analysis Method: TO-15	Date Collected: 10/14/2016 00:00		
Sample wt/vol: 500(mL)	Date Analyzed: 10/18/2016 05:49		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 132885	Units: ppb v/v		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	ND		0.80	0.13
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10
78-87-5	1,2-Dichloropropane	ND		0.40	0.24
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088
123-91-1	1,4-Dioxane	ND		0.80	0.10
141-78-6	Ethyl acetate	ND		0.30	0.18
100-41-4	Ethylbenzene	ND		0.40	0.063
622-96-8	4-Ethyltoluene	ND		0.40	0.19
142-82-5	n-Heptane	ND		0.80	0.063
87-68-3	Hexachlorobutadiene	ND		2.0	0.43
110-54-3	n-Hexane	ND		0.80	0.075
591-78-6	2-Hexanone	ND		0.40	0.087
98-82-8	Isopropylbenzene	ND		0.80	0.10
99-87-6	4-Isopropyltoluene	ND		0.80	0.12
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.050
80-62-6	Methyl methacrylate	ND		0.80	0.16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14
75-09-2	Methylene Chloride	ND		0.40	0.072
98-83-9	alpha-Methylstyrene	ND		0.40	0.065
91-20-3	Naphthalene	ND		0.80	0.56
111-65-9	n-Octane	ND		0.40	0.055
109-66-0	n-Pentane	ND		0.80	0.26
115-07-1	Propylene	ND		0.40	0.099
103-65-1	N-Propylbenzene	ND		0.40	0.059
100-42-5	Styrene	ND		0.40	0.059
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069
127-18-4	Tetrachloroethene	ND		0.40	0.051
109-99-9	Tetrahydrofuran	ND		0.80	0.079
108-88-3	Toluene	ND		0.40	0.051
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067

Lab Name: TestAmerica Sacramento	Job No.: <u>320-22713-1</u>		
SDG No.:			
Client Sample ID: <u>8514</u>	Lab Sample ID: <u>320-22713-1</u>		
Matrix: Air	Lab File ID: MS7101722.D		
Analysis Method: TO-15	Date Collected: 10/14/2016 00:00		
Sample wt/vol: 500(mL)	Date Analyzed: 10/18/2016 05:49		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 132885	Units: ppb v/v		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054
75-37-6	1,1-Difluoroethane	ND		0.40	0.051
111-84-2	n-Nonane	ND		0.80	0.058


				-
CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	82		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	103		70-130
2037-26-5	Toluene-d8 (Surr)	99		70-130

TestAmerica Sacramento Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type: Inject. Date: Purge Vol: Sample Info: Misc. Info.: Operator ID:	\\ChromNA\Sacramento\ChromData 320-22713-A-1 8514 Client 18-Oct-2016 05:49:30 5.000 mL 320-22713-A-1 500 mL CAN CERT LHS	a\ATMS7\20161017- ALS Bottle#: Dil. Factor: Instrument ID:	-35731.b\MS 4 1.0000 ATMS7	S7101722.D Worklist Smp#:	20
Method: Limit Group: Last Update: Integrator: Quant Method: Last ICal File:	\\ChromNA\Sacramento\ChromData MSA - TO15 - ICAL 18-Oct-2016 08:16:39 RTE Internal Standard \\ChromNA\Sacramento\ChromData	a\ATMS7\20161017- Calib Date: ID Type: Quant By:	-35731.b\TC 14-Oct-20 Deconvol Initial Cal	D16 23:23:30 ution ID ibration	
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK048		Det: MS S	SCAN	

First Level Reviewer: leeh			D	ate:		18-Oct-201	6 08:14:37	
Compound	Sig	RT (min.)	Adj RT (min.)	DIt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
· · ·	_					•		<u> </u>
* 1 Chlorobromomethane (IS)	130	12.269	12.300	-0.031	89	42992	4.00	
* 21,4-Difluorobenzene	114	14.429	14.459	-0.030	94	182361	4.00	
* 3 Chlorobenzene-d5 (IS)	117	21.109	21.139	-0.030	86	160548	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	13.474	13.510	-0.036	98	59322	4.12	
\$ 5 Toluene-d8 (Surr)	100	17.836	17.860	-0.024	98	108313	3.95	
\$ 6 4-Bromofluorobenzene (Surr	95	23.652	23.676	-0.024	91	59578	3.26	
11 Propene	41	3.850	3.844	0.006	36	477	0.0725	
32 Acetone	43	7.378	7.335	0.043	97	7658	0.4248	
75 Toluene	91	18.006	18.030	-0.024	68	1251	0.0254	
Reagents:								
VAMSIS20_00002		Amount	Added: 5	0.00	U	Inits: mL	Run Reager	nt

Report Date: 18-0	Oct-2016 08:17:01		n: 2.2 17-Oct-2016 09:2	7:18		
Data File:	\\ChromNA\Sacramento\@	erica Sacramento ChromData\ATMS7\201610		.D		
Injection Date: Lims ID:	18-Oct-2016 05:49:30 320-22713-A-1	Instrument ID: Lab Sample ID:	ATMS7 320-22713-1		Operator ID: Worklist Smp#:	LHS 20
Client ID:	8514	Lab Sample 12.	520-22715-1			20
Purge Vol:	5.000 mL	Dil. Factor:	1.0000		ALS Bottle#:	4
Method: Column: RTX Vo	TO15_ATMS7N latiles (0.32 mm)	Limit Group:	MSA - TO15 - ICAI	_		
		MS71(01722[MS SCAN Chro]:Total			
16				21.109)	58)+	
15		14.42	17.8	(21.	23.6	
		4-Difluorobenzene(14.423)	<mark>\$ Toluene-d</mark> 8 (Surr)(17.836)+	Chlorobenzene-d5 (IS)()(Tru	
14		enze	18 (S	le-d	e (S	
13		orop	sue-c	uzer	nzer	
		Diflu	olue	robe	lobe	
12-		, -	\$	Chic	ofluo	
11-				*	4-Bromofluorobenzene (Surr)(23.658)+	
)(12			\$ 4-E	
10-		Chlorobromomethane (IS)(12.269) iane-d4 (Surr)(13.474)				
(000		thane 3.47				
۲ (X10000) ۹		* Chlorobromomethane (1,2-Dichloroethane-d4 (Surr)(13.474)				
) ≻ 8		orom t (Su				
		llorok he-d4				
7		sthar Cr				
6		loro				
		Dich				
5		1,2				
4		↔ 				
4						
3	(8)					
3.844)	7.37					
	one(
Propene(Acetone(7.378)					
The state of the s	may when we have all the set of t	- HUMAN - AL IN ALLEL AND A ALLEL AND A ALLEL AND A	handle Wheel have a filler have been had been and the shifts	n della maria a della	han aldele land a state and a state at	ul La constanción o de a la del de la constanción de la dedal de la desta de la constanción de la desta de la d
0 1 1 3.0 5.0	7.0 9.0	11.0 13.0 15.0	17.0 19.0 Min	21.0	23.0 25.0	27.0 29.0 31.0

Lab Name: TestAmerica Sacramento	Job No.: <u>320-23657-1</u>				
SDG No.:					
Client Sample ID: <u>7511</u>	Lab Sample ID: <u>320-23657-1</u>				
Matrix: Air	Lab File ID: MS7111813.D				
Analysis Method: TO-15	Date Collected: <u>11/17/2016</u> 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: <u>11/18/2016</u> 20:48				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 138459	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	ND		5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	ND		0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.27
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

Lab Name: TestAmerica Sacramento	Job No.: <u>320-23657-1</u>				
SDG No.:					
Client Sample ID: 7511	Lab Sample ID: <u>320-23657-1</u>				
Matrix: Air	Lab File ID: MS7111813.D				
Analysis Method: TO-15	Date Collected: <u>11/17/2016</u> 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: 11/18/2016 20:48				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: <u>0.32(mm)</u>				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 138459	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	ND		0.80	0.13
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10
78-87-5	1,2-Dichloropropane	ND		0.40	0.24
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088
123-91-1	1,4-Dioxane	ND		0.80	0.10
141-78-6	Ethyl acetate	ND		0.30	0.18
100-41-4	Ethylbenzene	ND		0.40	0.063
622-96-8	4-Ethyltoluene	ND		0.40	0.19
142-82-5	n-Heptane	ND		0.80	0.063
87-68-3	Hexachlorobutadiene	ND		2.0	0.43
110-54-3	n-Hexane	ND		0.80	0.075
591-78-6	2-Hexanone	ND		0.40	0.087
98-82-8	Isopropylbenzene	ND		0.80	0.10
99-87-6	4-Isopropyltoluene	ND		0.80	0.12
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.12
80-62-6	Methyl methacrylate	ND		0.80	0.16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14
75-09-2	Methylene Chloride	ND		0.40	0.072
98-83-9	alpha-Methylstyrene	ND		0.40	0.065
91-20-3	Naphthalene	ND		0.80	0.56
111-65-9	n-Octane	ND		0.40	0.055
109-66-0	n-Pentane	ND		0.80	0.26
115-07-1	Propylene	0.12	J	0.40	0.099
103-65-1	N-Propylbenzene	ND		0.40	0.059
100-42-5	Styrene	ND		0.40	0.059
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069
127-18-4	Tetrachloroethene	ND		0.40	0.051
109-99-9	Tetrahydrofuran	ND		0.80	0.21
108-88-3	Toluene	ND		0.40	0.051
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067

16

Page 51 of 61

FORM I TO-15

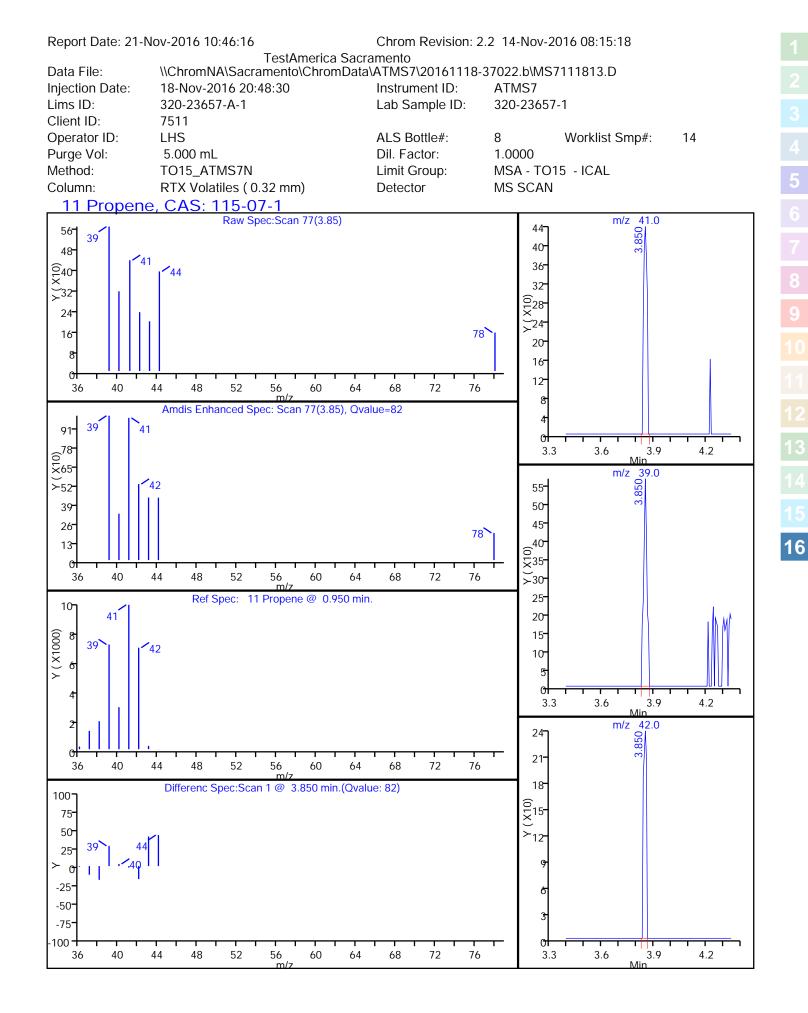
Lab Name: TestAmerica Sacramento	Job No.: <u>320-23657-1</u>		
SDG No.:			
Client Sample ID: 7511	Lab Sample ID: <u>320-23657-1</u>		
Matrix: Air	Lab File ID: <u>MS7111813.D</u>		
Analysis Method: TO-15	Date Collected: <u>11/17/2016</u> 00:00		
Sample wt/vol: 500(mL)	Date Analyzed: 11/18/2016 20:48		
Soil Aliquot Vol:	Dilution Factor: 1		
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)		
% Moisture:	Level: (low/med) Low		
Analysis Batch No.: 138459	Units: ppb v/v		

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	89		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	109		70-130
2037-26-5	Toluene-d8 (Surr)	103		70-130

21-Nov-2016 10:46:15

TestAmerica Sacramento Target Compound Quantitation Report


Data File: Lims ID: Client ID: Sample Type:	\\ChromNA\Sacramento\ChromData 320-23657-A-1 7511 Client	a\ATMS7\20161118-	37022.b\MS	7111813.D	
Inject. Date:	18-Nov-2016 20:48:30	ALS Bottle#:	8	Worklist Smp#:	14
Purge Vol: Sample Info: Misc. Info.:	5.000 mL 320-23657-A-1 500 mL CAN CERT	Dil. Factor:	1.0000		
Operator ID:	LHS	Instrument ID:	ATMS7		
Method: Limit Group:	\\ChromNA\Sacramento\ChromData MSA - TO15 - ICAL	a\ATMS7\20161118-	37022.b\TO	15_ATMS7N.m	
Last Update:	21-Nov-2016 10:46:15	Calib Date:	11-Nov-20	016 18:11:30	
Integrator:	RTE	ID Type:	Deconvolu	ution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cali		
Last ICal File:	\\ChromNA\Sacramento\ChromData	a\ATMS7\20161111-	36770.b\MS	57111111.D	
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK013		Det: MS S	SCAN	

Date:

First Level Reviewer: phanthasena

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
* 1 Chlorobromomethane (IS)	130	12.294	12.336	-0.042	90	37418	4.00	
* 21,4-Difluorobenzene	114	14.453	14.490	-0.037	94	154055	4.00	
* 3 Chlorobenzene-d5 (IS)	117	21.139	21.163	-0.024	87	149437	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	13.498	13.535	-0.037	98	56278	4.36	
\$ 5 Toluene-d8 (Surr)	100	17.860	17.897	-0.037	97	93994	4.10	
\$ 6 4-Bromofluorobenzene (Surr	95	23.676	23.706	-0.030	91	66103	3.56	
11 Propene	41	3.850	3.868	-0.018	82	633	0.1184	
17 Butane	43	4.598	4.628	-0.030	1	619	0.0691	
65 Trichloroethene	130	15.220	15.256	-0.036	1	335	0.0241	
Reagents:								
VAMSIS20_00002		Amount	Added: 5	0.00	L	Inits: mL	Run Reager	nt

Data File: Injection Date: Lims ID:	\\ChromNA\Sacramento 18-Nov-2016 20:48:30 320-23657-A-1	merica Sacrame \\ChromData\AT Ins	nrom Revision ento MS7\2016111 strument ID: b Sample ID:		<i>I</i> IS7111813.		Operator ID: Worklist Smp#	LHS : 14		
Client ID: Purge Vol:	7511 5.000 mL		l. Factor:	1.0000			ALS Bottle#:	8		
Method: Column: RTX Vol	TO15_ATMS7N atiles (0.32 mm)	Lir	nit Group:	MSA - T	FO15 - ICAL	-				
15	、		MS711	1813[MS SCA		<u>[]</u>	+			
14-			14.453)	\$ Toluene-d8 (Surr)(17.860)+		(IS)(21.127) والا	4-Bromofluorobenzene (Surr)(23.676)+			
13-			-Difluorobenzene(14.453)	ene-d8 (S	l	<u>Chlorobenzene-d5 (IS)(</u>	enzene (S			
11-			,4-Difluoro	\$ Tolu		* Chlorob	mofluorob			
10-		5)(12.294)	+				\$ 4-Bro			
۲ (X10000) مو		Chlorobromomethane (IS)(12.294)	\$ 1,2-Dichloroethane-d4 (Surr)(13.504)+							
7 6			loroethane-d							
5			- \$ 1,2-Dict							
3 ⁺ +(0 <u>6</u>			e(15.214)							
L 2 Propene(3.850) Butane(4.598)			Trichloroethene(15.21							
0 July 3.0 5.0	الماليكين من من المستحدة الكليكي من المستحدة المستحدة المستحدة المستحدة المستحدة المستحدة المستحدة المستحدة ال 1 1 1 7.0 9.0	11.0 13	hermal Madening have been blowned	17.0 Min	19.0	21.0	23.0 25.0	₩₩₩₩₩₩₩₩₩ 1 27.0	1 1 29.0	<u>#####################################</u>

Page 55 of 61

Lab Name: TestAmerica Sacramento	Job No.: 320-23671-1				
SDG No.:					
Client Sample ID: <u>34001768</u>	Lab Sample ID: <u>320-23671-1</u>				
Matrix: Air	Lab File ID: MS9111821.D				
Analysis Method: TO-15	Date Collected: <u>11/17/2016</u> 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: <u>11/19/2016</u> 06:03				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 138417	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
67-64-1	Acetone	ND		5.0	0.18
107-02-8	Acrolein	ND		2.0	0.22
107-13-1	Acrylonitrile	ND		2.0	0.19
107-05-1	Allyl chloride	ND		0.80	0.11
71-43-2	Benzene	ND		0.40	0.079
100-44-7	Benzyl chloride	ND		0.80	0.16
75-27-4	Bromodichloromethane	ND		0.30	0.066
75-25-2	Bromoform	ND		0.40	0.070
74-83-9	Bromomethane	ND		0.80	0.34
106-99-0	1,3-Butadiene	ND		0.80	0.15
106-97-8	n-Butane	ND		0.40	0.15
78-93-3	2-Butanone (MEK)	ND		0.80	0.20
75-65-0	tert-Butyl alcohol (TBA)	ND		2.0	0.11
104-51-8	n-Butylbenzene	ND		0.40	0.18
135-98-8	sec-Butylbenzene	ND		0.40	0.070
98-06-6	tert-Butylbenzene	ND		0.80	0.068
75-15-0	Carbon disulfide	ND		0.80	0.078
56-23-5	Carbon tetrachloride	ND		0.80	0.064
108-90-7	Chlorobenzene	ND		0.30	0.064
75-45-6	Chlorodifluoromethane	ND		0.80	0.27
75-00-3	Chloroethane	ND		0.80	0.31
67-66-3	Chloroform	ND		0.30	0.095
74-87-3	Chloromethane	ND		0.80	0.20
95-49-8	2-Chlorotoluene	ND		0.40	0.080
110-82-7	Cyclohexane	ND		0.40	0.084
124-48-1	Dibromochloromethane	ND		0.40	0.079
106-93-4	1,2-Dibromoethane (EDB)	ND		0.80	0.075
74-95-3	Dibromomethane	ND		0.40	0.057
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroetha ne	ND		0.40	0.16
95-50-1	1,2-Dichlorobenzene	ND		0.40	0.13
541-73-1	1,3-Dichlorobenzene	ND		0.40	0.11
106-46-7	1,4-Dichlorobenzene	ND		0.40	0.15
75-71-8	Dichlorodifluoromethane	ND		0.40	0.15
75-34-3	1,1-Dichloroethane	ND		0.30	0.072
107-06-2	1,2-Dichloroethane	ND		0.80	0.088

Lab Name: TestAmerica Sacramento	Job No.: <u>320-23671-1</u>				
SDG No.:					
Client Sample ID: <u>34001768</u>	Lab Sample ID: <u>320-23671-1</u>				
Matrix: Air	Lab File ID: MS9111821.D				
Analysis Method: TO-15	Date Collected: <u>11/17/2016</u> 00:00				
Sample wt/vol: 500(mL)	Date Analyzed: <u>11/19/2016</u> 06:03				
Soil Aliquot Vol:	Dilution Factor: 1				
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 138417	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
75-35-4	1,1-Dichloroethene	ND		0.80	0.13
156-59-2	cis-1,2-Dichloroethene	ND		0.40	0.089
156-60-5	trans-1,2-Dichloroethene	ND		0.40	0.10
78-87-5	1,2-Dichloropropane	ND		0.40	0.24
10061-01-5	cis-1,3-Dichloropropene	ND		0.40	0.10
10061-02-6	trans-1,3-Dichloropropene	ND		0.40	0.088
123-91-1	1,4-Dioxane	ND		0.80	0.10
141-78-6	Ethyl acetate	ND		0.30	0.18
100-41-4	Ethylbenzene	ND		0.40	0.063
622-96-8	4-Ethyltoluene	ND		0.40	0.19
142-82-5	n-Heptane	ND		0.80	0.063
87-68-3	Hexachlorobutadiene	ND		2.0	0.43
110-54-3	n-Hexane	ND		0.80	0.075
591-78-6	2-Hexanone	ND		0.40	0.087
98-82-8	Isopropylbenzene	ND		0.80	0.10
99-87-6	4-Isopropyltoluene	ND		0.80	0.12
1634-04-4	Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.12
80-62-6	Methyl methacrylate	ND		0.80	0.16
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.40	0.14
75-09-2	Methylene Chloride	0.10	J	0.40	0.072
98-83-9	alpha-Methylstyrene	ND		0.40	0.065
91-20-3	Naphthalene	ND		0.80	0.56
111-65-9	n-Octane	ND		0.40	0.055
109-66-0	n-Pentane	ND		0.80	0.26
115-07-1	Propylene	ND		0.40	0.099
103-65-1	N-Propylbenzene	ND		0.40	0.059
100-42-5	Styrene	ND		0.40	0.059
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.40	0.069
127-18-4	Tetrachloroethene	ND		0.40	0.051
109-99-9	Tetrahydrofuran	ND		0.80	0.21
108-88-3	Toluene	ND		0.40	0.051
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethan e	ND		0.40	0.16
120-82-1	1,2,4-Trichlorobenzene	ND		2.0	0.43
71-55-6	1,1,1-Trichloroethane	ND		0.30	0.065
79-00-5	1,1,2-Trichloroethane	ND		0.40	0.067

Lab Name: TestAmerica Sacramento	Job No.: 320-23671-1			
SDG No.:				
Client Sample ID: <u>34001768</u>	Lab Sample ID: <u>320-23671-1</u>			
Matrix: Air	Lab File ID: MS9111821.D			
Analysis Method: TO-15	Date Collected: <u>11/17/2016</u> 00:00			
Sample wt/vol: 500(mL)	Date Analyzed: <u>11/19/2016</u> 06:03			
Soil Aliquot Vol:	Dilution Factor: 1			
Soil Extract Vol.:	GC Column: <u>RTX-Volatiles</u> ID: 0.32(mm)			
% Moisture:	Level: (low/med) Low			
Analysis Batch No.: 138417	Units: ppb v/v			

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
79-01-6	Trichloroethene	ND		0.40	0.11
75-69-4	Trichlorofluoromethane	ND		0.40	0.20
96-18-4	1,2,3-Trichloropropane	ND		0.40	0.17
95-63-6	1,2,4-Trimethylbenzene	ND		0.80	0.16
108-67-8	1,3,5-Trimethylbenzene	ND		0.40	0.13
540-84-1	2,2,4-Trimethylpentane	ND		0.40	0.071
108-05-4	Vinyl acetate	ND		0.80	0.15
593-60-2	Vinyl bromide	ND		0.80	0.26
75-01-4	Vinyl chloride	ND		0.40	0.12
179601-23-1	m,p-Xylene	ND		0.80	0.10
95-47-6	o-Xylene	ND		0.40	0.054

CAS NO.	SURROGATE	%REC	Q	LIMITS
460-00-4	4-Bromofluorobenzene (Surr)	96		70-130
17060-07-0	1,2-Dichloroethane-d4 (Surr)	87		70-130
2037-26-5	Toluene-d8 (Surr)	99		70-130

21-Nov-2016 12:32:12

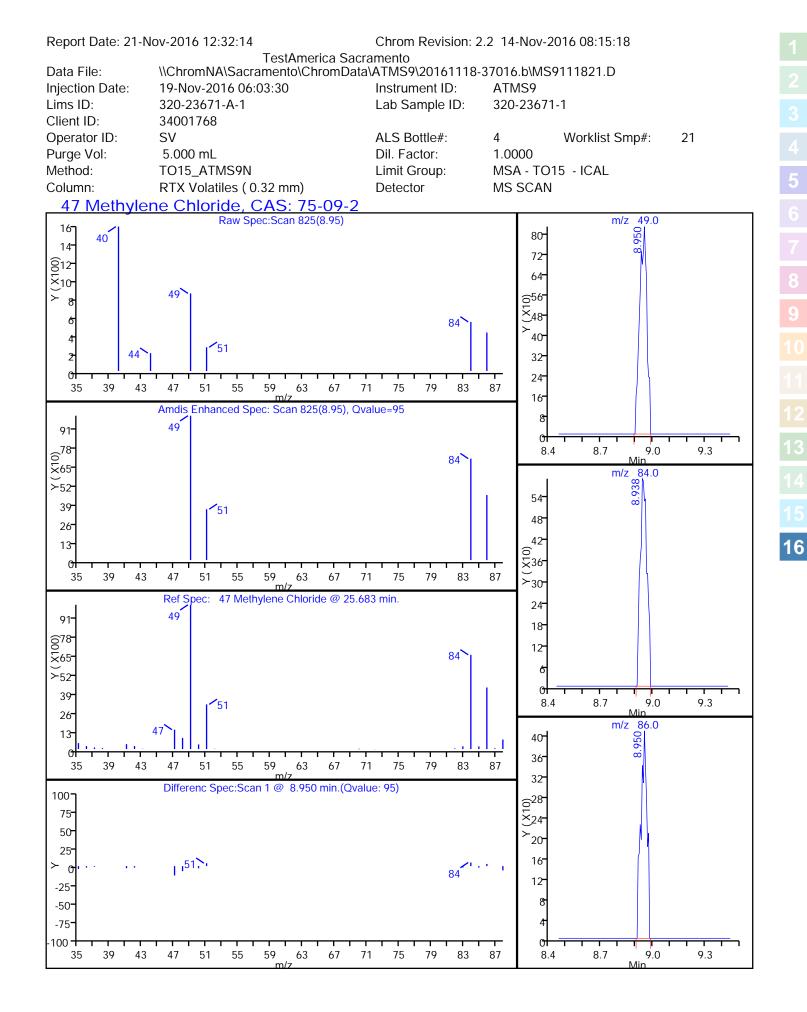
OnCol Amt

TestAmerica Sacramento Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type: Inject. Date:	\\ChromNA\Sacramento\ChromData 320-23671-A-1 34001768 Client 19-Nov-2016 06:03:30	a\ATMS9\20161118- ALS Bottle#:	37016.b\MS	9111821.D Worklist Smp#:	21
Purge Vol:	5.000 mL	Dil. Factor:	1.0000	worklist Ship#.	21
Sample Info:	320-23671-A-1				
Misc. Info.:	500				
Operator ID:	SV	Instrument ID:	ATMS9		
Method: Limit Group:	\\ChromNA\Sacramento\ChromData MSA - TO15 - ICAL	a\ATMS9\20161118-	37016.b\TO	15_ATMS9N.m	
Last Update:	21-Nov-2016 12:32:13	Calib Date:	14-Oct-20	016 22:01:30	
Integrator:	RTE	ID Type:	Deconvolu	ution ID	
Quant Method:	Internal Standard	Quant By:	Initial Cali	bration	
Last ICal File:	\\ChromNA\Sacramento\ChromData	a\ATMS9\20161014-	35678.b\MS	59101412.D	
Column 1 : Process Host:	RTX Volatiles (0.32 mm) XAWRK013		Det: MS S	SCAN	

Date:

DIt RT


First Level Reviewer: phanthasena

r inst Level Reviewer, phantinascha	
	RT

Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v	Flags
* 1 Chlorobromomethane (IS)	130	12.412	12.424	-0.012	96	60774	4.00	
* 21,4-Difluorobenzene	114	14.511	14.523	-0.012	94	253155	4.00	
* 3 Chlorobenzene-d5 (IS)	117	20.436	20.436	0.000	86	225263	4.00	
\$ 41,2-Dichloroethane-d4 (Sur	65	13.586	13.598	-0.012	98	71611	3.47	
\$ 5 Toluene-d8 (Surr)	100	17.680	17.686	-0.006	99	150039	3.97	
\$ 6 4-Bromofluorobenzene (Surr	174	22.358	22.358	0.000	96	124875	3.82	
14 Propene	41	4.193	4.193	0.000	43	942	0.0592	
22 Butane	43	4.965	4.953	0.012	25	1207	0.0463	
31 Acetone	43	7.758	7.691	0.067	94	4299	0.1455	
47 Methylene Chloride	49	8.950	8.950	0.000	95	2456	0.1049	
85 Toluene	91	17.832	17.838	-0.006	88	2420	0.0363	
Reagents:								
VAMSIS20_00002		Amount	Added: 5	0.00	ι	Jnits: mL	Run Reage	nt

Adj RT

Data File $VL promitivi Nacramento) (promitata) VLVNV/JULELTX-Z/ULE NVNV/NVLTX ZI D$	
Data File:\\ChromNA\Sacramento\ChromData\ATMS9\20161118-37016.b\MS9111821.DInjection Date:19-Nov-2016 06:03:30Instrument ID:ATMS9Operator ID:	SV
Lims ID: 320-23671-A-1 Lab Sample ID: 320-23671-1 Worklist Smp#	
Client ID: 34001768	
Purge Vol:5.000 mLDil. Factor:1.0000ALS Bottle#:	4
Method: TO15_ATMS9N Limit Group: MSA - TO15 - ICAL	
Column: RTX Volatiles (0.32 mm) Y Scaling: Method Defined: Scale to the Nth La	rgest Peak: 2
MS9111821[MS SCAN Chro]:Total	
51 52 52 52 53 53 54 55 54 53 55 54 55 56 57 56 57 56 57 56 57 56 57 56 57 56 57 57 58 59 50 51 51 52 51 52	
19 × 19 × 19	
N N	
¹	
4 8 6 1,2-Dichloroethane-d4 (Surr)(13.586) 3 1,2-Dichloroethane-d4 (Surr)(13.586)	
10 ⁻	
9 <u></u>	
8	
0	
1 = 1 = 1	
1 1 <td></td>	
Image: Network Image:	والمرود والمرافعة والمحالية والمراجعة والمحاولة والمحاولة والمحاولة والمحاولة والمحاولة والمحالية والمحالية وال
	and the second
3.0 5.0 7.0 9.0 11.0 13.0 15.0 17.0 19.0 21.0 23.0	25.0 27.0 29.0

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Phoenix 4625 East Cotton Ctr Blvd Suite 189 Phoenix, AZ 85040 Tel: (602)437-3340

TestAmerica Job ID: 550-73249-1

Client Project/Site: Cooper and Commerce SP0146B

For:

Geosyntec Consultants, Inc. 11811 N Tatum Blvd Ste P186 Phoenix, Arizona 85028

Attn: Marla Miller

Authorized for release by: 11/28/2016 11:12:28 AM

Camille Murray, Project Manager I (949)261-1022 camille.murray@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total**Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Sample Summary	5
Detection Summary	6
Client Sample Results	7
Surrogate Summary	17
QC Sample Results	18
QC Association Summary	27
Lab Chronicle	28
Certification Summary	30
Method Summary	31
Chain of Custody	32
Receipt Checklists	33

Definitions/Glossary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Qualifiers

GC/MS VOA

GC/WS VC		
Qualifier	Qualifier Description	
N1	See case narrative.	
D2	Sample required dilution due to high concentration of analyte.	
M1	Matrix spike recovery was high, the associated blank spike recovery was acceptable.	
E4	Concentration estimated. Analyte was detected below laboratory minimum reporting level (MRL) but above MDL.	

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	-
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Job ID: 550-73249-1

Laboratory: TestAmerica Phoenix

Narrative

Job Narrative 550-73249-1

Comments

No additional comments.

Receipt

The samples were received on 11/18/2016 4:44 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.5° C.

Receipt Exceptions

The following sample was received at the laboratory without a sample collection time or date documented on the chain of custody: TB-11172016 (550-73249-6). The laboratory was instructed to use a sample collection time of 00:01 and the sample date as listed in the sample ID.

GC/MS VOA

Method(s) 8260B: The client provided less than the prescribed amount for the extraction of the following samples :SB2-40-11182016 (550-73249-1) and SB1-75-11182016 (550-73249-5). The methanol kit weights extracted did not fall within +/-25% of the prescribed 10 grams necessary for the analysis of soils by 8260B using methanol kits. The results will be reported and flagged with an N1 qualifier, see analytical batch 550-104030.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B TestAmerica Job ID: 550-73249-1

5

Lab Sample ID Client Sample ID		Matrix	Collected	Received	
550-73249-1	SB2-40-11182016	Solid	11/18/16 10:30	11/18/16 16:44	
550-73249-2	SB2-69-11182016	Solid	11/18/16 13:30	11/18/16 16:44	
550-73249-3	SB2-69-11182016-DUP	Solid	11/18/16 13:30	11/18/16 16:44	
550-73249-4	SB1-45-11182016	Solid	11/17/16 11:17	11/18/16 16:44	
550-73249-5	SB1-75-11182016	Solid	11/17/16 14:47	11/18/16 16:44	
550-73249-6	TB-11172016	Solid	11/17/16 00:01	11/18/16 16:44	

TestAmerica Phoenix

Detection Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B

Client Sample ID: SB2-40-11182016

Lab Sample ID: 550-73249-1

No Detections.

Client Sample ID: SB2-69-11182016						Lab Sample ID: 550-73249-			
Analyte	Result	Qualifier	RL	Unit	Dil Fac	Method	Prep Type		
Tetrachloroethene - DL	46000	D2	1100	ug/Kg	10	8260B	Total/NA		
Client Sample ID: SB2-6	9-11182016	-DUP			Lab Sa	ample ID:	550-73249-3		
Analyte	Result	Qualifier	RL	Unit	Dil Fac	Method	Prep Type		
Tetrachloroethene	12000		130	ug/Kg	1	8260B	Total/NA		
Client Sample ID: SB1-4	5-11182016				Lab Sa	ample ID:	550-73249-4		
Client Sample ID: SB1-7	/5-11182016				Lab Sa	ample ID:	550-73249-{		
Analyte	Result	Qualifier	RL	Unit	Dil Fac	Method	Prep Type		
	77000	D2	1500	ug/Kg	10	8260B	Total/NA		
Tetrachloroethene - DL	11000			0 0					

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client Sample ID: SB2-40-11182016

Lab Sample ID: 550-73249-1 Matrix: Solid

5

7

Date Collected: 11/18/16 10:30 Date Received: 11/18/16 16:44

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
,1,1,2-Tetrachloroethane	ND N1	340	ug/Kg	11/18/16 10:30		1
,1,1-Trichloroethane	ND N1	140	ug/Kg	11/18/16 10:30		1
,1,2,2-Tetrachloroethane	ND N1	140	ug/Kg	11/18/16 10:30		1
,1,2-Trichloroethane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	1
,1-Dichloroethane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	1
,1-Dichloroethene	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	1
,1-Dichloropropene	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	1
,2,3-Trichlorobenzene	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2,3-Trichloropropane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2,4-Trichlorobenzene	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2,4-Trimethylbenzene	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2-Dibromo-3-Chloropropane	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2-Dibromoethane (EDB)	ND N1	34	ug/Kg	11/18/16 10:30	11/24/16 00:28	1
,2-Dichlorobenzene	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2-Dichloroethane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,2-Dichloropropane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,3,5-Trimethylbenzene	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
,3-Dichlorobenzene	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
3-Dichloropropane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
4-Dichlorobenzene	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
2-Dichloropropane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
Butanone (MEK)	ND N1	680	ug/Kg	11/18/16 10:30	11/24/16 00:28	
Chlorotoluene	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
Hexanone	ND N1	680	ug/Kg	11/18/16 10:30	11/24/16 00:28	
Chlorotoluene	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
-Methyl-2-pentanone (MIBK)	ND N1	680	ug/Kg	11/18/16 10:30	11/24/16 00:28	
cetone	ND N1	1400	ug/Kg	11/18/16 10:30	11/24/16 00:28	
enzene	ND N1	68	ug/Kg	11/18/16 10:30	11/24/16 00:28	
romobenzene	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
romochloromethane	ND N1	340	ug/Kg	11/18/16 10:30	11/24/16 00:28	
romodichloromethane	ND N1	140	ug/Kg	11/18/16 10:30	11/24/16 00:28	
romoform	ND N1	340	ug/Kg	11/18/16 10:30		
romomethane	ND N1	340	ug/Kg	11/18/16 10:30		
arbon disulfide	ND N1	340	ug/Kg	11/18/16 10:30		
arbon tetrachloride	ND N1	340	ug/Kg	11/18/16 10:30		
hlorobenzene	ND N1	68	ug/Kg	11/18/16 10:30		
hloroethane	ND N1	340	ug/Kg	11/18/16 10:30		
hloroform	ND N1	140	ug/Kg	11/18/16 10:30		
hloromethane	ND N1	340	ug/Kg	11/18/16 10:30		
s-1,2-Dichloroethene	ND N1	140	ug/Kg	11/18/16 10:30		
s-1,3-Dichloropropene	ND N1	140	ug/Kg	11/18/16 10:30		
hlorodibromomethane	ND N1	140	ug/Kg	11/18/16 10:30		
ibromomethane	ND N1	140	ug/Kg	11/18/16 10:30		
ichlorodifluoromethane	ND N1	340	ug/Kg	11/18/16 10:30		
thylbenzene	ND N1	140	ug/Kg ug/Kg	11/18/16 10:30		
exachlorobutadiene	ND N1 ND N1	340		11/18/16 10:30		
domethane			ug/Kg			
	ND N1	340	ug/Kg	11/18/16 10:30		
opropylbenzene n,p-Xylenes	ND N1 ND N1	140 200	ug/Kg ug/Kg	11/18/16 10:30 11/18/16 10:30		

TestAmerica Phoenix

Client Sample ID: SB2-40-11182016 Date Collected: 11/18/16 10:30 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methylene Chloride	ND	N1	680	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Methyl tert-butyl ether	ND	N1	68	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Naphthalene	ND	N1	340	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
n-Butylbenzene	ND	N1	340	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
n-Propylbenzene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
o-Xylene	ND	N1	200	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
p-Isopropyltoluene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
sec-Butylbenzene	ND	N1	340	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Styrene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
tert-Butylbenzene	ND	N1	340	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Tetrachloroethene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Toluene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
trans-1,2-Dichloroethene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
trans-1,3-Dichloropropene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Trichloroethene	ND	N1	140	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Trichlorofluoromethane	ND	N1	340	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Vinyl acetate	ND	N1	1700	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Vinyl chloride	ND	N1	68	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Xylenes, Total	ND	N1	410	ug/Kg		11/18/16 10:30	11/24/16 00:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	118		34.7 - 143			11/18/16 10:30	11/24/16 00:28	1
Toluene-d8 (Surr)	102		39.1 - 145			11/18/16 10:30	11/24/16 00:28	1
4-Bromofluorobenzene (Surr)	92		38.2 - 149			11/18/16 10:30	11/24/16 00:28	1

Client Sample ID: SB2-69-11182016 Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 1,1,1,2-Tetrachloroethane 280 11/18/16 13:30 ND ug/Kg 11/24/16 01:00 1 1,1,1-Trichloroethane ND 110 11/18/16 13:30 11/24/16 01:00 ug/Kg 1 1,1,2,2-Tetrachloroethane ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1.1.2-Trichloroethane ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,1-Dichloroethane ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,1-Dichloroethene ND 280 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 ND 1,1-Dichloropropene 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 ND 280 1,2,3-Trichlorobenzene ug/Kg 11/18/16 13:30 11/24/16 01:00 1 ND 1,2,3-Trichloropropane 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,2,4-Trichlorobenzene 280 11/18/16 13:30 11/24/16 01:00 ND ug/Kg 1 1,2,4-Trimethylbenzene ND 110 11/18/16 13:30 11/24/16 01:00 ug/Kg 1 1,2-Dibromo-3-Chloropropane ND 280 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,2-Dibromoethane (EDB) ND 28 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,2-Dichlorobenzene ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 ND 110 11/18/16 13:30 11/24/16 01:00 1,2-Dichloroethane ug/Kg 1 1,2-Dichloropropane ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,3,5-Trimethylbenzene ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1 1,3-Dichlorobenzene ND ug/Kg 11/18/16 13:30 11/24/16 01:00 110 1 1,3-Dichloropropane ND 110 ug/Kg 11/18/16 13:30 11/24/16 01:00 1

TestAmerica Phoenix

TestAmerica Job ID: 550-73249-1

Lab Sample ID: 550-73249-1 Matrix: Solid

Lab Sample ID: 550-73249-2

Matrix: Solid

Client Sample ID: SB2-69-11182016 Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

TestAmerica Job ID: 550-73249-1

Lab Sample ID: 550-73249-2 Matrix: Solid

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dichlorobenzene	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
2,2-Dichloropropane	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
2-Butanone (MEK)	ND	570	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
2-Chlorotoluene	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
2-Hexanone	ND	570	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
4-Chlorotoluene	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
4-Methyl-2-pentanone (MIBK)	ND	570	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Acetone	ND	1100	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Benzene	ND	57	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Bromobenzene	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Bromochloromethane	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Bromodichloromethane	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Bromoform	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Bromomethane	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Carbon disulfide	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Carbon tetrachloride	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Chlorobenzene	ND	57	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Chloroethane	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Chloroform	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Chloromethane	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
cis-1,2-Dichloroethene	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
cis-1,3-Dichloropropene	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Chlorodibromomethane	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Dibromomethane	ND	110	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Dichlorodifluoromethane	ND	280	ug/Kg			11/24/16 01:00	1
Ethylbenzene	ND	110	ug/Kg			11/24/16 01:00	1
Hexachlorobutadiene	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	
Iodomethane	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Isopropylbenzene	ND	110	ug/Kg			11/24/16 01:00	1
m,p-Xylenes	ND	170	ug/Kg			11/24/16 01:00	
Methylene Chloride	ND	570	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
Methyl tert-butyl ether	ND	57	ug/Kg			11/24/16 01:00	1
Naphthalene	ND	280	ug/Kg		11/18/16 13:30	11/24/16 01:00	1
n-Butylbenzene	ND	280	ug/Kg			11/24/16 01:00	1
n-Propylbenzene	ND	110	ug/Kg			11/24/16 01:00	1
o-Xylene	ND	170	ug/Kg			11/24/16 01:00	1
p-Isopropyltoluene	ND	110	ug/Kg			11/24/16 01:00	1
sec-Butylbenzene	ND	280	ug/Kg			11/24/16 01:00	1
Styrene	ND	110	ug/Kg			11/24/16 01:00	
tert-Butylbenzene	ND	280	ug/Kg			11/24/16 01:00	1
Toluene	ND	110	ug/Kg			11/24/16 01:00	1
trans-1,2-Dichloroethene	ND	110	ug/Kg			11/24/16 01:00	
trans-1,3-Dichloropropene	ND	110	ug/Kg			11/24/16 01:00	1
Trichloroethene	ND	110	ug/Kg			11/24/16 01:00	1
Trichlorofluoromethane	ND	280	ug/Kg			11/24/16 01:00	
Vinyl acetate	ND	1400	ug/Kg ug/Kg			11/24/16 01:00	1
Vinyl chloride	ND	57	ug/Kg ug/Kg			11/24/16 01:00	1
		JI	uy/rxy		11/10/10 13.30	11/2-1/10 01.00	

TestAmerica Phoenix

11/18/16 13:30 11/24/16 01:00

340

ug/Kg

ND

Xylenes, Total

Client Sample ID: SB2-69-11182016 Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	106		34.7 - 143
Toluene-d8 (Surr)	97		39.1 - 145
4-Bromofluorobenzene (Surr)	91		38.2 - 149

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	46000	D2	1100	ug/Kg		11/18/16 13:30	11/25/16 03:39	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	118		34.7 - 143			11/18/16 13:30	11/25/16 03:39	10
Toluene-d8 (Surr)	113		39.1 - 145			11/18/16 13:30	11/25/16 03:39	10
4-Bromofluorobenzene (Surr)	94		38.2 - 149			11/18/16 13:30	11/25/16 03:39	10

Client Sample ID: SB2-69-11182016-DUP Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,1,1-Trichloroethane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,1,2,2-Tetrachloroethane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,1,2-Trichloroethane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,1-Dichloroethane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,1-Dichloroethene	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,1-Dichloropropene	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2,3-Trichlorobenzene	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2,3-Trichloropropane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2,4-Trichlorobenzene	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2,4-Trimethylbenzene	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2-Dibromo-3-Chloropropane	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2-Dibromoethane (EDB)	ND	33	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2-Dichlorobenzene	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2-Dichloroethane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,2-Dichloropropane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,3,5-Trimethylbenzene	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,3-Dichlorobenzene	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,3-Dichloropropane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
1,4-Dichlorobenzene	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
2,2-Dichloropropane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
2-Butanone (MEK)	ND	650	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
2-Chlorotoluene	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
2-Hexanone	ND	650	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
4-Chlorotoluene	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
4-Methyl-2-pentanone (MIBK)	ND	650	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
Acetone	ND	1300	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
Benzene	ND	65	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
Bromobenzene	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
Bromochloromethane	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
Bromodichloromethane	ND	130	ug/Kg		11/18/16 13:30	11/24/16 01:31	1
Bromoform	ND	330	ug/Kg		11/18/16 13:30	11/24/16 01:31	1

TestAmerica Phoenix

Lab Sample ID: 550-73249-2 Matrix: Solid

11/18/16 13:30 11/24/16 01:00

11/18/16 13:30 11/24/16 01:00

11/18/16 13:30 11/24/16 01:00

Lab Sample ID: 550-73249-3

Analyzed

Dil Fac

1

1

1

Fac 10

Matrix: Solid

Prepared

13

11/28/2016

RL

330

330

330

65

330

130

330

130

130

130

130

330

130

330

Unit

ug/Kg

D

Prepared

Analyte

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Chlorodibromomethane

Dichlorodifluoromethane

Hexachlorobutadiene

Chloroethane

Chloroform

Carbon tetrachloride

Client Sample ID: SB2-69-11182016-DUP Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

ND

99

100

TestAmerica Job ID: 550-73249-1

Lab Sample ID: 550-73249-3 Matrix: Solid

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

11/18/16 13:30 11/24/16 01:31

Lab Sample ID: 550-73249-4

Analyzed

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

	3

%Recovery G	Qualifier Limits		Prepared	Analyzed	Dil Fac
ND	390	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	65	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	1600	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	330	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
12000	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	330	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	330	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	200	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	330	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	330	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	65	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	650	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	200	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	130	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
ND	330	ug/Kg	11/18/16 13:30	11/24/16 01:31	1
	ND ND ND ND ND ND ND ND ND 12000 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND 130 ND 200 ND 650 ND 65 ND 330 ND 330 ND 330 ND 130 ND 330 ND 130 ND 330 ND 130 ND 130 ND 1600	ND 130 ug/Kg ND 200 ug/Kg ND 650 ug/Kg ND 650 ug/Kg ND 65 ug/Kg ND 330 ug/Kg ND 330 ug/Kg ND 330 ug/Kg ND 130 ug/Kg ND 130	ND 130 ug/Kg 11/18/16 13:0 ND 200 ug/Kg 11/18/16 13:30 ND 650 ug/Kg 11/18/16 13:30 ND 650 ug/Kg 11/18/16 13:30 ND 65 ug/Kg 11/18/16 13:30 ND 330 ug/Kg 11/18/16 13:30 ND 330 ug/Kg 11/18/16 13:30 ND 330 ug/Kg 11/18/16 13:30 ND 130 ug/K	ND 130 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 200 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 650 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 655 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 330 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 130 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 130 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 130 ug/Kg 11/18/16 13.30 11/24/16 01.31 ND 130

Client Sample ID: SB1-45-11182016 Date Collected: 11/17/16 11:17 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS)									
	Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
	1,1,1,2-Tetrachloroethane	ND	240	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
	1,1,1-Trichloroethane	ND	95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	

39.1 - 145

38.2 - 149

TestAmerica Phoenix

Matrix: Solid

Client Sample ID: SB1-45-11182016 Date Collected: 11/17/16 11:17 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 550-73249-4 Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	ND		95	ug/Kg	_	11/17/16 11:17	11/24/16 02:03	1
1,1,2-Trichloroethane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,1-Dichloroethane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,1-Dichloroethene	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,1-Dichloropropene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2,3-Trichlorobenzene	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2,3-Trichloropropane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2,4-Trichlorobenzene	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2,4-Trimethylbenzene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2-Dibromo-3-Chloropropane	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2-Dibromoethane (EDB)	ND		24	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2-Dichlorobenzene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2-Dichloroethane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,2-Dichloropropane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,3,5-Trimethylbenzene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,3-Dichlorobenzene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,3-Dichloropropane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
1,4-Dichlorobenzene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
2,2-Dichloropropane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
2-Butanone (MEK)	ND	4	80	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
2-Chlorotoluene	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
2-Hexanone	ND	4	80	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
4-Chlorotoluene	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
4-Methyl-2-pentanone (MIBK)	ND	4	80	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Acetone	ND	9	50	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Benzene	ND		48	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Bromobenzene	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Bromochloromethane	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Bromodichloromethane	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Bromoform	ND	2	40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Bromomethane	ND		40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Carbon disulfide	ND		40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Carbon tetrachloride	ND		40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Chlorobenzene	ND		48	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Chloroethane	ND		40	ug/Kg		11/17/16 11:17	11/24/16 02:03	1
Chloroform	ND		95	ug/Kg			11/24/16 02:03	1
Chloromethane	ND	2	40	ug/Kg			11/24/16 02:03	1
cis-1,2-Dichloroethene	ND		95	ug/Kg			11/24/16 02:03	1
cis-1,3-Dichloropropene	ND		95	ug/Kg			11/24/16 02:03	1
Chlorodibromomethane	ND		95	ug/Kg			11/24/16 02:03	1
Dibromomethane	ND		95	ug/Kg			11/24/16 02:03	1
Dichlorodifluoromethane	ND		40	ug/Kg			11/24/16 02:03	1
Ethylbenzene	ND		95	ug/Kg			11/24/16 02:03	1
Hexachlorobutadiene	ND		40	ug/Kg			11/24/16 02:03	1
lodomethane	ND		40	ug/Kg			11/24/16 02:03	1
Isopropylbenzene	ND		95	ug/Kg			11/24/16 02:03	1
m,p-Xylenes	ND		40	ug/Kg			11/24/16 02:03	1
Methylene Chloride	ND		80	ug/Kg			11/24/16 02:03	1
Methyl tert-butyl ether	ND		48	ug/Kg		11/17/16 11:17	11/24/16 02:03	1

Client Sample ID: SB1-45-11182016 Date Collected: 11/17/16 11:17 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Naphthalene	ND		240	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	2
n-Butylbenzene	ND		240	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
n-Propylbenzene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	2
o-Xylene	ND		140	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
p-Isopropyltoluene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
sec-Butylbenzene	ND		240	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Styrene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
tert-Butylbenzene	ND		240	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Tetrachloroethene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Toluene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
trans-1,2-Dichloroethene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
trans-1,3-Dichloropropene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Trichloroethene	ND		95	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Trichlorofluoromethane	ND		240	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Vinyl acetate	ND		1200	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Vinyl chloride	ND		48	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Xylenes, Total	ND		290	ug/Kg		11/17/16 11:17	11/24/16 02:03	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)	98		34.7 - 143			11/17/16 11:17	11/24/16 02:03	1	
Toluene-d8 (Surr)	88		39.1 - 145			11/17/16 11:17	11/24/16 02:03	1	
4-Bromofluorobenzene (Surr)	88		38.2 - 149			11/17/16 11:17	11/24/16 02:03	1	

Client Sample ID: SB1-75-11182016 Date Collected: 11/17/16 14:47 Date Received: 11/18/16 16:44

Method: 8260B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	N1	380	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,1,1-Trichloroethane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,1,2,2-Tetrachloroethane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,1,2-Trichloroethane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,1-Dichloroethane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,1-Dichloroethene	ND	N1	380	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,1-Dichloropropene	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2,3-Trichlorobenzene	ND	N1	380	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2,3-Trichloropropane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2,4-Trichlorobenzene	ND	N1	380	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2,4-Trimethylbenzene	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2-Dibromo-3-Chloropropane	ND	N1	380	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2-Dibromoethane (EDB)	ND	N1	38	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2-Dichlorobenzene	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2-Dichloroethane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,2-Dichloropropane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,3,5-Trimethylbenzene	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,3-Dichlorobenzene	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,3-Dichloropropane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
1,4-Dichlorobenzene	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1
2,2-Dichloropropane	ND	N1	150	ug/Kg		11/17/16 14:47	11/24/16 02:34	1

TestAmerica Phoenix

TestAmerica Job ID: 550-73249-1

Lab Sample ID: 550-73249-4 Matrix: Solid

Lab Sample ID: 550-73249-5

Matrix: Solid

Client Sample ID: SB1-75-11182016 Date Collected: 11/17/16 14:47 Date Received: 11/18/16 16:44

Lab Sample ID: 550-73249-5 Matrix: Solid

Method: 8260B - Volatile O Analyte	-	Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
2-Butanone (MEK)	ND		770	ug/Kg		11/24/16 02:34	1
2-Chlorotoluene		N1	380	ug/Kg		11/24/16 02:34	
2-Hexanone		N1	770	ug/Kg		11/24/16 02:34	1
4-Chlorotoluene	ND		380			11/24/16 02:34	· · · · · · · · 1
		N1	770	ug/Kg		11/24/16 02:34	1
4-Methyl-2-pentanone (MIBK)				ug/Kg			
Acetone		N1	1500	ug/Kg		11/24/16 02:34	1
Benzene		N1	77	ug/Kg		11/24/16 02:34	1
Bromobenzene		N1	380	ug/Kg		11/24/16 02:34	1
Bromochloromethane		N1	380	ug/Kg		11/24/16 02:34	1
Bromodichloromethane		N1	150	ug/Kg		11/24/16 02:34	1
Bromoform		N1	380	ug/Kg		11/24/16 02:34	1
Bromomethane		N1	380	ug/Kg		11/24/16 02:34	1
Carbon disulfide		N1	380	ug/Kg		11/24/16 02:34	1
Carbon tetrachloride		N1	380	ug/Kg		11/24/16 02:34	1
Chlorobenzene		N1	77	ug/Kg		11/24/16 02:34	1
Chloroethane		N1	380	ug/Kg		11/24/16 02:34	1
Chloroform		N1	150	ug/Kg		11/24/16 02:34	1
Chloromethane	ND	N1	380	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
cis-1,2-Dichloroethene	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
cis-1,3-Dichloropropene	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Chlorodibromomethane	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Dibromomethane	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Dichlorodifluoromethane	ND	N1	380	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Ethylbenzene	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Hexachlorobutadiene	ND	N1	380	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
lodomethane	ND	N1	380	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Isopropylbenzene	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
m,p-Xylenes	ND	N1	230	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Methylene Chloride	ND	N1	770	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Methyl tert-butyl ether	ND	N1	77	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
Naphthalene	ND	N1	380	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
n-Butylbenzene	ND	N1	380	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
n-Propylbenzene	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
o-Xylene	ND	N1	230	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
p-Isopropyltoluene	ND	N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
sec-Butylbenzene		N1	380	ug/Kg		11/24/16 02:34	1
Styrene		N1	150	ug/Kg	11/17/16 14:47	11/24/16 02:34	1
tert-Butylbenzene		N1	380	ug/Kg		11/24/16 02:34	1
Toluene	ND		150	ug/Kg		11/24/16 02:34	1
trans-1,2-Dichloroethene		N1	150	ug/Kg		11/24/16 02:34	
trans-1,3-Dichloropropene		N1	150	ug/Kg		11/24/16 02:34	1
Trichloroethene		N1	150	ug/Kg		11/24/16 02:34	1
Trichlorofluoromethane		N1	380	ug/Kg ug/Kg		11/24/16 02:34	· · · · · · · · 1
Vinyl acetate		N1	1900			11/24/16 02:34	1
•	ND		77	ug/Kg		11/24/16 02:34	
Vinyl chloride				ug/Kg		11/24/16 02:34	1
Xylenes, Total	ND	N1	460	ug/Kg	11/1//10 14.4/	11/24/10 02.34	I
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)			34.7 - 143			11/24/16 02:34	1
Toluene-d8 (Surr)	89		39.1 - 145			11/24/16 02:34	1

Client Sample ID: SB1-75-11182016 Date Collected: 11/17/16 14:47 Date Received: 11/18/16 16:44

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed
4-Bromofluorobenzene (Surr)	90		38.2 - 149	1	1/17/16 14:47	11/24/16 02:34

Method: 8260B - Volatile Organic Compounds (GC/MS) - DL Analyte Desult Ouslifier

Analyte	Result	Qualifier		Unit	D	Prepared	Analyzed	Dil Fac
Tetrachloroethene	77000	D2	1500	ug/Kg		11/17/16 14:47	11/25/16 04:11	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	97		34.7 - 143			11/17/16 14:47	11/25/16 04:11	10
Toluene-d8 (Surr)	99		39.1 - 145			11/17/16 14:47	11/25/16 04:11	10
4-Bromofluorobenzene (Surr)	95		38.2 - 149			11/17/16 14:47	11/25/16 04:11	10

Client Sample Results

TestAmerica Job ID: 550-73249-1

Lab Sample ID: 550-73249-5 Matrix: Solid

Client Sample ID: TB-111 late Collected: 11/17/16 00:01	l			Lab Sample ID: 550-73249-6 Matrix: Solid				
ate Received: 11/18/16 16:44 Method: 8260B - Volatile Org		S) RL	Unit	D Prepared	Applyzod	Dil Fa		
Analyte 1,1,2-Tetrachloroethane	- <u>Result</u> Quaimer	250	Unit ug/Kg	D Prepared 11/17/16 00:00	Analyzed 11/24/16 03:05	DIIFa		
1.1.1-Trichloroethane	ND	100	ug/Kg		11/24/16 03:05			
1,1,2,2-Tetrachloroethane	ND	100	ug/Kg		11/24/16 03:05			
1,1,2-Trichloroethane	ND	100	ug/Kg		11/24/16 03:05			
1,1-Dichloroethane	ND	100	ug/Kg		11/24/16 03:05			
1,1-Dichloroethene	ND	250	ug/Kg		11/24/16 03:05			
1,1-Dichloropropene	ND	100	ug/Kg		11/24/16 03:05			
1,2,3-Trichlorobenzene	ND	250	ug/Kg		11/24/16 03:05			
1,2,3-Trichloropropane	ND	100	ug/Kg		11/24/16 03:05			
1,2,4-Trichlorobenzene	ND	250	ug/Kg		11/24/16 03:05			
1,2,4-Trimethylbenzene	ND	100	ug/Kg		11/24/16 03:05			
1,2-Dibromo-3-Chloropropane	ND	250	ug/Kg		11/24/16 03:05			
1,2-Dibromoethane (EDB)	ND	25	ug/Kg		11/24/16 03:05			
1,2-Dichlorobenzene	ND	100	ug/Kg		11/24/16 03:05			
1,2-Dichloroethane	ND	100	ug/Kg		11/24/16 03:05			
1,2-Dichloropropane	ND	100	ug/Kg		11/24/16 03:05			
1,3,5-Trimethylbenzene	ND	100	ug/Kg		11/24/16 03:05			
1,3-Dichlorobenzene	ND	100	ug/Kg		11/24/16 03:05			
1,3-Dichloropropane	ND	100	ug/Kg		11/24/16 03:05			
1,4-Dichlorobenzene	ND	100	ug/Kg		11/24/16 03:05			
2,2-Dichloropropane	ND	100	ug/Kg		11/24/16 03:05			
2-Butanone (MEK)	ND	500	ug/Kg		11/24/16 03:05			
2-Chlorotoluene	ND	250	ug/Kg		11/24/16 03:05			
2-Hexanone	ND	500	ug/Kg		11/24/16 03:05			
4-Chlorotoluene	ND	250	ug/Kg		11/24/16 03:05			
4-Methyl-2-pentanone (MIBK)	ND	500	ug/Kg		11/24/16 03:05			
Acetone	ND	1000	ug/Kg	11/17/16 00:00	11/24/16 03:05			
Benzene	ND	50	ug/Kg		11/24/16 03:05			
Bromobenzene	ND	250	ug/Kg		11/24/16 03:05			
Bromochloromethane	ND	250	ug/Kg		11/24/16 03:05			
Bromodichloromethane	ND	100	ug/Kg		11/24/16 03:05			
Bromoform	ND	250	ug/Kg		11/24/16 03:05			
Bromomethane	ND	250	ug/Kg		11/24/16 03:05			

Dil Fac

1

Client Sample ID: TB-11172016 Date Collected: 11/17/16 00:01 Date Received: 11/18/16 16:44

Lab Sample ID: 550-73249-6 Matrix: Solid

Method: 8260B - Volatile Or	-	•		•	-	_ .	.	
Analyte		Qualifier		Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND		250	ug/Kg			11/24/16 03:05	1
Carbon tetrachloride	ND		250	ug/Kg			11/24/16 03:05	1
Chlorobenzene	ND		50	ug/Kg			11/24/16 03:05	1
Chloroethane	ND		250	ug/Kg			11/24/16 03:05	1
Chloroform	ND		100	ug/Kg			11/24/16 03:05	1
Chloromethane	ND		250	ug/Kg			11/24/16 03:05	1
cis-1,2-Dichloroethene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
cis-1,3-Dichloropropene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Chlorodibromomethane	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Dibromomethane	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Dichlorodifluoromethane	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Ethylbenzene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Hexachlorobutadiene	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
lodomethane	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Isopropylbenzene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
m,p-Xylenes	ND		150	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Methylene Chloride	ND		500	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Methyl tert-butyl ether	ND		50	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Naphthalene	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
n-Butylbenzene	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
n-Propylbenzene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
o-Xylene	ND		150	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
p-Isopropyltoluene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
sec-Butylbenzene	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Styrene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
tert-Butylbenzene	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Tetrachloroethene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Toluene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
trans-1,2-Dichloroethene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
trans-1,3-Dichloropropene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Trichloroethene	ND		100	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Trichlorofluoromethane	ND		250	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Vinyl acetate	ND		1300	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Vinyl chloride	ND		50	ug/Kg			11/24/16 03:05	1
Xylenes, Total	ND		300	ug/Kg		11/17/16 00:00	11/24/16 03:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)			34.7 - 143			11/17/16 00:00	11/24/16 03:05	1
Toluene-d8 (Surr)	104		39.1 - 145			11/17/16 00:00	11/24/16 03:05	1
4-Bromofluorobenzene (Surr)	101		38.2 - 149			11/17/16 00:00	11/24/16 03:05	1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid

			PE	ercent Surroga	te Recovery (Acceptance Limits)
		DBFM	TOL	BFB	
Lab Sample ID	Client Sample ID	(34.7-143)	(39.1-145)	(38.2-149)	
550-73249-1	SB2-40-11182016	118	102	92	
550-73249-2	SB2-69-11182016	106	97	91	
550-73249-2 - DL	SB2-69-11182016	118	113	94	
550-73249-3	SB2-69-11182016-DUP	102	99	100	
550-73249-4	SB1-45-11182016	98	88	88	
550-73249-5	SB1-75-11182016	96	89	90	
550-73249-5 - DL	SB1-75-11182016	97	99	95	
550-73249-6	TB-11172016	114	104	101	
550-73277-C-1-D MS	Matrix Spike	127	124	119	
550-73277-C-1-E MSD	Matrix Spike Duplicate	119	117	108	
LCS 550-103749/2-A	Lab Control Sample	103	97	94	
LCSD 550-103749/3-A	Lab Control Sample Dup	100	95	91	
MB 550-103749/1-A	Method Blank	111	96	93	

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid						Prep Type: To	
Analysis Batch: 104030						Prep Batch:	103749
Analyte	MB M Result C		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane		250			•	11/23/16 19:46	
1,1,1-Trichloroethane	ND	99	ug/Kg			11/23/16 19:46	
1,1,2,2-Tetrachloroethane	ND	99	ug/Kg			11/23/16 19:46	
1,1,2-Trichloroethane	ND	99	ug/Kg			11/23/16 19:46	
1,1-Dichloroethane	ND	99	ug/Kg			11/23/16 19:46	
1,1-Dichloroethene	ND	250				11/23/16 19:46	
			ug/Kg				
1,1-Dichloropropene	ND ND	99 250	ug/Kg			11/23/16 19:46	
1,2,3-Trichlorobenzene			ug/Kg			11/23/16 19:46	
1,2,3-Trichloropropane	ND	99	ug/Kg			11/23/16 19:46	
1,2,4-Trichlorobenzene	ND	250	ug/Kg			11/23/16 19:46	
1,2,4-Trimethylbenzene	ND	99	ug/Kg			11/23/16 19:46	
1,2-Dibromo-3-Chloropropane	ND	250	ug/Kg			11/23/16 19:46	
1,2-Dibromoethane (EDB)	ND	25	ug/Kg			11/23/16 19:46	
1,2-Dichlorobenzene	ND	99	ug/Kg			11/23/16 19:46	
1,2-Dichloroethane	ND	99	ug/Kg			11/23/16 19:46	
1,2-Dichloropropane	ND	99	ug/Kg			11/23/16 19:46	
1,3,5-Trimethylbenzene	ND	99	ug/Kg			11/23/16 19:46	
1,3-Dichlorobenzene	ND	99	ug/Kg			11/23/16 19:46	
1,3-Dichloropropane	ND	99	ug/Kg			11/23/16 19:46	
1,4-Dichlorobenzene	ND	99	ug/Kg			11/23/16 19:46	
2,2-Dichloropropane	ND	99	ug/Kg		11/21/16 16:35	11/23/16 19:46	
2-Butanone (MEK)	ND	500	ug/Kg		11/21/16 16:35	11/23/16 19:46	
2-Chlorotoluene	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
2-Hexanone	ND	500	ug/Kg		11/21/16 16:35	11/23/16 19:46	
4-Chlorotoluene	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
4-Methyl-2-pentanone (MIBK)	ND	500	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Acetone	ND	990	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Benzene	ND	50	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Bromobenzene	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Bromochloromethane	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Bromodichloromethane	ND	99	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Bromoform	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Bromomethane	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Carbon disulfide	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Carbon tetrachloride	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Chlorobenzene	ND	50	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Chloroethane	ND	250	ug/Kg		11/21/16 16:35	11/23/16 19:46	
Chloroform	ND	99	ug/Kg			11/23/16 19:46	
Chloromethane	ND	250	ug/Kg			11/23/16 19:46	
cis-1,2-Dichloroethene	ND	99	ug/Kg			11/23/16 19:46	
cis-1,3-Dichloropropene	ND	99	ug/Kg			11/23/16 19:46	
Chlorodibromomethane	ND	99	ug/Kg			11/23/16 19:46	
Dibromomethane	ND	99	ug/Kg			11/23/16 19:46	
Dichlorodifluoromethane	ND	250	ug/Kg			11/23/16 19:46	
Ethylbenzene	ND	99	ug/Kg			11/23/16 19:46	
Hexachlorobutadiene	ND	250	ug/Kg			11/23/16 19:46	
odomethane	ND	250	ug/Kg			11/23/16 19:46	
sopropylbenzene	ND	250 99	ug/Kg			11/23/16 19:46	

Lab Sample ID: MB 550-103749/1-A

11/21/16 16:35 11/23/16 19:46

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

2 3 Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 103749 5

9

1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

93

Matrix: Solid							Prep Type: To	otal/NA	
Analysis Batch: 104030							Prep Batch:	103749	
	MB	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
m,p-Xylenes	ND		150	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Methylene Chloride	ND		500	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Methyl tert-butyl ether	ND		50	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Naphthalene	ND		250	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	5
n-Butylbenzene	ND		250	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
n-Propylbenzene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	-
o-Xylene	ND		150	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
p-Isopropyltoluene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	5
sec-Butylbenzene	ND		250	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Styrene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
tert-Butylbenzene	ND		250	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Tetrachloroethene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Toluene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
trans-1,2-Dichloroethene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
trans-1,3-Dichloropropene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	l
Trichloroethene	ND		99	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Trichlorofluoromethane	ND		250	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	i
Vinyl acetate	ND		1200	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Vinyl chloride	ND		50	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
Xylenes, Total	ND		300	ug/Kg		11/21/16 16:35	11/23/16 19:46	1	
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr)			34.7 - 143			11/21/16 16:35	11/23/16 19:46	1	
Toluene-d8 (Surr)	96		39.1 - 145			11/21/16 16:35	11/23/16 19:46	1	

-
Lab Sample ID: LCS 550-103749/2-A
Matrix: Solid

4-Bromofluorobenzene (Surr)

Analysis Batch: 104030	Spike	LCS	LCS				Prep Batch: 103749 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	1250	1200		ug/Kg		96	70 - 130
1,1,1-Trichloroethane	1250	1200		ug/Kg		96	67 - 119
1,1,2,2-Tetrachloroethane	1250	1150		ug/Kg		92	62 - 125
1,1,2-Trichloroethane	1250	1130		ug/Kg		91	65 ₋ 125
1,1-Dichloroethane	1250	1230		ug/Kg		99	60 - 112
1,1-Dichloroethene	1250	1080		ug/Kg		86	54 ₋ 118
1,1-Dichloropropene	1250	1100		ug/Kg		88	58 - 120
1,2,3-Trichlorobenzene	1250	1150		ug/Kg		93	70 - 137
1,2,3-Trichloropropane	1250	1170		ug/Kg		94	62 - 129
1,2,4-Trichlorobenzene	1250	1130		ug/Kg		91	70 - 130
1,2,4-Trimethylbenzene	1250	1250		ug/Kg		100	70 - 130
1,2-Dibromo-3-Chloropropane	1250	977		ug/Kg		78	43 - 136
1,2-Dibromoethane (EDB)	1250	1110		ug/Kg		89	68 - 126
1,2-Dichlorobenzene	1250	1230		ug/Kg		99	70 - 130
1,2-Dichloroethane	1250	1240		ug/Kg		99	67 - 128
1,2-Dichloropropane	1250	1180		ug/Kg		95	64 ₋ 117
1,3,5-Trimethylbenzene	1250	1250		ug/Kg		100	70 - 130

38.2 - 149

5 6

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 550-103749/2-A Matrix: Solid				Clie	nt Sar	nple ID	: Lab Control Sampl Prep Type: Total/N
Analysis Batch: 104030	Onika	1.00	1.00				Prep Batch: 10374
Analyta	Spike Added		LCS Qualifier	Unit	Б	%Rec	%Rec. Limits
Analyte	1250	1160	Quaimer	ug/Kg		93	70 - 130
1,3-Dichloropropane	1250	1100		ug/Kg		89	68 - 120
1,4-Dichlorobenzene	1250	1170		ug/Kg ug/Kg		89 94	70 - 130
2.2-Dichloropropane	1250	1050				94 84	65 - 118
				ug/Kg			
2-Butanone (MEK)	1250	1060		ug/Kg		85	42 - 132
2-Chlorotoluene	1250 1250	1190 854		ug/Kg		95 68	70 - 130 50 - 140
2-Hexanone				ug/Kg			
4-Chlorotoluene	1250	1050		ug/Kg		84	70 - 130
4-Methyl-2-pentanone (MIBK)	1250	1090	-	ug/Kg		87	52 - 129
Acetone	1250	909	E4	ug/Kg		73	37 - 148
Benzene	1250	1170		ug/Kg		94	67 - 118
Bromobenzene	1250	1200		ug/Kg		96	70 - 130
Bromochloromethane	1250	1260		ug/Kg		101	66 - 124
Bromodichloromethane	1250	1080		ug/Kg		87	69 - 118
Bromoform	1250	1060		ug/Kg		85	59 - 115
Bromomethane	1250	1090		ug/Kg		87	63 - 111
Carbon disulfide	1250	1220		ug/Kg		98	56 ₋ 119
Carbon tetrachloride	1250	1090		ug/Kg		87	65 - 130
Chlorobenzene	1250	1150		ug/Kg		92	70 - 130
Chloroethane	1250	1260		ug/Kg		101	51 - 113
Chloroform	1250	1300		ug/Kg		104	66 - 116
Chloromethane	1250	998		ug/Kg		80	54 ₋ 101
cis-1,2-Dichloroethene	1250	1240		ug/Kg		99	61 - 115
cis-1,3-Dichloropropene	1250	1110		ug/Kg		89	64 - 124
Chlorodibromomethane	1250	1110		ug/Kg		89	61 - 119
Dibromomethane	1250	1120		ug/Kg		90	67 - 124
Dichlorodifluoromethane	1250	485		ug/Kg		39	29 - 90
Ethylbenzene	1250	1190		ug/Kg		95	68 - 124
Hexachlorobutadiene	1250	1190		ug/Kg		95	71 ₋ 140
lodomethane	1250	1320		ug/Kg		106	70 - 130
Isopropylbenzene	1250	1250		ug/Kg		100	70 - 130
m,p-Xylenes	1250	1150		ug/Kg		92	64 - 122
Methylene Chloride	1250	1180		ug/Kg		95	61 - 117
Methyl tert-butyl ether	1250	1300		ug/Kg		104	57 - 126
Naphthalene	1250	1120		ug/Kg		90	57 - 147
n-Butylbenzene	1250	1160		ug/Kg		93	64 - 131
n-Propylbenzene	1250	1210		ug/Kg		97	68 - 132
o-Xylene	1250	1190		ug/Kg		96	70 - 130
p-Isopropyltoluene	1250	1190		ug/Kg		96	67 - 122
sec-Butylbenzene	1250	1190		ug/Kg ug/Kg		102	66 - 127
Styrene	1250	1270		ug/Kg		98	67 - 121
tert-Butylbenzene	1250	1220		ug/Kg ug/Kg		90 97	70 - 130
Tetrachloroethene	1250	1200		ug/Kg ug/Kg		97 85	65 - 124
Toluene	1250	1140		ug/Kg		91 102	68 - 122 50 - 115
trans-1,2-Dichloroethene	1250	1270		ug/Kg		102	59 - 115
trans-1,3-Dichloropropene	1250	1110		ug/Kg		89	64 - 123
Trichloroethene	1250	1100		ug/Kg		88	68 - 117
Trichlorofluoromethane	1250	1040		ug/Kg		84	63 - 139

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 550-103749/2-A Matrix: Solid Analysis Batch: 104030	Spike	LCS	LCS	Clier	nt Sai	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 103749 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Vinyl acetate	1250	1320		ug/Kg		106	51 - 134
Vinyl chloride	1250	325		ug/Kg		26	10 - 99
Xylenes, Total	2500	2340		ug/Kg		94	70 - 120
LCS LCS							

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	103		34.7 - 143
Toluene-d8 (Surr)	97		39.1 - 145
4-Bromofluorobenzene (Surr)	94		38.2 - 149

Lab Sample ID: LCSD 550-103749/3-A Matrix: Solid

Matrix: Solid							Prep I y		
Analysis Batch: 104030							Prep Ba	atch: 10	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	1260	1200		ug/Kg		95	70 - 130	0	20
1,1,1-Trichloroethane	1260	1180		ug/Kg		94	67 - 119	2	20
1,1,2,2-Tetrachloroethane	1260	1160		ug/Kg		92	62 - 125	1	29
1,1,2-Trichloroethane	1260	1180		ug/Kg		94	65 - 125	4	26
1,1-Dichloroethane	1260	1190		ug/Kg		95	60 - 112	4	20
1,1-Dichloroethene	1260	1060		ug/Kg		85	54 ₋ 118	1	20
1,1-Dichloropropene	1260	1110		ug/Kg		88	58 - 120	1	20
1,2,3-Trichlorobenzene	1260	1160		ug/Kg		93	70 - 137	1	24
1,2,3-Trichloropropane	1260	1140		ug/Kg		91	62 - 129	2	32
1,2,4-Trichlorobenzene	1260	1090		ug/Kg		87	70 - 130	4	22
1,2,4-Trimethylbenzene	1260	1220		ug/Kg		97	70 - 130	3	20
1,2-Dibromo-3-Chloropropane	1260	1010		ug/Kg		80	43 - 136	3	36
1,2-Dibromoethane (EDB)	1260	1170		ug/Kg		93	68 - 126	5	26
1,2-Dichlorobenzene	1260	1200		ug/Kg		96	70 - 130	3	20
1,2-Dichloroethane	1260	1230		ug/Kg		98	67 - 128	1	26
1,2-Dichloropropane	1260	1180		ug/Kg		94	64 - 117	0	21
1,3,5-Trimethylbenzene	1260	1200		ug/Kg		96	70 - 130	4	20
1,3-Dichlorobenzene	1260	1130		ug/Kg		90	70 - 130	2	20
1,3-Dichloropropane	1260	1170		ug/Kg		93	68 - 120	5	22
1,4-Dichlorobenzene	1260	1170		ug/Kg		93	70 - 130	0	20
2,2-Dichloropropane	1260	1040		ug/Kg		83	65 ₋ 118	0	20
2-Butanone (MEK)	1260	1160		ug/Kg		92	42 - 132	8	40
2-Chlorotoluene	1260	1150		ug/Kg		92	70 - 130	3	20
2-Hexanone	1260	928		ug/Kg		74	50 - 140	8	36
4-Chlorotoluene	1260	1040		ug/Kg		83	70 - 130	1	20
4-Methyl-2-pentanone (MIBK)	1260	1120		ug/Kg		89	52 - 129	3	36
Acetone	1260	1060		ug/Kg		84	37 - 148	15	40
Benzene	1260	1190		ug/Kg		95	67 - 118	1	20
Bromobenzene	1260	1210		ug/Kg		96	70 - 130	1	20
Bromochloromethane	1260	1250		ug/Kg		100	66 - 124	1	26
Bromodichloromethane	1260	1100		ug/Kg		88	69_118	2	20
Bromoform	1260	1100		ug/Kg		88	59 ₋ 115	4	27
Bromomethane	1260	1090		ug/Kg		87	63 - 111	0	21
Carbon disulfide	1260	1210		ug/Kg		96	56 - 119	1	20

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 550-103749/3-A Matrix: Solid Analysis Batch: 104030			C	Client Sa	mple	ID: Lat	Control Prep Ty Prep Ba	pe: Tot	al/NA
·····,···	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	1260	1110		ug/Kg		89	65 - 130	2	20
Chlorobenzene	1260	1190		ug/Kg		95	70 - 130	4	20
Chloroethane	1260	1230		ug/Kg		98	51 - 113	3	22
Chloroform	1260	1270		ug/Kg		101	66 - 116	2	21
Chloromethane	1260	953		ug/Kg		76	54 - 101	5	32
cis-1,2-Dichloroethene	1260	1230		ug/Kg		98	61 - 115	0	23
cis-1,3-Dichloropropene	1260	1140		ug/Kg		91	64 - 124	2	22
Chlorodibromomethane	1260	1140		ug/Kg		91	61 - 119	3	24
Dibromomethane	1260	1140		ug/Kg		91	67 - 124	2	25
Dichlorodifluoromethane	1260	438		ug/Kg		35	29 - 90	10	40
Ethylbenzene	1260	1180		ug/Kg		94	68 - 124	1	20
Hexachlorobutadiene	1260	1100		ug/Kg		88	71 - 140	8	20
lodomethane	1260	1330		ug/Kg		106	70 - 130	1	21
Isopropylbenzene	1260	1240		ug/Kg		98	70 - 130	1	20
m,p-Xylenes	1260	1160		ug/Kg		93	64 - 122	2	20
Methylene Chloride	1260	1210		ug/Kg		96	61 - 117	2	23
Methyl tert-butyl ether	1260	1330		ug/Kg		106	57 ₋ 126	2	32
Naphthalene	1260	1140		ug/Kg		90	57 - 147	1	30
n-Butylbenzene	1260	1150		ug/Kg		91	64 - 131	1	20
n-Propylbenzene	1260	1180		ug/Kg		94	68 - 132	2	20
o-Xylene	1260	1190		ug/Kg		94	70 - 130	1	20
p-lsopropyltoluene	1260	1170		ug/Kg		93	67 - 122	2	20
sec-Butylbenzene	1260	1260		ug/Kg		100	66 - 127	1	20
Styrene	1260	1250		ug/Kg		99	67 - 121	2	20
tert-Butylbenzene	1260	1200		ug/Kg		95	70 - 130	1	20
Tetrachloroethene	1260	1070		ug/Kg		86	65 - 124	2	20
Toluene	1260	1180		ug/Kg		94	68 - 122	4	20
trans-1,2-Dichloroethene	1260	1230		ug/Kg		98	59 ₋ 115	3	20
trans-1,3-Dichloropropene	1260	1140		ug/Kg		91	64 - 123	2	24
Trichloroethene	1260	1100		ug/Kg		88	68 - 117	0	20
Trichlorofluoromethane	1260	1040		ug/Kg		83	63 - 139	1	21
Vinyl acetate	1260	1370		ug/Kg		109	51 - 134	3	37
Vinyl chloride	1260	293		ug/Kg		23	10 - 99	10	30
Xylenes, Total	2510	2350		ug/Kg		94	70 - 120	0	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane (Surr)	100		34.7 - 143
Toluene-d8 (Surr)	95		39.1 - 145
4-Bromofluorobenzene (Surr)	91		38.2 - 149

Lab Sample ID: 550-73277-C-1-D MS Matrix: Solid

Analysis Batch: 104030									Prep Batch: 103749
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	ND	M1	1250	1600	M1	ug/Kg		129	52 - 122
1,1,1-Trichloroethane	ND	M1	1250	1500	M1	ug/Kg		121	50 - 119
1,1,2,2-Tetrachloroethane	ND		1250	1490		ug/Kg		120	41 - 132

TestAmerica Phoenix

Prep Type: Total/NA

Client Sample ID: Matrix Spike

5 6

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 550-73277- Matrix: Solid	C-1-D MS						CI	ient Sa	mple ID: Matrix Spike Prep Type: Total/NA
Analysis Batch: 104030	Sample	Sample	Spike	MS	MS				Prep Batch: 103749 %Rec.
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloroethane	ND		1250	1510		ug/Kg		121	47 - 128
1,1-Dichloroethane	ND	M1	1250	1520	M1	ug/Kg		122	46 - 111
1,1-Dichloroethene	ND		1250	1400		ug/Kg		113	36 - 114
1,1-Dichloropropene	ND		1250	1430		ug/Kg		115	45 - 117
1,2,3-Trichlorobenzene	ND		1250	1550		ug/Kg		124	41 - 150
1,2,3-Trichloropropane	ND		1250	1420		ug/Kg		114	51 - 129
1,2,4-Trichlorobenzene	ND		1250	1500		ug/Kg		121	43 - 150
1,2,4-Trimethylbenzene	ND		1250	1610		ug/Kg		129	42 - 137
1,2-Dibromo-3-Chloropropane	ND		1250	1390		ug/Kg		112	27 - 140
1,2-Dibromoethane (EDB)	ND		1250	1550		ug/Kg		124	49 - 130
1,2-Dichlorobenzene	ND		1250	1530		ug/Kg		123	54 - 130
1,2-Dichloroethane	ND	M1	1250	1560	M1	ug/Kg		125	53 - 124
1,2-Dichloropropane	ND		1250	1500		ug/Kg		120	48 - 118
1,3,5-Trimethylbenzene	ND		1250	1550		ug/Kg ug/Kg		120	50 - 131
1,3-Dichlorobenzene	ND		1250	1490		ug/Kg		120	56 - 127
1,3-Dichloropropane	ND		1250	1490		ug/Kg ug/Kg		120	50 - 127 50 - 124
1,4-Dichlorobenzene	ND		1250	1540		ug/Kg ug/Kg		124	50 - 124 52 - 128
2,2-Dichloropropane	ND		1250	1320		ug/Kg ug/Kg		108	47 - 117
	ND	N/1	1250	1830	M1			108	32 - 130
2-Butanone (MEK)					IVI I	ug/Kg			
2-Chlorotoluene	ND		1250	1480		ug/Kg		119	54 - 123
2-Hexanone	ND		1250	1570		ug/Kg		126	32 - 144
4-Chlorotoluene	ND		1250	1310		ug/Kg		105	56 - 123
4-Methyl-2-pentanone (MIBK)	ND		1250	1450		ug/Kg		117	37 - 134
Acetone	ND		1250	1700		ug/Kg		136	32 - 148
Benzene	ND	IVI 1	1250	1530	IM 1	ug/Kg		123	51 - 118
Bromobenzene	ND		1250	1490		ug/Kg		120	58 - 127
Bromochloromethane	ND	M1	1250	1570	M1	ug/Kg		126	50 - 123
Bromodichloromethane	ND		1250	1440		ug/Kg		116	51 - 122
Bromoform	ND		1250	1430		ug/Kg		115	45 - 115
Bromomethane	ND		1250	1320		ug/Kg		106	28 - 115
Carbon disulfide	ND	M1	1250	1500	M1	ug/Kg		121	32 - 116
Carbon tetrachloride	ND		1250	1440		ug/Kg		115	48 - 128
Chlorobenzene	ND		1250	1550		ug/Kg		124	57 - 122
Chloroethane	ND		1250	1510		ug/Kg		121	32 - 107
Chloroform	ND	M1	1250	1640	M1	ug/Kg		132	52 - 116
Chloromethane	ND		1250	1130		ug/Kg		91	28 - 100
cis-1,2-Dichloroethene	ND	M1	1250	1540	M1	ug/Kg		124	47 - 113
cis-1,3-Dichloropropene	ND		1250	1500		ug/Kg		120	41 - 130
Chlorodibromomethane	ND		1250	1510		ug/Kg		121	44 - 122
Dibromomethane	ND		1250	1470		ug/Kg		118	49 - 128
Dichlorodifluoromethane	ND		1250	515		ug/Kg		41	10 - 73
Ethylbenzene	ND		1250	1580		ug/Kg		127	50 - 130
Hexachlorobutadiene	ND		1250	1510		ug/Kg		121	33 - 150
lodomethane	ND		1250	1640		ug/Kg		132	39 - 147
lsopropylbenzene	ND		1250	1580		ug/Kg		127	59 - 143
m,p-Xylenes	ND		1250	1550		ug/Kg		124	43 - 128
Methylene Chloride	ND	M1	1250	1500	M1	ug/Kg		121	45 - 115
Methyl tert-butyl ether	ND	M1	1250	1660	M1	ug/Kg		133	41 - 125

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

124

119

Lab Sample ID: 550-7327	7-C-1-D MS						CI	ient Sa	mple ID: Matrix Spike
Matrix: Solid									Prep Type: Total/NA
Analysis Batch: 104030	0	0	0						Prep Batch: 103749
	•	Sample	Spike	-	MS				%Rec.
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Naphthalene	ND		1250	1480		ug/Kg		119	34 - 150
n-Butylbenzene	ND		1250	1530		ug/Kg		123	44 - 140
n-Propylbenzene	ND		1250	1540		ug/Kg		124	52 - 135
o-Xylene	ND		1250	1590		ug/Kg		127	48 - 127
p-Isopropyltoluene	ND		1250	1520		ug/Kg		122	51 - 126
sec-Butylbenzene	ND		1250	1630		ug/Kg		131	49 - 131
Styrene	ND	M1	1250	1670	M1	ug/Kg		134	49 - 123
tert-Butylbenzene	ND		1250	1560		ug/Kg		125	54 - 130
Tetrachloroethene	ND		1250	1410		ug/Kg		113	49 - 124
Toluene	ND		1250	1520		ug/Kg		122	52 - 126
trans-1,2-Dichloroethene	ND	M1	1250	1570	M1	ug/Kg		126	44 - 113
trans-1,3-Dichloropropene	ND		1250	1480		ug/Kg		119	43 - 130
Trichloroethene	ND		1250	1430		ug/Kg		115	53 - 120
Trichlorofluoromethane	ND		1250	1300		ug/Kg		104	33 - 134
Vinyl acetate	ND	M1	1250	1590	M1	ug/Kg		128	10 - 126
Vinyl chloride	ND		1250	371		ug/Kg		30	10 - 82
Xylenes, Total	ND	M1	2490	3140	M1	ug/Kg		126	57 - 122
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
Dibromofluoromethane (Surr)	127		34.7 - 143						

39.1 - 145 38.2 - 149

Lab Sample ID: 550-73277-C-1-E MSD Matrix: Solid Analysis Batch: 104030

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Analysis Batch: 104030									Prep Ba	tch: 10)3749
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	ND	M1	1250	1400		ug/Kg		113	52 - 122	13	36
1,1,1-Trichloroethane	ND	M1	1250	1360		ug/Kg		109	50 ₋ 119	10	29
1,1,2,2-Tetrachloroethane	ND		1250	1300		ug/Kg		104	41 - 132	14	37
1,1,2-Trichloroethane	ND		1250	1380		ug/Kg		111	47 - 128	9	34
1,1-Dichloroethane	ND	M1	1250	1390	M1	ug/Kg		112	46 - 111	8	26
1,1-Dichloroethene	ND		1250	1220		ug/Kg		98	36 - 114	14	32
1,1-Dichloropropene	ND		1250	1260		ug/Kg		101	45 - 117	13	29
1,2,3-Trichlorobenzene	ND		1250	1340		ug/Kg		107	41 - 150	15	38
1,2,3-Trichloropropane	ND		1250	1330		ug/Kg		107	51 ₋ 129	7	40
1,2,4-Trichlorobenzene	ND		1250	1330		ug/Kg		107	43 - 150	12	36
1,2,4-Trimethylbenzene	ND		1250	1430		ug/Kg		115	42 - 137	11	40
1,2-Dibromo-3-Chloropropane	ND		1250	1120		ug/Kg		90	27 - 140	22	40
1,2-Dibromoethane (EDB)	ND		1250	1330		ug/Kg		107	49 - 130	15	39
1,2-Dichlorobenzene	ND		1250	1390		ug/Kg		112	54 - 130	9	38
1,2-Dichloroethane	ND	M1	1250	1430		ug/Kg		115	53 - 124	9	32
1,2-Dichloropropane	ND	M1	1250	1360		ug/Kg		110	48 - 118	9	30
1,3,5-Trimethylbenzene	ND		1250	1410		ug/Kg		113	50 - 131	10	36
1,3-Dichlorobenzene	ND		1250	1320		ug/Kg		106	56 - 127	12	33
1,3-Dichloropropane	ND		1250	1290		ug/Kg		103	50 - 124	18	35
1,4-Dichlorobenzene	ND		1250	1340		ug/Kg		107	52 - 128	13	33

5 6

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 550-73277- Matrix: Solid						Client Sample ID: Matrix Spike Duplica Prep Type: Total/I						
Analysis Batch: 104030									Prep Ba			
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
2,2-Dichloropropane	ND		1250	1180		ug/Kg		95	47 _ 117	12	27	
2-Butanone (MEK)	ND	M1	1250	1410		ug/Kg		113	32 - 130	26	40	
2-Chlorotoluene	ND		1250	1310		ug/Kg		105	54 - 123	12	33	
2-Hexanone	ND		1250	1130		ug/Kg		91	32 - 144	32	40	
4-Chlorotoluene	ND		1250	1180		ug/Kg		95	56 - 123	11	32	
4-Methyl-2-pentanone (MIBK)	ND		1250	1320		ug/Kg		106	37 - 134	10	40	
Acetone	ND		1250	1240		ug/Kg		99	32 - 148	31	40	
Benzene	ND	M1	1250	1370		ug/Kg		110	51 - 118	11	27	
Bromobenzene	ND		1250	1370		ug/Kg		110	58 - 127	8	36	
Bromochloromethane	ND	M1	1250	1430		ug/Kg		115	50 - 123	9	32	
Bromodichloromethane	ND		1250	1320		ug/Kg		106	51 - 122	9	33	
Bromoform	ND		1250	1260		ug/Kg		101	45 - 115	13	39	
Bromomethane	ND		1250	1170		ug/Kg		94	28 - 115	12	40	
Carbon disulfide	ND	M1	1250	1330		ug/Kg		107	32 - 116	12	38	
Carbon tetrachloride	ND		1250	1290		ug/Kg		103	48 - 128	11	31	
Chlorobenzene		M1	1250	1340		ug/Kg		108	57 - 122	14	34	
Chloroethane		M1	1250	1380	M1	ug/Kg		111	32 - 107	9	40	
Chloroform		M1	1250	1490		ug/Kg		119	52 - 116	10	29	
Chloromethane	ND		1250	1070	1411	ug/Kg		86	28 - 100	6	40	
cis-1,2-Dichloroethene		M1	1250	1380		ug/Kg		111	47 - 113	11	29	
cis-1,3-Dichloropropene	ND	1011	1250	1300		ug/Kg		104	41 - 130	14	34	
Chlorodibromomethane	ND		1250	1300		ug/Kg ug/Kg		104	44 - 122	15	40	
Dibromomethane	ND		1250	1300		ug/Kg ug/Kg		105	49 - 122	11	34	
Dichlorodifluoromethane	ND		1250	432				35	49 - 120 10 - 73	18	40	
	ND					ug/Kg						
Ethylbenzene			1250	1370		ug/Kg		110	50 - 130	14	32	
Hexachlorobutadiene	ND		1250	1350		ug/Kg		108	33 - 150	11	37	
lodomethane	ND		1250	1480		ug/Kg		119	39 ₋ 147	11	40	
Isopropylbenzene	ND		1250	1420		ug/Kg		114	59 - 143	11	33	
m,p-Xylenes	ND		1250	1360		ug/Kg		109	43 - 128	13	37	
Methylene Chloride		M1	1250	1330		ug/Kg		107	45 - 115	13	26	
Methyl tert-butyl ether		M1	1250	1540		ug/Kg		123	41 - 125	8	35	
Naphthalene	ND		1250	1310		ug/Kg		106	34 - 150	12	34	
n-Butylbenzene	ND		1250	1340		ug/Kg		108	44 - 140	13	34	
n-Propylbenzene	ND		1250	1370		ug/Kg		110	52 - 135	12	33	
o-Xylene	ND		1250	1390		ug/Kg		111	48 - 127	13	39	
p-Isopropyltoluene	ND		1250	1370		ug/Kg		110	51 - 126	10	34	
sec-Butylbenzene	ND		1250	1440		ug/Kg		116	49 - 131	12	34	
Styrene	ND	M1	1250	1440		ug/Kg		116	49 - 123	15	33	
tert-Butylbenzene	ND		1250	1360		ug/Kg		110	54 - 130	13	35	
Tetrachloroethene	ND		1250	1220		ug/Kg		98	49 - 124	14	32	
Toluene	ND		1250	1370		ug/Kg		110	52 - 126	10	30	
trans-1,2-Dichloroethene	ND	M1	1250	1400		ug/Kg		113	44 - 113	12	26	
trans-1,3-Dichloropropene	ND		1250	1320		ug/Kg		106	43 - 130	12	34	
Trichloroethene	ND		1250	1330		ug/Kg		107	53 - 120	7	29	
Trichlorofluoromethane	ND		1250	1160		ug/Kg		93	33 - 134	11	40	
Vinyl acetate	ND	M1	1250	1470		ug/Kg		118	10 - 126	8	40	
Vinyl chloride	ND		1250	330		ug/Kg		27	10 - 82	12	40	
Xylenes, Total		M1	2490	2750		ug/Kg		110	57 - 122	13	22	

4-Bromofluorobenzene (Surr)

5

9

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

108

Lab Sample ID: 550-73277-C-1-E MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Solid** Prep Type: Total/NA Prep Batch: 103749 Analysis Batch: 104030 MSD MSD Surrogate %Recovery Qualifier Limits Dibromofluoromethane (Surr) 119 34.7 - 143 Toluene-d8 (Surr) 117 39.1 - 145

38.2 - 149

QC Association Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B

GC/MS VOA

Prep Batch: 103749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
550-73249-1	SB2-40-11182016	Total/NA	Solid	5035A	
550-73249-2 - DL	SB2-69-11182016	Total/NA	Solid	5035A	
550-73249-2	SB2-69-11182016	Total/NA	Solid	5035A	
550-73249-3	SB2-69-11182016-DUP	Total/NA	Solid	5035A	
550-73249-4	SB1-45-11182016	Total/NA	Solid	5035A	
550-73249-5 - DL	SB1-75-11182016	Total/NA	Solid	5035A	
550-73249-5	SB1-75-11182016	Total/NA	Solid	5035A	
550-73249-6	TB-11172016	Total/NA	Solid	5035A	
MB 550-103749/1-A	Method Blank	Total/NA	Solid	5035A	
LCS 550-103749/2-A	Lab Control Sample	Total/NA	Solid	5035A	
LCSD 550-103749/3-A	Lab Control Sample Dup	Total/NA	Solid	5035A	
550-73277-C-1-D MS	Matrix Spike	Total/NA	Solid	5035A	
550-73277-C-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035A	

Analysis Batch: 104030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
550-73249-1	SB2-40-11182016	Total/NA	Solid	8260B	103749
550-73249-2	SB2-69-11182016	Total/NA	Solid	8260B	103749
550-73249-3	SB2-69-11182016-DUP	Total/NA	Solid	8260B	103749
550-73249-4	SB1-45-11182016	Total/NA	Solid	8260B	103749
550-73249-5	SB1-75-11182016	Total/NA	Solid	8260B	103749
550-73249-6	TB-11172016	Total/NA	Solid	8260B	103749
MB 550-103749/1-A	Method Blank	Total/NA	Solid	8260B	103749
LCS 550-103749/2-A	Lab Control Sample	Total/NA	Solid	8260B	103749
LCSD 550-103749/3-A	Lab Control Sample Dup	Total/NA	Solid	8260B	103749
550-73277-C-1-D MS	Matrix Spike	Total/NA	Solid	8260B	103749
550-73277-C-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B	103749

Analysis Batch: 104039

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
550-73249-2 - DL	SB2-69-11182016	Total/NA	Solid	8260B	103749
550-73249-5 - DL	SB1-75-11182016	Total/NA	Solid	8260B	103749

Lab Sample ID: 550-73249-1

Lab Sample ID: 550-73249-2

Lab Sample ID: 550-73249-3

Lab Sample ID: 550-73249-4

Lab Sample ID: 550-73249-5

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

2 3 4 5 6 7 8 9 10

Client Sample ID: SB2-40-11182016 Date Collected: 11/18/16 10:30 Date Received: 11/18/16 16:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			7.4 g	10 mL	103749	11/18/16 10:30	NBL	TAL PHX
Total/NA	Analysis	8260B		1	200 uL	10 mL	104030	11/24/16 00:28	UT	TAL PHX

Client Sample ID: SB2-69-11182016 Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

Prep Type Total/NA Total/NA	Batch Type Prep Analysis	Batch Method 5035A 8260B	Run	Dil Factor	Initial Amount 8.78 g 200 uL	Final Amount 10 mL 10 mL	Batch Number 103749 104030	Prepared or Analyzed 11/18/16 13:30 11/24/16 01:00	 Lab TAL PHX TAL PHX
Total/NA Total/NA	Prep Analysis	5035A 8260B	DL DL	10	8.78 g 200 uL	10 mL 10 mL	103749 104039	11/18/16 13:30 11/25/16 03:39	 TAL PHX TAL PHX

Client Sample ID: SB2-69-11182016-DUP Date Collected: 11/18/16 13:30 Date Received: 11/18/16 16:44

ſ	-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	5035A			7.67 g	10 mL	103749	11/18/16 13:30	NBL	TAL PHX
	Total/NA	Analysis	8260B		1	200 uL	10 mL	104030	11/24/16 01:31	UT	TAL PHX

Client Sample ID: SB1-45-11182016 Date Collected: 11/17/16 11:17 Date Received: 11/18/16 16:44

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			10.51 g	10 mL	103749	11/17/16 11:17	NBL	TAL PHX
Total/NA	Analysis	8260B		1	200 uL	10 mL	104030	11/24/16 02:03	UT	TAL PHX

Client Sample ID: SB1-75-11182016 Date Collected: 11/17/16 14:47 Date Received: 11/18/16 16:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			6.51 g	10 mL	103749	11/17/16 14:47	NBL	TAL PHX
Total/NA	Analysis	8260B		1	200 uL	10 mL	104030	11/24/16 02:34	UT	TAL PHX
Total/NA	Prep	5035A	DL		6.51 g	10 mL	103749	11/17/16 14:47	NBL	TAL PHX
Total/NA	Analysis	8260B	DL	10	200 uL	10 mL	104039	11/25/16 04:11	R1K	TAL PHX

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B

Lab Sample ID: 550-73249-6

Matrix: Solid

Client Sample ID: TB-11172016 Date Collected: 11/17/16 00:01 Date Received: 11/18/16 16:44

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035A			10 g	10 mL	103749	11/17/16 00:00	NBL	TAL PHX
Total/NA	Analysis	8260B		1	200 uL	10 mL	104030	11/24/16 03:05	UT	TAL PHX

Laboratory References:

TAL PHX = TestAmerica Phoenix, 4625 East Cotton Ctr Blvd, Suite 189, Phoenix, AZ 85040, TEL (602)437-3340

Certification Summary

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B

Laboratory: TestAmerica Phoenix

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
AIHA-LAP, LLC	ELLAP		154268	07-01-17
AIHA-LAP, LLC	IHLAP		154268	07-01-17
Arizona	State Program	9	AZ0728	06-09-17
California	State Program	9	2941	11-30-17
Nevada	State Program	9	AZ01030	07-31-17
Oregon	NELAP	10	AZ100001	03-09-17
USDA	Federal		P330-16-00302	08-27-19

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-17
Arizona	State Program	9	AZ0671	10-14-17
California	LA Cty Sanitation Districts	9	10256	01-31-17 *
California	State Program	9	CA ELAP 2706	06-30-18
Guam	State Program	9	Cert. No. 16-001r	01-23-17
Hawaii	State Program	9	N/A	01-29-17
Kansas	NELAP Secondary AB	7	E-10420	07-31-17
Nevada	State Program	9	CA015312016-2	07-31-17
New Mexico	State Program	6	N/A	01-29-17
Northern Mariana Islands	State Program	9	MP0002	01-29-17
Oregon	NELAP	10	4028	01-29-17
USDA	Federal		P330-15-00184	07-08-18
Washington	State Program	10	C900	09-03-17

* Certification renewal pending - certification considered valid.

Client: Geosyntec Consultants, Inc. Project/Site: Cooper and Commerce SP0146B

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL PHX

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

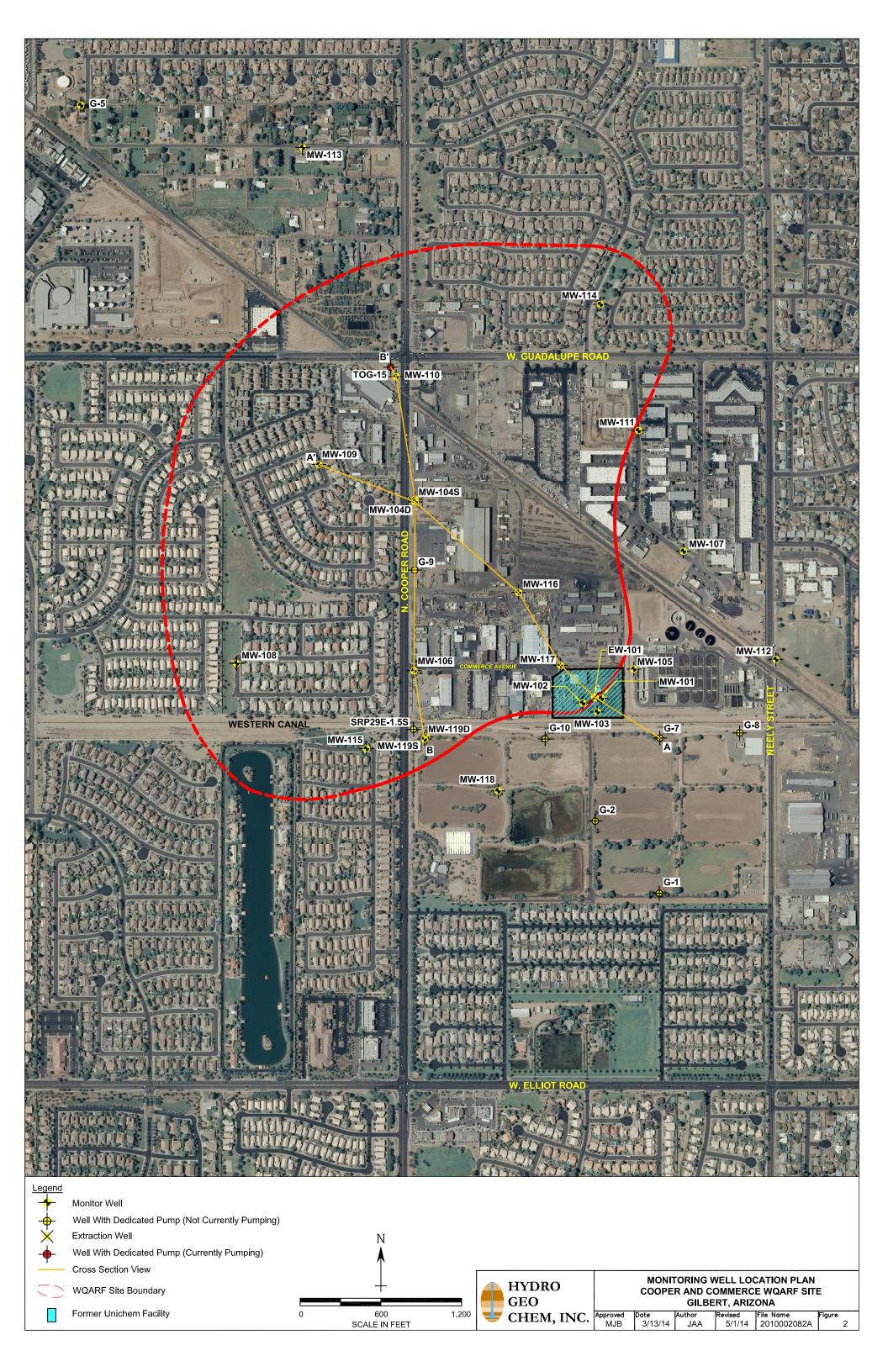
Laboratory References:

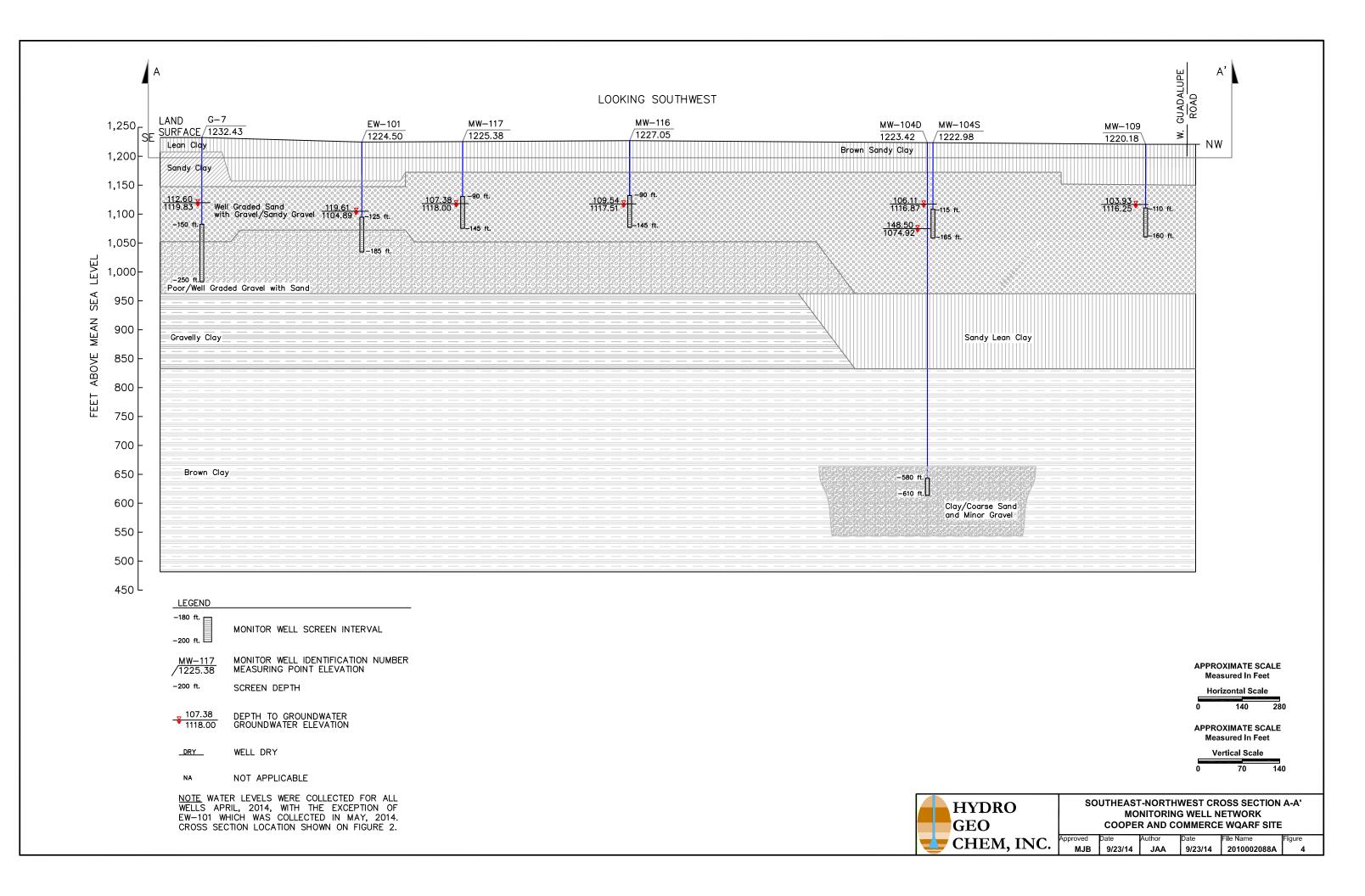
TAL PHX = TestAmerica Phoenix, 4625 East Cotton Ctr Blvd, Suite 189, Phoenix, AZ 85040, TEL (602)437-3340

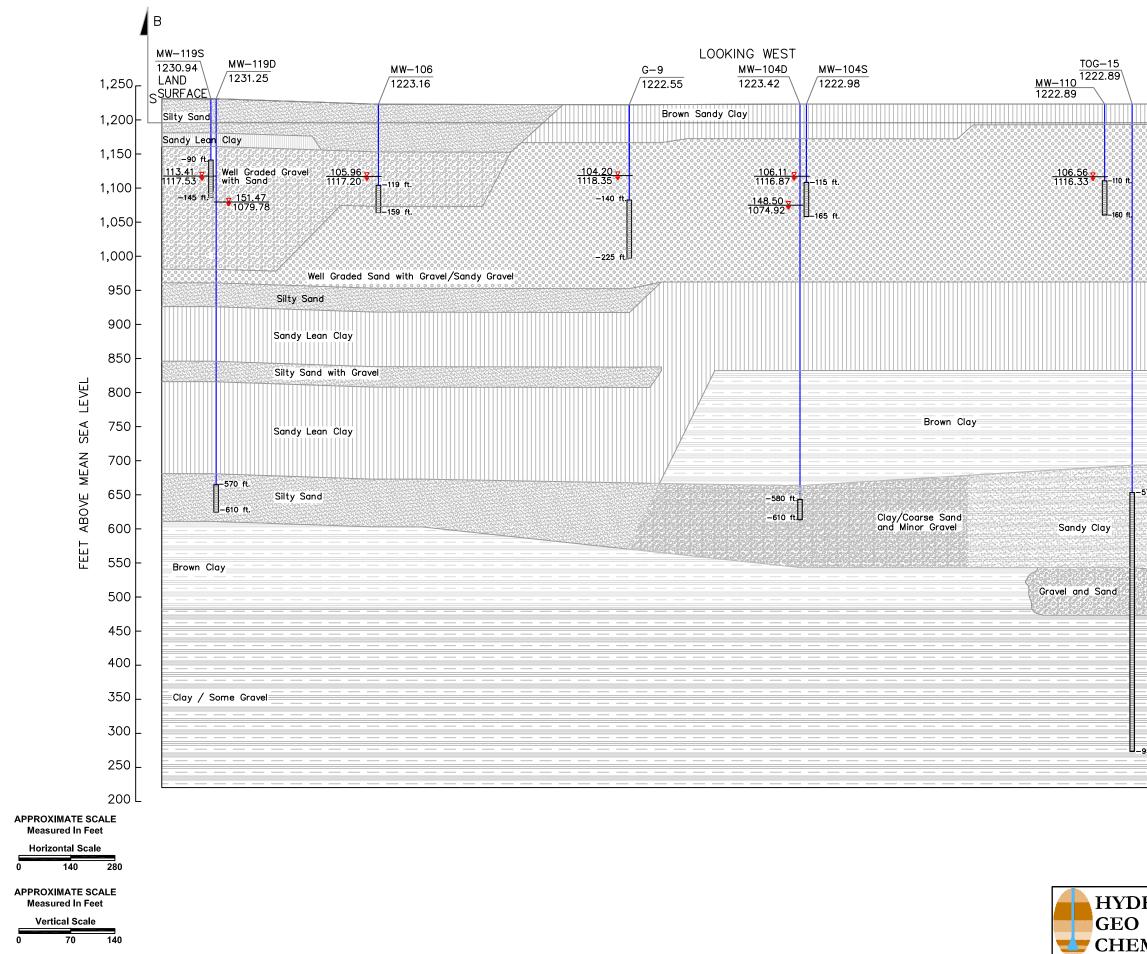
Note: By relinquishing samples to TestAmerica, client agrees to pay for the services requested on this chain of custody form and any additional analyses performed on this project. Payment for services is due within 30 days from the date of invoice. Sample(s) will be disposed of after 30 days.	Helinquished By: Date/Time	(inquished By:	Relinquished by:	550-73249 Chain of Cusicury				TB-1112216 VOA	501-75-11172216 5 VOA	5B1-45-11172216 5 VSA	Par Sharker 111. 59-795	507-69-1118206 S VOA	582-40-11182016 5 UOA	Sample Description Sample Container Matrix Type	Sampler: ROBUT FUE VIEW	Multi Micin		1181 No THOUM 1-186	Client Name/Address:	THE LEADER IN ENVIRONMENTAL TESTING TAL-0013-550 (0116)		TestAmerica
rees to pay for the servi ces req uest ed on this chain of a soft invoice. Sample(s) will be disposed of after 30 days	ne: Received in Lab By:									2 "4117 WESA	3	2 "118/14/13 30 NE2A	2 Wish CECIDIENT	2 Will 1000 MADH	# of Sampling Sampling Preservatives	Email Address:	Phone Number:			Project/PO Number:	73249	[] Phoenix - 4625 E. Cotton Center Blvd., Suite 189, Phoenix, AZ 85040 (602) 437-3340	CHAIN OF CUSTO
ustody form and any additional analyses pe	1/18/16 16:44 Sample Integrity		Date / Time: 24 hours	Date / Time: Turnarour same dav																Analysis Required		nix, AZ 85040 (602) 437-3340	TODY FORM
rformed on this project.	ontegrity (Check)			Turnaround Time: (Check) same day 72 hours					-0L	-20-	-04	- V3	102	10	Special Instructions			57			Page of		2.7 2.7

Page 32 of 33

11/28/2016


Client: Geosyntec Consultants, Inc.


Login Number: 73249 List Number: 1 Creator: Gravlin, Andrea


Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	False	TB does not have sample time provided.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	Check done at department level as required.

List Source: TestAmerica Phoenix

APPENDIX C Cross-Sectional Site Figures

M, INC.	Approved MJB	Date 9/23/14	Author JAA		File Name 2010002088A	Figure 5
RO		МО	NITORING	S WELL N	ECTION B-B' ETWORK WQARF SITE	
	WELLS	WATER L 5 APRIL, N ON FIG	2014. CR	ERE COLL OSS SECT	ECTED FOR A ION LOCATION	LL I
	NA		T APPLIC			
	DRY	. WE	ELL DRY			
50 ft.	¥ 107. 1118			GROUNDW TER ELEV		
	, −200 ft.		REEN DE	РТН		
	<u>MW-1</u> /1225.			ELL IDENT POINT EL	IFICATION NUI	MBER
	-180 ft. -200 ft.	—	ONITOR W	ELL SCRE	EN INTERVAL	
		ID				
$\begin{split} & M_{1} = \sum_{i=1}^{N} \left\{ \begin{array}{c} M_{1} = \sum_{i=1}^{N} \left\{ M_{1} = $						
70 ft.						
× w						
W. GUADALUPE ROAD ROAD						
μ В'						

APPENDIX D Detailed Cost Sheets for Remedial Alternatives

Table D-1 **Estimated Costs for Reference Remedies Cooper and Commerce WQARF Site** Gilbert, Arizona

	Quantity	Units	Cost Per Unit	Total Cost	Total Cost (-25%)	Total Cost (+50%)
Vadose Zone (Arsenic, Copper) - Additional De	lineation, l	Risk Ass	essment, I	nstitutional (Controls	
stimated Capital Costs						
Confirmation Soil Borings (Assume 3) & Risk Assessment	1	LS	\$97,000	\$97,000	\$73,000	\$146,000
Institutional Controls and Property Owner Coordination	1	LS	\$26,000	\$26,000	\$20,000	\$39,000
Project Management/Administration	1	LS	\$13,000	\$13,000	\$10,000	\$20,000
Capital Costs Subtotal				\$136,000	\$102,000	\$204,000
/adose Zone (Arsenic, Copper) Capital Costs Vadose Zone (VOCs) - Conti	nued Oner	ration of	SVE Sveto	\$136,000	\$102,000	\$204,000
stimated Capital Costs	nueu opei	ation of	OVE Oyste			
Miscellaneous Field Supplies	1	LS	\$3.000	\$3.000	\$2,000	\$5.000
Annual Air Permit Fee	5	LS	\$2,000	\$10,000	\$8,000	\$15.000
Confirmation Soil and Soil Vapor Sampling	1	LS	\$117,000	\$117,000	\$88,000	\$176,000
Project Management/Administration	1	LS	\$13,000	\$13,000	\$10,000	\$20,000
Capital Costs Subtotal			1.01000	\$143,000	\$107,000	\$215,000
stimated Annual O&M Costs						
Routine Monitoring/Sampling/Reporting	1	LS	\$33,000	\$33,000	\$25,000	\$50,000
Repair and Maintenance	1	LS	\$7,000	\$7,000	\$5,000	\$11,000
Utilities (electric)	12	Monthly	\$1,000	\$12,000	\$9,000	\$18,000
VGAC Changeout (assumes 1 changeout/5 years)	1	LS	\$2,000	\$2,000	\$2,000	\$3,000
Miscellaneous Field Supplies	1	LS	\$6,000	\$6,000	\$5,000	\$9,000
Project Management/Administration	1	LS	\$9,000	\$9,000	\$7,000	\$14,000
Annual O&M Subtotal				\$69,000	\$52,000	\$104,000
Total O&M Costs for 5 Years (including 3% annual inflation)				\$366,000	\$275,000	\$549,000
adose Zone (VOCs) Capital and O&M Costs				\$509,000	\$382,000	\$764,000
stimated Vadose Zone Contingency Costs						
SVE Well Installation (Three Wells with Targeted Screens)	1	LS	\$60.000	\$60.000	\$45.000	\$90.000
Vadose Zone VOC Risk Assessment	1	LS	\$25,000	\$25,000	\$19,000	\$38,000
O&M Costs for 5 Additional Years (including 3% annual inflation)	1	LS	\$25,000	\$436,000	\$19,000	\$654.000
Vadose Zone Contingency Costs Subtotal		LO	\$430,000	\$521,000	\$391,000	\$782,000
otal Vadose Zone (VOCs) Capital, O&M Costs, and Contingency Costs				\$1,030,000	\$773,000	\$1,545,000
Groundwater - MNA Monitoring (Current We	ell Netwo	ork Semian		\$775,000	φ1, 3 43,000
stimated Capital Costs				naany		
Installation and Development of 2 Downgradient Monitoring Wells	1	LS	\$118,000	\$118,000	\$89,000	\$177,000
Miscellaneous Equipment /Repairs	1	LS	\$8,000	\$8,000	\$6,000	\$12,000
Project Management/Administration	1	LS	\$13,000	\$13,000	\$10,000	\$20,000
Capital Costs Subtotal				\$139,000	\$104,000	\$209,000
stimated Annual Costs						
Semiannual Groundwater Monitoring/Reporting	1	LS	\$46.000	\$46,000	\$35,000	\$69,000
Miscellaneous Sampling & Field Supplies	1	LS	\$6,000	\$6,000	\$5,000	\$9,000
Project Management/Administration	1	LS	\$8,000	\$8,000	\$6,000	\$12,000
Annual MNA Groundwater Monitoring Subtotal				\$60.000	\$45,000	\$90,000
Total Groundwater Monitoring Costs for 18 Years (including 3% annual inflation)				\$1,405,000	\$1,054,000	\$2,108,000
roundwater Capital and Monitoring Costs				\$1,544,000	\$1,158,000	\$2,316,000
stimated Groundwater Contingency Costs						
MNA Monitoring for 10 Additional Years (including 3% annual inflation)	1	LS	\$1,171,000	\$1,171,000	\$878,000	\$1,757,000
Wellhead Treatment						
Professional services (design, engineering, etc.)	-	15%	\$213,000	\$213,000	\$160,000	\$320,000
Treatment compound (foundation, fence, instrumentation and controls, site improvements, etc.)	1	LS	\$405,000	\$405,000	\$304,000	\$608,000
LGAC system (vessels, bag filter system, interconnective piping)	1	LS	\$978,000	\$978,000	\$734,000	\$1,467,000
Conveyance piping modifications	200	LF	\$200	\$40,000	\$30,000	\$60,000
System Commissioning and Startup	1	LS	\$35,000	\$35,000	\$26,000	\$53,000
Construction services (system installation oversight, etc.)	-	15%	\$213.000	\$213.000	\$160.000	\$320.000
O&M costs (assuming 18 years including 3% annual inflation)	1	LS	\$4,476,000	\$4,476,000	\$3,357,000	\$6,714,000
Groundwater Contingency Costs Subtotal	-			\$7,531,000	\$5,648,000	\$11,297,00
roundwater Capital, Monitoring Costs, and Contingency Costs				\$9,075,000	\$6,806,000	\$13,613,00
· · · · · · · · · · · · · · · · · · ·						
otal Vadose Zone and Groundwater Reference Remedy Costs (Including Contingencies)				\$10,241,000	\$7,681,000	\$15,362,00

Abbreviations:

WQARF = Water Quality Assurance Revolving Fund % = percent LS = lump sum \$ = United States dollars VOCs = volatile organic compounds SVE = soil vapor extraction

O&M = operations and maintenance VGAC = vapor phase granular activated carbon MNA = monitored natural attenuation LGAC = liquid phase granular activated carbon LF = linear feet PLC = programmable logic controller

Notes

Costs rounded off to nearest thousand Labor and utility costs are based on current SVE operational costs Total O&M and monitoring costs including 3% annual inflation

Wellhead Treatment Assumptions

Wellhead treatment installed at one existing Salt River Project or Town of Gilbert Production well with enough existing adjacent property for installation of treatment system.

Costs are based on 2017 dollar values. Costs exclude land acquisition and/or access agreements.

Costs excludes permitting.

LGAC system included two, 20,000-pound lead/lag systems in parallel for maximum flowrate of up to 2,200 gallons per minute.

Wellhead owner will accept a flowrate limitation of 2,200 gallons per minute. Existing production well pump will have enough capacity to overcome hydraulic head of treatment system.

No production well pump or additional booster pumps will be needed for wellhead treatment.

No break/equalization tanks will be needed.

Treatment system discharge will be to existing discharge location of production well. Treatment system will be on 1-foot thick concrete slab on grade with secondary containment curbing.

Treatment system will be within 8-foot high metal mesh fence.

Gravel path to treatment compound from nearest roadway. Costs include up to 8 air release valves.

A new electrical service/transformer will not be required. Instrumentation and controls will be connected to existing PLC.

No modifications will be needed for existing wellhead instrumentation and controls.

O&M costs include routine bag filters, sampling, and 2 carbon vessel changeouts per year for a total of 80,000 pounds of LGAC per year. O&M costs exclude monthly utility costs.

Table D-2 Estimated Costs for More Aggressive Remedies Cooper and Commerce WQARF Site Gilbert, Arizona

	Quantity	Units	Cost Per Unit	Total Cost	Total Cost	Total Cost
					(-25%)	(+50%)
Vadose Zone (Arsenic, Copper) - Additional E	Delineation,	Risk Ass	essment, Ins	titutional Cont	rols	
Estimated Capital Costs		1	I			
Confirmation Soil Borings (Assume 3) & Risk Assessment	1	LS	\$97,000	\$97,000	\$73,000	\$146,000
Institutional Controls and Property Owner Coordination Project Management/Administration	1	LS	\$26,000	\$26,000	\$20,000	\$39,000
Project Management/Administration Capital Costs Subtotal	1	LS	\$13,000	\$13,000 \$136,000	\$10,000 \$102,000	\$20,000 \$204,000
Vadose Zone (Arsenic, Copper) Capital Costs				\$136,000	\$102,000	\$204,000
Vadose Zone (Arsenic, copper) capital costs Vadose Zone (VOCs) - Expande	d SVE Sv	/stem	\$130,000	\$102,000	φ 20 4,000
Estimated Capital Costs	<u>, _, _, _, _, _, _, _, _, _, _, _, _, _,</u>	<u></u>				
Miscellaneous Field Supplies	1	LS	\$3,000	\$3,000	\$2,000	\$5,000
Annual Air Permit Fee	10	LS	\$2,000	\$20,000	\$15,000	\$30,000
Confirmation Soil and Soil Vapor Sampling and SVE Well Installation	1	LS	\$126,000	\$126,000	\$95,000	\$189,000
Project Management/Administration	1	LS	\$15,000	\$15,000	\$11,000	\$23,000
Capital Costs Subtotal				\$164,000	\$123,000	\$246,000
Estimated Annual O&M Costs		10	* ***	* ~~~~~~	* 05 000	* 50.000
Routine Monitoring/Sampling/Reporting	1	LS	\$33,000	\$33,000	\$25,000	\$50,000
Repair and Maintenance Utilities (electric)	12	LS Monthly	\$7,000 \$1,000	\$7,000 \$12,000	\$5,000 \$9,000	\$11,000 \$18,000
VGAC Changeout (assumes 1 changeout/5 years)	12	LS	\$1,000	\$12,000	\$9,000	\$18,000
Miscellaneous Field Supplies	1	LS	\$6,000	\$6,000	\$5,000	\$9,000
Project Management/Administration	1	LS	\$9,000	\$9,000	\$7,000	\$14,000
Annual O&M Subtotal	·			\$69,000	\$52,000	\$104,000
Total O&M Costs for 10 Years (including 3% annual inflation				\$791,000	\$593,000	\$1,187,000
Vadose Zone (VOCs) Capital and O&M Costs				\$955,000	\$716,000	\$1,433,000
Groundwater - GETS a	Ind Ground	water Mo	nitoring			
Estimated Capital Costs						
Downgradient Groundwater Monitoring Wells						
Installation and Development of 2 Downgradient Monitoring Wells	1	LS	\$118,000	\$118,000	\$89,000	\$177,000
Miscellaneous Equipment /Repairs Project Management/Administration	1	LS LS	\$8,000	\$8,000	\$6,000	\$12,000 \$20,000
GETS	I	LO	\$13,000	\$13,000	\$10,000	\$20,000
Land Acquisition	1	LS	\$300,000	\$300,000	\$225,000	\$450,000
Treatment Compound (foundation, fence, power, etc.)	1	LS	\$100,000	\$100,000	\$75,000	\$150,000
Groundwater extraction wells (well, pump, power)	3	EA	\$100,000	\$300,000	\$225,000	\$450,000
LGAC system (vessels, bag filter, break tank, piping)	1	LS	\$90,000	\$90,000	\$68,000	\$135,000
Conveyance piping from extraction wells to compound	3000	LF	\$200	\$600,000	\$450,000	\$900,000
Conveyance to SRP lateral	1,000	LF	\$200	\$200,000	\$150,000	\$300,000
Professional Services (design, engineering, permitting, etc)	-	25%	\$398,000	\$398,000	\$299,000	\$597,000
Capital Costs Subtotal				\$2,127,000	\$1,597,000	\$3,191,000
Estimated Annual Costs		10	* ***	* ~~~~~~	A7 4 000	A4 47 000
GETS O&M/Sampling/Reporting	1	LS	\$98,000	\$98,000	\$74,000	\$147,000
Electric Power LGAC Changeout (per vessel)	<u>12</u> 1	Monthly LS	\$3,000 \$20,000	\$36,000 \$20,000	\$27,000 \$15,000	\$54,000 \$30,000
Semiannual Groundwater Monitoring/Reporting	1	LS	\$20,000	\$20,000	\$35,000	\$69,000
Miscellaneous Sampling, Field Supplies, & GETS Supplies	1	LS	\$14,000	\$14,000	\$11,000	\$21,000
Project Management/Administration	1	LS	\$22,000	\$22,000	\$17.000	\$33,000
Annual O&M and Monitoring Subtotal		20	φ22,000	\$236,000	\$177,000	\$354,000
Total O&M and Monitoring Costs for 16 Years (including 3% annual inflation				\$4,757,000	\$3,568,000	\$7,136,000
Groundwater Capital, O&M, and Monitoring Costs	•			\$6,884,000	\$5,163,000	\$10,326,000
3 · · · · · · · · · · · · · · · · · · ·				1 . , ,	, , , , , , , , , , , , , , , , , , , ,	
Estimated Groundwater Contingency Costs						
Installation of Two Additional Extraction Wells and Connection to GETS System	1	LS	\$1,300,000	\$1,300,000	\$975,000	\$1,950,000
Single EISB Injection Event at MW-104S and Monitoring	1	LS	\$185,000	\$185,000	\$139,000	\$278,000
Groundwater Monitoring only for 10 Additional Years (including 3% annual inflation)	1	LS	\$847,000	\$847,000	\$635,000	\$1,271,000
Wellhead Treatment						
Professional services (design, engineering, etc.)	-	15%	\$213,000	\$213,000	\$160,000	\$320,000
Treatment compound (foundation, fence, instrumentation and controls, site	1	LS	\$405,000	\$405,000	\$304,000	\$608,000
improvements, etc.)						
LGAC system (vessels, bag filter system, interconnective piping) Conveyance piping modifications	1	LS	\$978,000	\$978,000	\$734,000	\$1,467,000
	200	LF	\$200 \$35,000	\$40,000	\$30,000	\$60,000 \$53,000
System Commissioning and Startup	-	LS 15%	\$35,000 \$213,000	\$35,000 \$213,000	\$26,000 \$160,000	\$53,000 \$320,000
		LS	\$213,000 \$4,476,000	\$213,000 \$4,476,000	\$160,000	\$320,000 \$6,714,000
Construction services (system installation oversight, etc.)	1			ϕ +,+,0,000	φ0,007,000	φ0,7 14,000
O&M costs (assuming 18 years including 3% annual inflation)	1	L3	¢ 1, 11 0,000		\$6 519 000	\$13 038 000
O&M costs (assuming 18 years including 3% annual inflation) Groundwater Contingency Costs Subtotal	1			\$8,692,000	\$6,519,000 \$11,682,000	\$13,038,000 \$23,364,000
O&M costs (assuming 18 years including 3% annual inflation)	1				\$6,519,000 \$11,682,000	\$13,038,000 \$23,364,000

Table D-2 Estimated Costs for More Aggressive Remedies Cooper and Commerce WQARF Site Gilbert, Arizona

Abbreviations:

WQARF = Water Quality Assurance Revolving Fund % = percent LS = lump sum

- \$ = United States dollars VOCs = volatile organic compounds
- SVE = soil vapor extraction
- O&M = operations and maintenance

Notes:

Costs rounded off to nearest thousand

Labor and utility costs are based on current SVE operational costs

Total O&M and monitoring costs include a 3% cost increase from year to year

Contingent Additional Extraction Well Assumptions

Costs are based on 2017 dollar values.

Expansion of the GETS treatment system (i.e., additional carbon vessels or treatment systems) would not be required.

Additional extraction wells will be within 1,600 and 2,600 linear feet of GETS in new trenches.

Costs exclude land acquisition and/or access agreements.

Contingent EISB Assumptions

Costs are based on 2017 dollar values.

Costs include work plan and baseline sampling activities for up to three existing monitoring wells.

Groundwater conditions suitable to EISB without additional augmentation to use of other than KB-† Plus and an extended release, water mixable oil as donor.

Single injection event at groundwater monitoring well MW-104S consisting of 200,000 gallon injectate volume, using KB-* Plus and an extended release, water mixable oil. Costs associated with site/property access agreements excluded.

Wellhead Treatment Assumptions

Wellhead treatment installed at one existing Salt River Project or Town of Gilbert Production well with enough existing adjacent property for installation of treatment system. Costs are based on 2017 dollar values.

Costs exclude land acquisition and/or access agreements.

LGAC system included two, 20,000-pound lead/lag systems in parallel for maximum flowrate of up to 2,200 gallons per minute.

Wellhead owner will accept a flowrate limitation of 2,200 gallons per minute.

Existing production well pump will have enough capacity to overcome hydraulic head of treatment system.

No production well pump or additional booster pumps will be needed for wellhead treatment.

No break/equalization tanks will be needed.

Treatment system discharge will be to existing discharge location of production well.

Treatment system will be on 1-foot thick concrete slab on grade with secondary containment curbing.

Treatment system will be within 8-foot high metal mesh fence.

Gravel path to treatment compound from nearest roadway.

Costs include up to 8 air release valves.

A new electrical service/transformer will not be required.

Instrumentation and controls will be connected to existing PLC.

No modifications will be needed for existing wellhead instrumentation and controls.

O&M costs include routine bag filters, sampling, and 2 carbon vessel changeouts per year for a total of 80,000 pounds of LGAC per year.

O&M costs exclude monthly utility costs.

GETS = groundwater extraction and treatment system EA = each LGAC = liquid phase granular activated carbon LF = linear feet SRP = Salt River Project EISB = enhanced in-situ bioremediation PLC = programmable logic controller

Table D-3 Estimated Costs for Less Aggressive Remedies Cooper and Commerce WQARF Site Gilbert, Arizona

	Quantity	Units	Cost Per Unit	Total Cost	Total Cost (-25%)	Total Cost (+50%)
Vadose Zone (Arsenic, Copper) - Additional D	elineation,	Risk Ass	essment, Inst	itutional Cont	rols	
Estimated Capital Costs		-				
Confirmation Soil Borings (Assume 3) & Risk Assessment	1	LS	\$97,000	\$97,000	\$73,000	\$146,000
Institutional Controls and Property Owner Coordination	1	LS	\$26,000	\$26,000	\$20,000	\$39,000
Project Management/Administration	1	LS	\$13,000	\$13,000	\$10,000	\$20,000
Capital Costs Subtotal				\$136,000	\$102,000	\$204,000
Vadose Zone (Arsenic, Copper) Capital Costs				\$136,000	\$102,000	\$204,000
Vadose Zone (VOCs) - Sh	utdown of C	urrent S	VE System			
Estimated Capital Costs			T			
Confirmation Soil and Soil Vapor Sampling	1	LS	\$117,000	\$117,000	\$88,000	\$176,000
Capital Costs Subtotal				\$117,000	\$88,000	\$176,000
Estimated Annual O&M Costs		1			1	
Quarterly Rebound Monitoring/Reporting	4	Qtrly	\$2,000	\$8,000	\$6,000	\$12,000
Project Management/Administration	1	LS	\$2,000	\$2,000	\$2,000	\$3,000
Annual O&M Subtotal				\$10,000	\$8,000	\$15,000
Total O&M Costs for 1 Year				\$10,000	\$8,000	\$15,000
Vadose Zone Capital and O&M Costs				\$127,000	\$95,000	\$191,000
Groundwater - MNA Monitori	ng Limited	Well Netv	vork Annually			
Estimated Capital Costs						
Installation and Development of 2 Downgradient Monitoring Wells	1	LS	\$118,000	\$118,000	\$89,000	\$177,000
Miscellaneous Equipment	1	LS	\$8,000	\$8,000	\$6,000	\$12,000
Project Management/Administration	1	LS	\$13,000	\$13,000	\$10,000	\$20,000
Capital Costs Subtotal				\$139,000	\$104,000	\$209,000
Estimated Annual Costs						
Annual Groundwater Monitoring/Reporting	1	LS	\$21,000	\$21,000	\$16,000	\$32,000
Miscellaneous Sampling & Field Supplies	1	LS	\$3,000	\$3,000	\$2,000	\$5,000
Project Management/Administration	1	LS	\$4,000	\$4,000	\$3,000	\$6,000
Annual Groundwater Monitoring Subtotal				\$28,000	\$21,000	\$42,000
Total Groundwater Monitoring Costs for 18 Years				\$656,000	\$492,000	\$984,000
Groundwater Capital and Monitoring Costs				\$795,000	\$596,000	\$1,193,000
Estimated Groundwater Contingency Costs				A077.000	* 500.000	
MNA Monitoring for 10 Additional Years (including 3% annual inflation)	1	LS	\$677,000	\$677,000	\$508,000	\$1,016,000
Wellhead Treatment		150/	AQ 40.000	*************	A 4 9 9 9 9 9	****
Professional services (design, engineering, etc.)	-	15%	\$213,000	\$213,000	\$160,000	\$320,000
Treatment compound (foundation, fence, instrumentation and controls, site	1	LS	\$405,000	\$405,000	\$304,000	\$608,000
improvements, etc.)	1	10				
LGAC system (vessels, bag filter system, interconnective piping)		LS	\$978,000	\$978,000	\$734,000	\$1,467,000
Conveyance piping modifications	200	LF	\$200	\$40,000	\$30,000	\$60,000
System Commissioning and Startup	1	LS	\$35,000	\$35,000	\$26,000	\$53,000
Construction services (system installation oversight, etc.)	-	15%	\$213,000	\$213,000	\$160,000	\$320,000
O&M costs (assuming 18 years including 3% annual inflation)	1	LS	\$4,476,000	\$4,476,000	\$3,357,000	\$6,714,000
Groundwater Contingency Costs Subtotal				\$7,037,000	\$5,278,000	\$10,556,000
Groundwater Capital, Monitoring Costs, and Contingency Costs				\$7,832,000	\$5,874,000	\$11,748,000
Total Vadose Zone and Groundwater Reference Remedy Costs (Including Contingencies)				\$8,095,000	\$6,071,000	\$12,143,000

Abbreviations:

WQARF = Water Quality Assurance Revolving Fund

% = percent

LS = lump sum

\$ = United States dollars

VOCs = volatile organic compounds

SVE = soil vapor extraction

Notes:

Costs rounded off to nearest thousand

Total O&M and monitoring costs include a 3% cost increase from year to year

Wellhead Treatment Assumptions

Wellhead treatment installed at one existing Salt River Project or Town of Gilbert Production well with enough existing adjacent property for installation of treatment system.

Costs are based on 2017 dollar values.

Costs exclude land acquisition and/or access agreements.

Costs excludes permitting.

LGAC system included two, 20,000-pound lead/lag systems in parallel for maximum flowrate of up to 2,200 gallons per minute.

Wellhead owner will accept a flowrate limitation of 2,200 gallons per minute.

Existing production well pump will have enough capacity to overcome hydraulic head of treatment system.

No production well pump or additional booster pumps will be needed for wellhead treatment.

No break/equalization tanks will be needed.

Treatment system discharge will be to existing discharge location of production well.

Treatment system will be on 1-foot thick concrete slab on grade with secondary containment curbing.

Treatment system will be within 8-foot high metal mesh fence.

Gravel path to treatment compound from nearest roadway.

Costs include up to 8 air release valves.

A new electrical service/transformer will not be required.

Instrumentation and controls will be connected to existing PLC.

No modifications will be needed for existing wellhead instrumentation and controls.

O&M costs include routine bag filters, sampling, and 2 carbon vessel changeouts per year for a total of 80,000 pounds of LGAC per year.

O&M costs exclude monthly utility costs.

O&M = operations and maintenance

MNA = monitored natural attenuation

PLC = programmable logic controller

LGAC = liquid phase granular activated carbon

Qtrly = quarterly

LF = linear feet