

3845 North Business Center Drive Suite 115 Tucson, AZ 85705 Tel: 520-485-1300 Email: info@arizonamining.com Web: www.arizonamining.com

April 27, 2017

Mr. John Patricki Project Manager Voluntary Remediation Program Arizona Department of Environmental Quality 1110 West Washington St. Phoenix, AZ 85007

Re: Voluntary Site Remediation Work Plan for Trench Camp Property (January Mine, Norton Mine and Trench Camp Mine Claims) ADEQ-VRP Site Code #5051430-02

Dear Mr. Patricki:

Enclosed please find 2 copies of the above-referenced work plan, as well as a digital copy of the document on CD.

This work plan was prepared in conformance with the guidance provided by ADEQ. We have included an annotated copy of the ADEQ VRP Work Plan Checklist identifying the sections that address those items that require a specific response, in accordance with the applicable Arizona statutes referenced in the checklist.

If you have any questions or need additional information, please do not hesitate to contact me at (520) 485-1300 or jpappas@arizonamining.com.

Sincerely,

Arizona Minerals, Inc.

Johnny Pappas Director of Environmental and Permitting

Encl.

Voluntary Remediation Program Work Plan Checklist Complete Shaded Areas and Submit with Work Plan					
Site Name:	January, Norton, and Trench Cam	^{p Mine Claims} VRP Site Code: 505143-02			
Volunteer/Applicant Name: Johnny Pappas, Director E&P, Arizona Minerals, Inc.					
Volunteer/Applic	ant Email Address and Ph	one: jpappas@arizonamining.co	om / 803-235-5563		
Authorized Ager	t (AA)/Consulting Compar	ıy:			
AA/Consultant E	mail Address and Phone:				
Reference		statutes in their entirety to ensure compliance)	Page(s) Where Addressed in Work Plan (write N/A if not applicable)	VRP Use Only	
<u>§49-175A.1</u>	information; informatio	ite characterization and assessment on regarding any remediation previously referenced reports not previously submitted;	Section 5		
<u>§49-175A.2</u>	If the site has not bee characterization and a	N/A			
<u>§49-175A.3.a</u>	If site characterization remediation will compl completion of remedia must be included.	N/A per 49-175.B3 (AZPDES permit)			
<u>§49-175A.3.b</u>	If site characterization the remediation to be completion must be in	Attachment E			
<u>§49-175A.4</u>	Schedule for submissi	N/A			
<u>§49-175A.5</u>	A proposal for commu <u>§49-176</u> ("Community	Section 10 and Attachment F			
<u>§49-175A.6</u>	If known, a list of instit during remediation and to control exposure to	N/A			
<u>§49-175A.7</u>	A proposal for monitor remediation if necessa levels or controls have	TBD in permit issued			
<u>§49-175A.8</u>	A list of any permits or or already performed b	Section 7			
<u>§49-175A.9</u>	If requested by the department, information regarding the financial capability of the applicant to conduct the work identified in the <u>application</u> . <i>(IF APPLICABLE)</i>				

	Voluntary Remediation Program Work Plan Che Complete Shaded Areas and Submit with Work	cklist	Page 2 of 3
Site Name:	January, Norton, and Trench Camp Mine Claims VRP Site Code:	505143-02	
Reference	Summary of Statutory Requirement	Page(s) Where Addressed in Work Plan	VRP Use Only
	(please review all statutes in their entirety to ensure compliance)	(write N/A if not applicable)	
<u>§49-175B</u>	Remediation levels or controls for remediation conducted pursuant to this article shall be established in accordance with rules adopted pursuant to <u>\$49-282.06</u> unless one or more of the following applies: see §49-175B.1 through §49-175B.4, below.	N/A	
<u>§49-175B.1</u>	The applicant demonstrates that remediation levels, institutional controls, or engineering controls for remediation of contaminated soil comply with <u>§49-152</u> and the rules adopted.	N/A	
<u>§49-175B.2</u>	The applicant demonstrates that remediation levels, institutional controls, or engineering controls for remediation of landfills or other facilities that contain materials that are not subject to $\frac{949-152}{100}$ (i.e.: asbestos) do not exceed a cumulative excess lifetime cancer risk between 1×10^{-4} to 1×10^{-6} , and a hazard index of no greater than 1.	N/A	
<u>§49-175B.3</u>	The applicant demonstrates that on achieving remediation levels or controls for a source or potential source of contamination to a navigable water, the source of contamination will not cause or contribute to an exceedance of surface water quality standards, or if a permit is required pursuant to <u>33 United States Code §1342</u> for any discharge from the source, that any discharges from the source will comply with the permit.	AMI will apply for AZPDES Permit and APP	
<u>§49-175B.4</u>	The applicant demonstrates that, on achieving remediation levels or controls for a source of contamination to an aquifer, the source will not cause or contribute to an exceedance of aquifer water quality standards (AWQS) beyond the boundary of the facility where the source is located.	in accordance with APZDES permit and APP	
<u>§49-175C</u>	The VRP may waive any work plan requirement under this section that it determines to be unnecessary to make any of the determinations required under <u>§49-177</u> . If any waivers are requested in the Work Plan or have been previously requested and approved by the VRP, cite them in the Work Plan, including a citation of the statute for which the waiver applies.	N/A	

Site Name:	January, Nor	on, and Trench Camp Mine Claims VRP Site Code:	505143-02	
	a Work Plan. T	tablished by A.R.S. §49-177 and §49-180, the VRP ex he following provides a list of attachments/exhibits v h a Work Plan to provide the information required by	which are recommended	
Work Plan In	formation	Title of Figure/Table/Attachment/Exhibit Where Requested Information is Cited (write N/A if not applicable)	Figure/Table/ Attachment or Report Page Number (write N/A if not applicable)	VRP Use Only
Site Locat (topographic		Location Map (main text of work plan)	Figure 1	
Site N (to sca	•	Site Plan (main text)	Figure 3	
Historical Sampl	ing Data Table	Figures 1, 2, 3 (main text)	Figures 1,2,3	
Historical Sample (to sca		Figure 12: Water Monitoring Locations (main text)	Figure 12	
Proposed Sample (to sca		TBD	TBD	
Sampling and A (includes Field Samp Assuranc	ling Plan & Quality	TBD in permit issued	TBD	
Proposed Reme Location		Attachment B Figures Cover Page	Attachment B	
Proposed Remediation System Layout (Design Drawings)		Figure A010 (Attachment B)	Attachment B	
Schedule for Implementation of Project Activities* (Gantt Style Chart)		Attachment E	Attachment E	
Project Activities are	defined in A.R.S. §§4	9-175A.2 through 49-175A.4, and 49-176A.2 (Community Involvement)	
Proposed Langu Notification of (i.e.: exampl	Remediation	Attachment F	Attachment F	
Plan for Investig Waste (NA	
Evaluation o Alterna (i.e: for Feasibility S	tives		NA	
DOE	S THE WORK F	Yes No Image: Construction of the second state	EDIATION LEVELS?	
	DOES THE V	VORK PLAN PROPOSE EVALUATION OF BACKGROU Yes No	ND LEVELS?	

ASARCO January Adit (Norton Mine) Voluntary Remediation Program (VRP) Site Remedial Action Work Plan

Santa Cruz County, Arizona VRP Site Code 505143-02

Volume 1 of 2

Prepared for:

Arizona Minerals, Inc. 3845 North Business Center Drive Suite 115 Tucson, AZ 85705

Prepared by:

Clear Creek Associates, LLC 221 N. Court Avenue, Suite 101 Tucson, Arizona 85719

Newfields Mining Design and Technical Services 9400 Station Street, Suite 300 Lone Tree, CO 80124

Schafer Limited 3018 Colter Ave. Bozeman, MT 59715

Water Engineering Technologies, Inc. 4691 Shandalyn Lane Bozeman, MT 59718

April 27, 2017

TABLE OF CONTENTS

1.	INTR	ODUCTION	1
	1.1	Purpose	. 1
	1.2	VRP Status	. 1
	1.3	Project Approach	. 1
	1.4	Constituents of Concern	
	1.5	Location	2
	1.6	January Mine, Norton Mine, and Trench Camp Mine History	. 2
	1.7	Mine Influenced Water Sources.	
	1.8	Responsible Party	
2.	GEOL	.0GY	. 5
	2.1	Regional Geology	
	2.2	Geologic Formations	
	2.3	Surficial Geology	
	2.4	Site Specific Geology	
		2.4.1 Geologic Cross Sections	
		2.4.2 Mineralization	
	2.5	Seismicity	
	2.6	Geologic Hazards	
3.	HYDF	ROLOGY	9
5.	3.1	Climate	
	3.2	Surface Water Hydrology	
	3.3	Site Stormwater Analysis	
4.	HYDE	ROGEOLOGY	11
	4.1	Water Wells Within One-Half Mile of Property Boundary	
	4.2	Depth to Groundwater and Groundwater Flow	
	1.2	4.2.1 Depth to Groundwater	
		4.2.2 Water Level Trends	
		4.2.3 Groundwater Flow Direction and Hydraulic Gradient	
		4.2.4 Recharge	
5.	SITE	CHARACTERIZATION	13
5.	5.1	Previously Conducted Characterization	
	5.1	5.1.1 January Adit and Seepage Flows and January Mine Workings Rechar	
		Flows	-
		5.1.2 Pilot scale Remedial Passive Treatment System	
		•	
	5 2		
	5.2	Recent Site Characterization	
		5.2.1 Geotechnical Investigation	
		5.2.2 Historic Tailing and Waste Rock Characterization	
		5.2.3 January Mine Adit and January Mine Workings Water Quality	18

i

	5.2.4 Tailings Pile Seepage Water Quality	
	5.2.5 Surface Water Quality	
	5.2.6 Groundwater Quality	19
6.	REMEDIAL DESIGN	
	6.1 Remediation Goals	
	6.2 Tailing Storage Facility and Underdrain Collection Pond	
	6.3 Water Treatment Plant	
7.	PERMITTING AND LEGAL REQUIREMENTS	
	7.1 Applicable Requirements	
	7.2 Other Determinations	
8.	SAMPLING AND ANALYSIS PLAN (SAP)	
9.	SCHEDULE	
10.	COMMUNITY INVOLVEMENT PROPOSAL	
11.	CONCLUSIONS	
12.	REFERENCES	

TABLES

1	January	Adit	Water	Quality Data	ŧ
---	---------	------	-------	--------------	---

- 2A Alum Gulch Surface Water Quality Data
- 2B Harshaw Creek Surface Water Quality Data
- 3 MW-3 Water Quality Data

FIGURES

ii

- 1 Project Location
- 2 January, Norton, Trench Claim Locations
- 3 Site Plan
- 4 Watershed Boundaries
- 5 Geologic Map
- 6 Cross Section A-A'
- 7 FEMA Floodplain Map
- 8 Water Well Locations within ¹/₂ Mile of Property
- 9 Groundwater Elevation Map
- 10 Selected Hydrographs

April 2017 400003

- 11 January Mine Workings Pumping and Recharge Summary
- 12 Water Monitoring Locations

ATTACHMENTS

Volume 1:

Attachment A: Materials Characterization by Schafer Limited LLC

Attachment B: Included in Volume 2 (see below)

Attachment C: Water Treatment Plant Design by Water Engineering Technologies, Inc.

Attachment D: Clean Water Act Section 404 Jurisdictional Determination

Attachment E: Project Schedule

Attachment F: Community Involvement

Volume 2:

Attachment B: Tailings and Potential Acid Generating Material Remediation, Placement and Storage Facilities by NewFields Mining Design and Technical Services

ACRONYMS AND ABBREVIATIONS

AAC	Arizona Administrative Code
ADEQ	Arizona Department of Environmental Quality
ADWR	Arizona Department of Water Resources
AL	Alert Level
AMI	Arizona Minerals Inc.
APP	Aquifer Protection Permit
AQL	Aquifer Quality Limit
ARS	Arizona Revised Statutes
AWQS	Aquifer Water Quality Standard
AZPDES	Arizona Pollutant Discharge Elimination System
BADCT	Best Available Demonstrated Control Technology
bls	below land surface
CFR	Code of Federal Regulations
Clear Creek	Clear Creek Associates, PLC
COC	Constituent of Concern
CRD	Carbonate Replacement Deposit
CWA	Clean Water Act
DIA	Discharge Impact Area
FEMA	Federal Emergency Management Agency
ft	feet
ft/day	feet per day
gpm/ft	gallons per day per foot
gpm	gallons per minute
GWSI	Groundwater Site Inventory
m	meter
MIW	mine influenced water
mg/L	milligrams per liter
PAG	Potentially Acid Generating
RPTS	Remediation Passive Treatment System
TMDL	total maximum daily load
TSF	tailing storage facility
USEPA	United States Environmental Protection Agency
USGS	United Stated Geological Survey
VRP	Voluntary Remediation Program
	• •

Wells 55	ADWR Well Registry Database
WTP	Water Treatment Plant
µg/l	microgram per liter

1. INTRODUCTION

1.1 Purpose

Arizona Minerals, Inc. (AMI) is the applicant to the Arizona Department of Environmental Quality's (ADEQ) Voluntary Remediation Program (VRP) for the January Adit (Norton Mine) Project at the Trench Camp Mine property in Santa Cruz County, Arizona. This revised work plan was prepared by AMI in accordance with A.R.S. §49-175 to eliminate discharges of mine impacted water to Alum Gulch from the January Adit and tailings pile seepage.

Key elements of this Work Plan include materials characterization by Schafer Limited Attachment A), design of the proposed lined tailing storage facility and underdrain pond (Attachment B) by NewFields, and the water treatment plant design by Water Engineering Technologies (Attachment C).

1.2 VRP Status

AMI submitted a VRP application for the January Mine, Norton Mine and Trench Camp Mine claims (Project) in the historic Harshaw Mineral District on February 19, 2016, shortly after AMI acquired the claims. The project was designated as VRP Site No. 505143-02.

A pilot scale Remediation Passive Treatment System (RPTS) was constructed near the January Mine Adit, in February 2016 to treat discharges from the January Mine Adit and seepage from Tailing Storage Piles #1, #2, and #4. The Pilot RPTS was continuously monitored by AMI personnel for a period of 24 weeks, from March to August 2016.

While the pilot test showed that a full-scale system would work with some modifications, AMI decided to revise the scope of the VRP work plan by replacing the passive water treatment plant with an active water treatment plant and building a lined tailing/waste rock storage facility and underdrain collection pond. The revised plan, presented in this document, is a more rigorous approach to achieving the project objectives.

1.3 Project Approach

The purpose of remedial actions to be conducted under the VRP is to address mine influenced water (MIW) discharges from the January Mine Adit and seepage from historic tailing and potentially acid generating (PAG) waste rock storage piles located on the Trench Camp, Norton, and January Mine property. This will be achieved through the following elements that are described in this revised Work Plan:

- Material from historic tailing storage piles #1, #2, #3, and #4 and PAG waste rock will be re-handled and placed on a lined tailing storage facility (TSF) for collection of solutions through an underdrain collection system. This will prevent future seeps from the toe of the historic tailing piles, and allow for collection of underdrain solutions.
- A double-lined underdrain collection pond will be constructed downgradient of the lined TSF according to prescriptive BADCT, to collect solutions from the re-handled historic tailings and PAG waste rock.
- An active water treatment plant (WTP) will be constructed to treat discharges from the January Mine workings and solutions captured in the underdrain collection pond from the historic tailings, PAG waste rock, and precipitation that falls within the lined facility.

Remedial design and operations will be conducted under the provisions of an Arizona Pollutant Discharge Elimination System (AZPDES) permit and an Aquifer Protection Permit (APP).

1.4 Constituents of Concern

As discussed in more detail in Section 1.6, ADEQ evaluated conditions along Alum Gulch and promulgated the Total Maximum Daily Loading (TMDL) Implementation Plan for Alum Gulch, in March of 2007. The plan recognizes cadmium, copper, zinc and acidity as the primary agents with undesirable levels of concentration present in the Alum Gulch drainage. These are considered the Constituents of Concern (COCs).

1.5 Location

The Trench Camp, Norton, and January Mine claims (Property) are located approximately 5 miles south of the Town of Patagonia, Arizona within the Southeast Quarter of Section 32, Township 22 South and Range 16 East, Gila and Salt River Meridian, in Santa Cruz County, Arizona (Figure 1). AMI acquired the January, Trench Camp, and Norton claims in early 2016 from ASARCO, LLC. Both the January and the Norton mine claims are recognized under a single property designation by the Santa Cruz County Recorder, having been assigned parcel number 105-50-001B (Figure 2, Santa Cruz County Assessor Map Book 105, Page 50). The Trench Camp and Josephine Mine claim parcel has been assigned parcel numbers 105-50-001A and 105-49-003. The U.S. Forest Service manages the surrounding adjacent lands, as part of the Coronado National Forest.

1.6 January Mine, Norton Mine, and Trench Camp Mine History

Mining in the Harshaw District dates from mid-18th century Spanish Colonial times, but is poorly documented before the 1870's. Initially, oxide lead-silver vein ore was mined from small

operations on the Trench property. This work continued intermittently until the late 19th century. Historical information from the late 1800s and early 1900s has been well documented (Schrader, 1915; Keith, 1975). The district's historic production is poorly reported but is believed to be around 250,000 tons, yielding approximately two million ounces of silver with by-product lead, zinc, copper and manganese. Production from the Harshaw district was dominated by the Trench-area mines, small mines on the Alta claim, the Hardshell Incline and the Hermosa mine.

Ownership of the Property prior to its acquisition by American Smelting and Refining Company, precursor to ASARCO, LLC (ASARCO) is not known. ASARCO began operating the Trench Camp Mine in 1939. The Trench area mines and sulfide flotation custom mill produced primarily silver ores with minor by-product lead from small underground operations. Approximately half of the production was direct-shipping oxide ore and the balance was milling ore. The Trench mill produced both lead and zinc concentrates with copper, silver and minor gold by-product production. The 150-ton per day Trench lead-zinc flotation mill also treated district ores between 1939 and 1964 on a custom basis. ASARCO continued ownership of the Property until it was acquired by AMI in 2016.

According to public records, the January mine was worked intermittently since the early 1870s. It was patented in 1894, and it was last operated by ASARCO in the period 1925 to 1949. Originally, the January and Norton Mines were operated jointly, extracting zinc, lead, silver, gold and manganese ore. In its later years ASARCO extracted mostly copper, lead and zinc ore.

Mineral extraction and concentration activities generated mining waste material in large quantities, which was deposited at four tailings storage locations within the larger Trench Camp Mine claim, and in several smaller piles within the two other smaller mining claim sites (Figure 3). As can be seen in the figure, three of the spent mineral ore tailings piles, identified as TP#1, TP#2 and TP#4 are located within areas that drain into the lowlands of Alum Gulch and eventually join other discharge along the main wash in Alum Gulch. TP#3 is within the Harshaw Creek Watershed.

1.7 Mine Influenced Water Sources

The Property falls within the Alum Gulch and Harshaw Creek watersheds. The January and Norton claims and most of the Trench claim are within the Alum Gulch watershed; the eastern portion of the Trench claim is within the Harshaw Creek watershed (Figure 4).

Alum Gulch is a tributary of Sonoita Creek, joining it approximately 5.5 miles downstream from the January Mine and 2.25 miles southwest (and downstream from) from the Town of Patagonia. In addition to mining activities at the Property, several other historical mining ventures have extracted mineral ore from the upstream canyons that eventually drain into Alum Gulch. Historic mining activity in the watershed raised concerns about the presence of trace minerals in the natural drainage that eventually would reach the Sonoita Creek. To address the State of Arizona's Clean Water Act responsibilities, ADEQ evaluated conditions along Alum Gulch and promulgated the Total Maximum Daily Loading (TMDL) Implementation Plan for Alum Gulch,

in March of 2007. The plan recognizes cadmium, copper, zinc and acidity as the primary agents with undesirable levels of concentration present in the Alum Gulch drainage.

Two sources of mine influenced water (MIW) have been identified at the Trench/January/Norton sites:

- <u>Discharges from the January Mine Adit into Alum Gulch</u>: Testing of these discharges by ADEQ indicated the presence of cadmium, copper, zinc and acidity at levels exceeding the provisions of the TMDL Implementation Plan for Alum Gulch. ADEQ issued a discharge violation notice to ASARCO, who at that time owned the mining claim parcels.
- <u>Seepage from Tailing Pile #1</u>: In 2014, seepage from the base of the covered tailings into the unnamed wash in the Trench Mine property was observed. ADEQ issued a Notice of Violation to the ASARCO Multi-State Environmental Custodial Trust, the owner at the time. The Trust committed to the development and implementation of a SWPPP and initiated the application for an AZPDES Multi-Sector General Permit from ADEQ.

Both of these discharges are within the Alum Gulch watershed.

In response to these discharges, ASARCO implemented a plan to capture MIW discharges by capturing it and delivering it to a wetlands treatment system. This treatment system did not meet the treatment goals, resulting in exceedances of the surface water quality standards specified by ADEQ in an AZPDES permit that was issued for the wetlands. This permit was allowed to lapse by ASARCO. Because the initial wetlands treatment system implemented by ASARCO was not effective, after AMI acquired the property in 2016, they proposed to implement an alternative treatment under the provisions of VRP.

1.8 Responsible Party

ASARCO transferred the Trench Camp Mine claim to the ASARCO Multi-State Environmental Custodial Trust (Trust) in 2009. In early 2016, AMI purchased the January and Norton Mine Claims and the Trench Camp Mine Claims from the ASARCO Trust. The following provisions were included in the purchase agreement:

- AMI would enter ADEQ's VRP program and develop an acceptable work plan to remediate the MIW discharge from the January Adit and tailing pile seepage from the Trench Camp Mine.
- AMI must post a bond with the State of Arizona to cover long-term operations and maintenance expenses associated with the work plan.

2. GEOLOGY

2.1 Regional Geology

The Project Area is located in the Patagonia Mountains of southern Arizona within the Basin and Range physiographic province. The province is typified by north-northwest trending normal faults. The fault-bounded mountains, typically with large intrusive cores, are separated by deep basins filled with Tertiary and Quaternary sediments ("basin fill"). The core of the Patagonia Mountain range is a Laramide-age granodiorite pluton that has been dated at 60-65 million years (Graybeal, 2007).

2.2 Geologic Formations

The geology of the area was recently mapped by Graybeal et al (2015) (Figure 5). Much of Graybeal's work includes mapping of Simons (1974).

Surface rocks in the Trench Camp area consist primarily of:

- Cretaceous andesite (designated as *Ka* by Graybeal, 2015) Gray, greenish-gray, or grayish-red, porphyritic to fine-grained, thin to very thick flows of trachyandesite or diorite; contains some rhyodacite or dacite. Maximum thickness of about 3000 feet.
- Tertiary Volcaniclastic Rocks of middle Alum Gulch (Tv) Grayish to white, well consolidated and poorly sorted lapilli tuff and tuff breccia, probable crater-fill material of the Sunnyside porphyry Cu-Mo system. Contains clasts of Mesozoic volcanic and sedimentary rocks and clear quartz xenocrysts in fine-grained, illite-alunite-kaolinite-altered matrix. Numerous silicified zones. Bedded sequences have concentric strike and inward dips.
- Jurassic/Triassic volcanics (*JTrv*) Light-colored rhyolitic, alkali rhyolitic, and quartz latitic lava, tuff, and welded tuff; locally much altered to sericite, epidote, carbonate, and chlorite, or strongly hornfelsed. Thickness uncertain but probably more than 6,000 feet.

North- to northwest-dipping Paleozoic sedimentary rocks underlie the *JTrv*. The Paleozoic-Mesozoic contact is unconformable. The Paleozoic units, from youngest to oldest, include:

- Naco group
 - Permian Concha Limestone (*Pcn*) Gray to light-gray, fine-grained, medium to thick-bedded limestone with lenses and nodules of chert. About 155 m (510 ft) thick.
 - Permian Scherrer Formation (Ps) Brownish-gray to gray, massive, sandy limestone and white to light-brownish-gray, fine-grained sandstone. About 46 m (150 ft) thick.

- Permian Epitaph Dolomite (*Pe*) Gray fine-grained, thick-bedded limestone, silty limestone, gray dolomitic limestone, lesser sandstone and conglomerate, and sparse pods of chert and quartz. About 262 m (860 ft) thick.
- Permian Colina Limestone (Pc) Gray to dark-gray, fine-grained, and medium- to thin-bedded limestone and thin beds of dolomite. About 72–104 m (235–340 ft) thick.
- Permian/Pennsylvanian Earp Formation (P*e) Gray, light-gray, or pink thinbedded to massive, sandy to silty limestone and dolomitic limestone, and lesser dolomite, chert and limestone conglomerate, and sandstone. About 229 m (750 ft) thick.
- \circ Pennsylvanian Horquilla Limestone (**h*) Light-gray, gray, or pinkish-gray, fineto coarse-grained, medium-bedded limestone and lesser dolomitic limestone and brown to maroon thin-bedded limestone. About 82 m (270 ft) thick. Unconformably overlies Escabrosa Limestone (unit Me).
- Mississippian Escabrosa Formation is below the Horquilla Limestone. The contact is disconformable.
- The Devonian Martin Limestone unconformably underlies the Escabrosa Formation.
- Cambrian Abrigo Limestone unconformably underlies the Martin Limestone.
- Cambrian Bolsa Quartzite underlies the Abrigo Limestone. This contact is generally conformable.
- Precambrian Quartz Monzonite is the basement rock in the area. The contact with the Bolsa Quartzite is a nonconformity.

2.3 Surficial Geology

Surface rock in the Project Area consist of the Cretaceous andesite (*Ka*) and the Tertiary Volcaniclastic Rocks of middle Alum Gulch (Tv), and the Jurassic/Triassic volcanics (JTrv) (Figure 5). The Cretaceous andesite is the surface unit throughout most of the Trench Camp claim and most of the Alta Claim. Underneath the Cretaceous andesite lies the Jurassic/Triassic volcanics (JTrv) which are present at the surface at the eastern part of the Alta claim. The Jurassic-Cretaceous contact is unconformable. The western side of the Trench Camp Claims is predominantly the Tertiary volcaniclastic rocks of middle Alum Gulch.

2.4 Site Specific Geology

<u>2.4.1</u> <u>Geologic Cross Sections</u>

A geologic cross section through the Trench and Taylor deposits was included in Graybeal et al (2015). It is provided as Figure 6. This cross section depicts the Mesozoic volcanics underlain by the Paleozoic sedimentary units wherein lies the Taylor Deposit.

A major structural feature in the Project Area is the Harshaw Creek Fault, a north-northwest trending left-lateral strike slip fault that has more than 4 miles of displacement at its southern end. It is late Cretaceous in age (Laramide). According to Graybeal et al (2015), this fault appears to run west of the project site where it is covered by Tertiary volcanics.

<u>2.4.2</u> <u>Mineralization</u>

The core of the Patagonia Mountain range is a Laramide-age granodiorite pluton that has been dated at 60-65 million years (Graybeal, 2007). Mineralization is associated with the pluton, which outcrops to the west of the Property. Following emplacement of the pluton, a quartz feldspar porphyry stock was intruded at about 60 million years (Paleocene). This porphyry generated a strong hydrothermal system that developed a zone of disseminated pyrite and resulted in additional mineralization. It is the quartz feldspar porphyry which is considered to be the source of the mineralization.

2.5 Seismicity

According to the Arizona Geological Survey (Fellows, 2000), the Property is located in an area of moderate to low seismic hazard. National Seismic Hazard Maps are available from the United States Geological Survey (USGS). These maps display earthquake ground motions for various probability levels across the United States. The motion is expressed as peak acceleration as a percent of gravity. In the vicinity of the Project, the Peak Horizontal Acceleration with a 10 percent probability of exceedance in 50 Years is between 3 and 4 percent of gravity. Statewide, the values range between 2 and 10 percent of gravity (Peterson et al., 2015).

NewFields conducted a seismic hazard assessment (SHA) to define the maximum probable earthquake event for the design of the lined TSF, as discussed in Attachment B. The SHA was completed to determine ground motions experienced at the project site associated with the maximum credible earthquake (MCE) and maximum probable earthquake (MPE), based on regional seismicity and the probable 100, 475 and 2,475-year return events. A deterministic seismic hazard assessment was performed using available historic earthquake data from several national and international earthquake catalogs and regional active faults from the United States Geological Survey (USGS) and the Arizona Geological Survey (AZGS) within a 124-mile (200 km) radius of the project. Attenuation calculations were applied to these events and fault sources to determine the peak ground acceleration (PGA) at the project site. A probabilistic assessment was also completed using the USGS interactive deaggregation tool, based on the published 2008 national seismic hazard map.

Based on the study, the MCE for the deterministic and probabilistic assessments are 0.11 gravity (g) and 0.10 g, respectively. The complete SHA report is appended to Attachment B.

2.6 Geologic Hazards

In addition to earthquakes (discussed in Section 2.5), geologic hazards in Arizona include earth fissures, landslides and debris flows, and floods. The risk from any of these hazards at the Project Area is low.

Earth fissures and land subsidence occur in alluvial basins where there have been extensive groundwater withdrawals. The Project is not located in an alluvial basin, and therefore the area is not susceptible to subsidence and earth fissure formation.

Debris flows are recognized as a hazard in mountainous areas (Pearthree and Youberg, 2006). Although these events are infrequent, generally occurring as the result of very high precipitation events, they can alter the landscape significantly. Loss of vegetation from wildfires can increase the chances for debris flows. Operations at the project site will be sited and designed to reduce risks from debris flows.

According to the Flood Insurance Rate Map (Federal Emergency Management Agency [FEMA, 2011]), the Project is located in a Zone D (Figure 7). The Zone D designation is used for areas where there are possible but undetermined flood hazards, as no analysis of flood hazards has been conducted. These areas are often undeveloped and sparsely populated.

3. HYDROLOGY

3.1 Climate

The climate in the Project area varies from high desert in the Sonoita Valley to the steppe-like climate of the higher elevation grasslands and scrub area (ADEQ, 2003). In this semi-arid climate, average rainfall is 17 inches per year, with the majority of precipitation occurring between June and October through "monsoonal" convective thunderstorms. Daytime temperatures in the summer may reach 90°F with warm to moderately cool nights. Temperatures are usually mild with periodic overnight frosts and occasional snowfall at higher elevations during the winter months that usually melts within a few days (WRCC, 2017).

Additional climate data can be found in Section 2.2 of Attachment B.

3.2 Surface Water Hydrology

The Project Area is located within the Middle Sonoita Creek (USGS Hydrologic Unit Code [HUC] #150503010206) and Harshaw Creek (HUC# 15050301-025A) watersheds. The upper Alum Gulch subwatershed¹ (HUC# 15050301-561A) of the Middle Sonoita Creek watershed drains the western portion of the Project Area. Portions of Alum Gulch are designated as ephemeral reaches: from its headwaters to the January Adit, and from 800 meters downstream of the World's Fair Mine to its confluence with Sonoita Creek. From the January Adit to 800 meters downstream of World's Fair Mine, Alum Gulch is designated as an intermittent reach. Harshaw Creek drains the eastern portion of the Project Area. Harshaw Creek and all of its tributaries are designated as ephemeral reaches (ADEQ, 2003). Both drainages are tributaries of Sonoita Creek, which is located to the northwest between the Santa Rita and Patagonia Mountains (Figure 4). Sonoita Creek flows to the west as a tributary of the Santa Cruz River.

Both Alum Gulch and Harshaw Creek in the Project Area are considered "Not Attaining" under the Clean Water Act §303(d). Segments of Alum Gulch are Not Attaining for cadmium, copper, zinc, and acidity while segments of Harshaw Creek are Not Attaining for copper and acidity. Another drainage basin to the west of Alum Gulch, the Three R Basin, is also Not-Attaining due to exceedances of cadmium, copper, zinc, and acidity. In the TMDL Implementation Plan for Alum Gulch (ADEQ, 2007), ADEQ notes that "all three waters are in areas of high mineralization and share similar historic mining practices". The sources of impairment for Alum

¹ Alum Gulch subwatershed is divided into the upper watershed, HUC# 15050301-561 A, and the lower watershed, HUC# 15050301-561A.

Gulch "include adit drainage, waste rock and tailings piles, and sediments" and "the major portion of the loading originates from the World's Fair Mine and Humboldt Canyon areas with relatively minor contributions from Trench Camp Mine and January Adit". The TMDL document for Harshaw Creek (ADEQ, 2003) identifies the Trench mine's dump number 3 as a "minor source" of loading into Harshaw Creek. ADEQ considered mining residues from the Morning Glory Mine and the Endless Chain Mine, located upstream of the Trench Camp, to be significant sources of loading to Harshaw Creek.

3.3 Site Stormwater Analysis

The TSF, underdrain collection pond, and stormwater controls were designed for a 100-year/24 hour storm event, as described in Attachment B, Section 9. Newfields used the hydrological modeling system HEC-HMS (version 3.5), a precipitation-runoff simulation computer program developed by the Army Corps of Engineers, to calculate the magnitude and timing of the peak flows as well as volumes resulting from specified storm events. The watershed areas were divided into sub-basins such that flows and volumes could be calculated at various points within the watershed where design elements were located. Peak flows and volumes were developed for the 100-yr/24-hr storm event and are used to complete the design calculations.

4. HYDROGEOLOGY

Groundwater flows in bedrock fractures at the site. There is little to no alluvium present. Porosity of fractured bedrock aquifers is generally low, on the order of 1-2 percent. However mineralization can result in higher porosities.

4.1 Water Wells Within One-Half Mile of Property Boundary

The Wells 55 database was downloaded from the Arizona Department of Water Resources on January 29, 2017. Based on the download, there is reportedly one non-AMI water supply well registered within one half mile of the property (Figure 8). This well, 55-642746, is registered to Coronado National Forest. ADWR records indicate a total depth of "0" feet. The single-page imaged record on file with ADWR states the principle use of this well as stockwater/wildlife.

The location plotted on Figure 8 is a cadastral location from the ADWR database. The registered location corresponds to a square measuring ¹/₄ mile by ¹/₄ mile centered on the mapped location. ADWR well registry records are not always accurate, and are limited by the quality of data that was submitted when a well was registered. AMI intends to conduct a field reconnaissance to evaluate whether this well actually exists near its registered location, and if so, will record the well's actual location with a GPS and evaluate whether the well appears to be in use.

4.2 Depth to Groundwater and Groundwater Flow

There is no alluvial aquifer in the Project Area. As noted in Section 2.1, the bedrock outcrops at the surface. Groundwater in the area is limited to faults, fractures, and voids within the bedrock complex.

4.2.1 Depth to Groundwater

A groundwater elevation map, based primarily on a water level sweep conducted in September 2017, is presented on Figure 9. Depths to water ranged from 17.1 feet bls at MW-3 near the January Adit at the northwest portion of the Project Area, to 338 feet bls at HDS-345. In general, depths to water decrease to the north as the land surface elevation decreases.

4.2.2 Water Level Trends

Monthly monitoring of selected boreholes began in July 2013. Since 2013, groundwater elevation has been stable with very little variation (2 to 5 feet) at most locations. The greatest variation (over 10 feet) in groundwater elevation is seen at HDS-321 and HDS-249 to the east of the Property near an unnamed tributary of Harshaw Creek. At these two boreholes the

groundwater elevation has increased approximately 2 feet per year over the three years of monitoring (Figure 10). The higher variability of water levels in these wells may be due to their proximity to surface drainages. AMI continues to collect water level data at several locations at the Project site to characterize hydrogeologic conditions and trends.

4.2.3 Groundwater Flow Direction and Hydraulic Gradient

As shown on Figure 9, groundwater flow is generally towards the north, with localized northeast and northwest flows, depending on the location. Based on the September 2016 groundwater levels shown on Figure 9, the horizontal hydraulic gradient ranged from 0.025 at the southern part of the site to approximately 0.013 at the northeastern part of the site.

4.2.4 Recharge

Groundwater is recharged from precipitation at higher elevation. Based on water level trends observed in wells located in washes (as noted in Section 4.5.2), recharge also appears to occur in the washes and drainages which carry surface flows from rain events north and northwest out of the basins.

5. SITE CHARACTERIZATION

5.1 Previously Conducted Characterization

Previous characterization studies were documented in the October 19, 2016 Work Plan (CPE and Sovereign Consulting Inc., 2016) that was submitted to ADEQ and Public Noticed on October 21 and 28, 2016. The work plan characterized the quantity and quality of adit and tailings pile discharges. Samples of the adit and TP seepages were collected by AMI personnel in 2015. After AMI took ownership of the Trench Camp Mine property in January of 2016, AMI personnel conducted field measurements and sampling of both the adit and onsite seepages, in conjunction with installation of a Pilot RPTS. CPE and Sovereign Consulting Inc. used the data to characterize flows and levels of metals (including the constituents of concern) present in the subject seepages. Portions of the CPE and Sovereign Consulting Inc. characterizations that are pertinent to the revised Work Plan are summarized below.

5.1.1 January Adit and Seepage Flows and January Mine Workings Recharge Flows

CPE and Sovereign Consulting Inc. (2016) evaluated January adit seepage flow for the Work Plan as follows:

In order to determine the level of treatment needed for remediation of the January Mine Adit discharges, the parameters that must be identified are the volume of water contained in the adit as well as the rate of flow of the discharges observed at the adit. The initial measurements were performed in the adit drain pipe that discharges into the existing constructed wetlands immediately downstream from the adit, during the period September through November of 2015. The resulting measurements placed the flow in the range between 7-10 gallon-per-minute (GPM). Subsequent flow measurements using a flowmeter installed as part of the Pilot RPTS confirmed the prior flows and the sensitivity of flow to seasonal conditions.

In conjunction with the pilot plant installation, one of two monitoring wells that had earlier been installed, by ASARCO, above the adit and into the January Mine workings was equipped with a submersible pump. This well is identified as Well #1 (see Figure 5, Well Equipment Diagram). The second well, identified as Well #2, was outfitted with equipment to measure water level in the adit, as shown in Figure 5.

In May of 2016, a well recovery test was performed at the adit with a 70 GPM pump. The results from this test provided an initial estimate of 7 GPM as the recovery rate of the January Mine workings, measured at the existing January Mine wells (see Figure 6, January Mine Workings Pumping Test Results). This was taken to be representative of dry weather conditions, and correspond to the smaller flows in the 2016 adit discharge

measurements. Similar adit discharge flows were reported by the previous owner/operator.

In order not to release adit seepage into the existing constructed wetlands during the Pilot RPTS evaluation, AMI requested authorization to use the January Mine water for its mineral exploration activities. ADEQ granted its authorization in July of 2016.

Detailed January Mine water pumping measurements were observed and recorded during August through October of 2016, during which time a 32 GPM pump was kept in nearly continuous operation, to evaluate the adit well production and recovery during dry and rainfall periods. The results from this test provided an estimate of 14 GPM for the well recovery rate of the adit during Monsoon Season without major storm events. A 39 GPM recovery rate was noted during Monsoon Season, due to a major storm event where 2.8-inches of rain fell within two-hours.

As explained earlier, a pilot remedial process treatment system evaluation was conducted for discharges originating at the January Adit, which also provided an opportunity to further investigate the January Mine well recovery rate and, from extrapolation of this data, the available storage in the January Mine workings. These parameters will be used for sizing of the final remedial passive treatment system. The pilot test system was installed at a location close to the January Mine Adit (see Figure 7, Remedial Treatment System Pilot Test Site Layout). Effluent generated by the pilot test treatment system was discharged to the existing constructed wetlands.

Well production, pumping rate and static water level were closely monitored during the pilot treatment period. The data gathered and the data analysis computations are provided in Appendix B to this report; the findings are summarized in an annotated graph, for ease of reference (see Figure 8, January Mine Workings Pumping Analysis Summary).

Accordingly, the following observations can be made:

The measured overflow discharge rate for the January Mine workings was 7 GPM, and this was taken to be representative of the adit recharge rate under dry weather conditions.

- The computed recovery rate for the January Mine workings was 14 GPM, and this was taken to be representative of mine workings recharge under continuous pumping conditions, during the monsoon season and without significant rainfall events.
- When a significant rainfall event was observed on site, the computed recharge rate for the January Mine workings was 39 GPM.

- The well static water level dropped to a depth of 7.52 feet during the active pumping period when the pilot test was conducted. The available January Mine working storage at this depth is estimated at 393,120 gallons.
- Using a recovery rate of 7 GPM, this storage volume is equivalent to 39 days of available storage before January Mine workings overflow and begin discharging from the adit.
- Using a January Mine working recovery rate of 14 GPM, this storage volume is equivalent to 19.5 days of storage before the mine workings would overflow and a discharge would occur from the adit.

It is proposed that the pumping rate at its well be maintained at 20 GPM, in order to extract more water from the January Mine workings than its average recovery rate, thus creating storage for use in times of extreme rainfall or in case of temporary outages or stoppages for periodic maintenance. A mass balance worksheet is provided in Appendix B, in support of this recommendation.

CPE recently updated Figure 8 of their January Mine Workings Recharge Rate Analysis report for this work plan (Figure 11). Pumping at 28 gpm has continued to lower the water level in the January Mine, which will allow for additional storage volume when recharge rates increase during the monsoon season.

Tailings pile seepages volumes were also evaluated by CPE and Sovereign Consulting Inc. to determine the level of treatment needed for remediation. They examined pumping records for the dewatering pump installed at the TP#1 pond and concluded that seepages are generated at a rate of 3 gpm during the monsoon season. CPE and Sovereign Consulting Inc. estimated that the remediation passive treatment system should be designed based on a treatment flow rate of 23 gpm average flow, based on their estimates of January Mine Adit flows and TP seepage.

5.1.2 Pilot scale Remedial Passive Treatment System

CPE and Sovereign Consulting Inc. used water quality data from an initial water quality sample collected in 2015 from the January Adit and the TSF#1 seepage to arrive at a mixed water chemistry for the passive treatment system influent. A pilot scale RPTS (Pilot RPTS) was constructed near the January Mine Adit, in February, 2016. The Pilot RPTS was continuously monitored by AMI personnel for a period of 24 weeks, from March to August 2016. The Work plan documented influent and effluent changes in pH, temperature, flow rate, oxidation-reduction potential (ORP), conductivity, dissolved oxygen, and ferrous iron. CPE and Sovereign Consulting Inc. concluded that the results obtained during the Pilot RPTS period indicated a successful removal of metals from the water sources treated. Based on what was learned from

operating the Pilot RPTS, CPE and Sovereign Consulting Inc. recommended some design modifications to be included in a full-scale treatment.

The complete Pilot RPTS findings and conclusions are provided in Appendix C (Pilot Scale Test Report, Passive Treatment System January Mine) of the October 19, 2016 Work Plan.

5.1.3 Abandoned Passive Treatment Wetlands

Sovereign Consulting Inc. conducted soil characterization in the passive treatment wetlands that were constructed by ASARCO to act as a treatment system. Soil characterization was conducted to evaluate whether contaminants of concern may have precipitated in the soil or taken up in the vegetation. Elevated concentrations of metals (arsenic, lead) were identified that were consistent with the geology of the local bedrock. Sovereign concluded that the wetland soils could be managed or co-mingled with the historic tailings, or from the future ore processing mill, and placed in tailing facilities. The concentrations of RCRA metals in vegetation were below non-residential soil remediation levels. Refer to Appendix F of the CPE October 19, 2016 work plan.

5.2 Recent Site Characterization

AMI has conducted further site characterization since the previous Work Plan. The following characterization tasks are described below and in the relevant appendices, as noted.

- Geotechnical Investigation
- Historic Tailing and waste rock characterization
- January Mine Workings Recharge and Water Quality
- Tailings Piles Seepage Flows and Water Quality
- Surface Water Quality
- Water Balance

5.2.1 <u>Geotechnical Investigation</u>

Newfields conducted a geotechnical investigation in January 2017 to characterize the proposed site and define relevant engineering material properties for the design of the new lined tailing/waste rock storage facility and underdrain pond. The investigation consisted of borings, test pits, and geophysical surveys, and was focused on the existing tailings piles 1 through 4. The objectives of the investigation were to:

16

• define the tailings and PAG waste rock volumes within each facility

- identify potentially impacted material below the piles
- determine tailings and PAG waste rock material properties.

Additional boreholes, test pits and seismic refraction lines were placed outside the limits of the existing tailings piles, in order to define engineering characteristics of the near surface soil, bedrock depth and potential construction borrow sources. Samples were collected during the field investigation for laboratory testing for engineering characterization, standard soil and rock strength, liner interface shear strength, permeability, consolidation and a battery of geochemical testing. Refer to Drawing A030 in Attachment B for the geotechnical investigation plan view. No groundwater was encountered during the geotechnical investigation.

Boreholes were placed along the geophysics lines in order to correlate known depths of the logged materials to seismic velocities. Using the depth to tailings and waste rock identified in the boreholes in combination with the velocities generated during the geophysical survey, a velocity band was identified that correlated with the bottom of the tailings and waste rock material within the historic tailings deposits. Refer to Attachment B (Drawings A050 through A053) for a plan view of the geophysics survey lines, boreholes and test pits as well as profiles showing the estimated depth of tailings and PAG waste rock.

Newfields used the tailings depth data to estimate the volume of tailings or PAG waste rock within each pile. The estimated tailings and PAG waste rock volumes to be relocated onto the lined TSF are presented in the table below:

	Material Volumes (tons)				
Stage	Tailings	Waste Rock	Native Material	Total Material	Material Source
Tailings Pile 1 on Tailings Pile 2 and 4 (Temporary Condition)	112,800	223,600	15,500	~352,000	Tailings Pile 1
Stage 1 TSF	112,800	223,600	15,500	~1,036,000	Tailings Pile 1
3(age 1 13)	649,900	0	33,700	1,050,000	Tailings Piles 2 and 4
Stage 2 TSF	213,800	0	12,300	~227,000	Tailings Pile 3

VRP TAILINGS PILES RELOCATED VOLUMES

Supporting documentation and volume calculations are provided in Newfields' report in Attachment B.

Voluntary Remediation Program Work Plan ASARCO January Adit (Norton Mine) ASSOCIATES Santa Cruz County, Arizona

During Newfields drilling program in January 2017, native materials from beneath the historic tailings were collected for geochemical testing. As documented in Attachment A, foundation (native) soil and rock samples were lower in sulfur than either tailings or waste rock but 4 of the 19 samples still had pyritic sulfur greater than 0.3%, which would likely generate acidic conditions after sufficient exposure to oxygen. These higher sulfide samples were encountered in boreholes 1 and 2 beneath tailing pile 2/4. It is possible that some of the foundation soil and rock material in this area consists of historic sulfide waste or may contain naturally occurring sulfides. However, any sulfides beneath the tailings in pile 2/4 will be covered by the liner for the new repository, which will prevent contact with infiltrating water.

5.2.2 Historic Tailing and Waste Rock Characterization

A range of geochemical tests were on representative samples of historic tailings, waste rock, foundation soils (underlying the unlined tailings), and development rock from an exploration decline and shaft to characterize the material that will be placed in the lined TSF. The methodology and results are provided in Attachment A.

5.2.3 January Mine Adit and January Mine Workings Water Quality

Water quality samples have been collected from the January Adit and January Mine workings (sampling locations denoted on Figure 12 as "JAN AD" and JA-1, respectively) since April 2016. The results of these samples are compared to SWQSs (Table 1), including the dissolvedmetal standards, which are the focus of the TMDL Implementation Plan for Alum Gulch. The results of the comparison are provided on Table 1. For some dissolved metals (cadmium copper, lead, nickel, silver, and zinc), SWQSs are based on the hardness of the receiving water body (in this case, Alum Gulch) or the hardness of the water from the discharge when there is not a receiving flow of water (i.e., ephemeral).

Samples were analyzed for dissolved metals. Iron and zinc were identified to be above the SWQSs (Aquatic and Wildlife warm, chronic). Samples were also analyzed for total metals. Arsenic, cadmium, and lead were identified to be above the applicable SWQSs, as noted on Table 1. Discharges from the January Adit to the constructed wetlands ceased in August 2016 and the January mine workings water is pumped and used for exploration drilling.

5.2.4 <u>Tailings Pile Seepage Water Quality</u>

In addition to tailing seepage samples collected in 2015, seepage was collected on January 9, 2017 and the water quality data were used in the design of the active WTP. The seepage chemistry is provided on Table 3-1 in attachment C.

5.2.5 Surface Water Quality

AMI and its consultants have conducted surface water quality monitoring in the Alum Gulch and Harshaw Creek watersheds. The monitoring locations are shown on Figure 12. Results of surface water analyses are provided on Tables 2A (Alum Gulch) and 2B (Harshaw Creek).

The SWQS for pH is 6.5 to 9.0. The pH values measured in all of the Alum Gulch samples listed on Table 2A were below 6.5. In contrast, the pH values measured in samples from Harshaw Creek met the standard.

Several dissolved metals were identified to be elevated in the Alum Gulch watershed. Dissolved zinc, lead, iron, cadmium, nickel concentrations are above their respective SWQSs at for aquatic and wildlife (warm water, chronic). Total cadmium, copper, iron, lead, and zinc concentrations were also identified to be above their SWQSs.

5.2.6 Groundwater Quality

MW-3 is located downstream of the proposed WTP (Figure 12). AMI has collected two rounds of groundwater samples from this well. The results are summarized on Table 3. Dissolved cadmium was detected at a concentration of 0.0051 mg/L, above the AWQS of 0.005 mg/L, in February 2017. In March 2017, dissolved cadmium was below the AWQS. The other analytes met AWQSs.

6. REMEDIAL DESIGN

6.1 Remediation Goals

The remediation goal is to reduce the constituents of concern from the January Mine Adit and the tailing seep to meet the applicable discharge water quality parameters that will be specified in an AZPDES permit (to be issued). This goal will be achieved by placing the historic ASARCO tailings on a lined tailing storage facility and constructing an active water treatment plant to treat January Mine workings water, tailings seepage, and meteoric water that comes in contact with the tailings. Key assumptions are provided in Sections 6.2 and 6.3 below and in Attachments B and C.

6.2 Tailing Storage Facility and Underdrain Collection Pond

Placement of the historic tailings onto a lined permanent containment is an essential element of the remediation plan to be conducted under VRP. The Trench Camp TSF will be designed as a lined permanent storage area for remediation of the existing tailings piles that are shown on Figure 3. Tailings, PAG waste rock and impacted soils beneath the historic tailings facilities are to be excavated and placed in the lined Trench Camp TSF as an earthen material. PAG development rock from a planned exploration decline and shaft will also be stored in the lined TSF as a co-mingled material with the existing tailings and PAG waste rock. Additionally, it may be placed on the exterior face of the existing tailings and PAG waste rock thereby acting as rock armor, to prevent water and wind erosion.

Underdrain flows from the TSF will be directed via gravity to an underdrain collection pond located downstream of the TSF. Water collected in the underdrain collection pond will be pumped to the Water Treatment Plant (WTP) for treatment. This water may be used for exploration drilling makeup water, dust control, other operational uses, or released to a receiving stream downgradient of the WTP.

Construction level design drawings and supporting documentation are provided in Attachment B for the Tailings and Potentially Acid Generating (PAG) Material Remediation, Placement and Storage Final Design Report.

6.3 Water Treatment Plant

A preliminary engineering report is provided by Water Engineering Technologies, Inc. (WET) for the water treatment plant (WTP) located at the Trench Camp in Attachment C. The report contains sixty percent (65%) plans and sections on: WTP background; design criteria including water chemistry and flow rates; process design including a process flow diagram, process and

instrumentation diagrams, mechanical equipment list, a facility general arrangement, and major equipment data sheets.

The water treatment plant is designed for treating underdrain seepage and storm water runoff from the TSF and water from the January Mine workings. The design accommodates variable flow rates from the TSF, using a nominal basis of design throughput of 120 gpm. The design allows for seasonal fluctuations in flow rates.

Treated water will be utilized for on-going mine exploration, dust control, construction soil conditioning, and future milling and mining operations. Periodic, short-term discharge of treated water or a portion of treated water to Alum Gulch may be necessary during periods of exploration or mine development. This discharge will be authorized under an AZPDES permit.

7. PERMITTING AND LEGAL REQUIREMENTS

7.1 Applicable Requirements

Aquifer Protection Permit (APP) – The lined tailing/waste rock storage facility and underdrain collection pond are categorical facilities under the Aquifer Protection Permit regulations (A.R.S. 49-241).

Arizona Pollutant Discharge Elimination System (AZPDES) Permit – This permit provides authorization to discharge treated water from the water treatment plant in compliance with applicable water quality standards.

Arizona State Mine Inspector (ASMI) – Site reclamation plan, health and safety, and financial assurance mechanisms.

Arizona Department of Water Resources (ADWR) – Dam safety procedures for any artificial barrier that is not an exempt structure.

7.2 Other Determinations

A request for Approved Clean Water Section 4040 Jurisdictional Determination covering the project area was submitted to the Los Angeles District Office of the US Army Corps of Engineers. Following their jurisdictional review, they determined that jurisdictional waters do not occur in this area.

A copy of the Jurisdictional Determination Letter is included in Attachment D to this work plan document.

8. SAMPLING AND ANALYSIS PLAN (SAP)

Monitoring of the WTP effluent and the associated reporting and record keeping requirements will be specified in the AZPDES permit and the APP issued to AMI by ADEQ. A copy of the Sampling and Analysis Plan (SAP) will be provided to ADEQ-VRP.

9. SCHEDULE

A Gantt chart providing the proposed project schedule is provided in Attachment E.

10. COMMUNITY INVOLVEMENT PROPOSAL

As required by §49-176, the communities and stakeholders that could be affected by the work described in this work plan will be informed about the project goals and achievements. A copy of the Public Notice to be published for this project is included in Attachment F of this document. Public comments and additional pertinent information will be incorporated into the attachment as they are received.

11. CONCLUSIONS

AMI prepared this Work Plan in accordance with A.R.S. 49-175 and 176. The proposed Work Plan will address mine influenced water discharges from the January Mine Adit and seepages from historical tailing piles at the Trench Camp, Norton, and January Mine properties. AMI is confident that the approach described in this work plan will result in an efficient and effective remediation system to meet the project goals and achieve the water quality standards that have been established for Alum Gulch.

12. REFERENCES

- Arizona Department of Environmental Quality, 2003. Total Maximum Daily Load for: Upper Harshaw Creek, Sonoita Creek Basin, Santa Cruz River Watershed, Coronado National Forest near Patagonia, Santa Cruz County, Arizona, HUC 15050301-025A, Publication no. OFR-07-09, June 30, 41 pp.
- Arizona Department of Environmental Quality, 2003. Total Maximum Daily Load for: Upper Alum Gulch, Sonoita Creek Basin, Santa Cruz River Watershed, Coronado National Forest near Patagonia, Santa Cruz County, Arizona, HUC 15050301-561A, Publication no. OFR-07-08, June 30, 57 pp.
- Arizona Department of Environmental Quality, 2007. TMDL Implementation Plan for Cadmium, Copper, Zinc and Acidity, Alum Gulch, HUC#15050301-561A & B, Publication No. OFR 07-03, 33 pp.
- Arizona Geological Survey, 2015. Natural Hazards in Arizona. On-Line Arizona Natural Hazards Viewer. <u>http://data.usgin.org/hazard-viewer</u>.
- Bultman, M.W., 2015, Detailed interpretation of aeromagnetic data from the Patagonia Mountains area, southeastern Arizona: U.S. Geological Survey Scientific Investigations Report 2015-5029, 25 p., <u>http://dx.doi.org/10.3133/sir20155029</u>.
- Dean, Sheila A., 1982. Acid drainage from abandoned metal mines in the Patagonia Mountains of southern Arizona, Master's thesis, University of Arizona, 139 pp.
- CPE Consultants, LLC and Sovereign Consulting, Inc., 2016. Voluntary Remediation Work Plan for Trench Camp Mine Property (January Mine, Norton Mine and Trench Camp Mine Claims, in Harshaw Mining District), Flux Canyon Road and Harshaw Road South of Patagonia, Santa Cruz County Arizona, ADEQ VRP Site Code #505143-02, 2 volumes, October 19.
- Fellows, L. D., 2000. 3. *Arizona Geology*, Vol. 30, No. 1., Spring 2000. Published by the Arizona Geological Survey.
- Federal Emergency Management Agency, 2011. FIRM Flood Insurance Rate Map, Santa Cruz County, Arizona and Incorporated Areas, Panel 525 of 750. Map number 04023C0525C. http://gis.santacruzcountyaz.gov/pw/docs/floodmaps/04023C0525C.pdf

- Graybeal, F.T., Moyer, L.A., Vikre, P.G., Dunlap, P., and Wallis, J.C., 2015, Geologic map of the Patagonia Mountains, Santa Cruz County, Arizona: U.S. Geological Survey Open-File Report 2015–1023, 10 p., 1 sheet, scale 1:48,000, <u>http://dx.doi.org/10.3133/ofr20151023</u>.
- Graybeal, F.T., 2007, Geology of the Sunnyside Porphyry Copper System, Patagonia Mountains, AZ, Arizona Geological Society Field Trip #8, September 30, 2007.
- Keith, S.B., 1975. Index of Mining Properties in Santa Cruz County, Arizona: Arizona Bureau of Mines Bulletin 191, 94 pp.
- Newfields, 2013. Technical Memorandum: Site Reconnaissance and Preliminary Well Testing, March 12. 2013.
- Pearthree, P. A., and A. Youberg, 2006. Recent Debris Flows and Floods in Southern Arizona. *Arizona Geology*, Vol. 36, No. 3. Fall 2006. Published by the Arizona Geological Survey.
- Petersen, M.D., Moschetti, M.P., Powers, P.M., Mueller, C.S., Haller, K.M., Frankel, A.D., Zeng, Yuehua, Rezaeian, Sanaz, Harmsen, S.C., Boyd, O.S., Field, E.H., Chen, Rui, Luco, Nicolas, Wheeler, R.L., Williams, R.A., Olsen, A.H., and Rukstales, K.S., 2015, Seismic-hazard maps for the conterminous United States, 2014. USGS Scientific Investigations Map 3325, 6 sheets, scale 1: 7,000,000, <u>http://dx.doi.org/10.3133/sim3325</u>.
- Schrader, Frank C., 1915. Mineral Deposits of the Santa Rita and Patagonia Mountains, Arizona. USGS Bulletin 582, 373 pp.
- Simons, F.S., 1974, Geologic map and sections of the Nogales and Lochiel quadrangles, Santa Cruz County, Arizona: U.S. Geological Survey Miscellaneous Investigations Series Map,I-762, 1 sheet, scale 1:48,000.

28

WRCC (Western Region Climate Center), 2017, <u>http://www.wrcc.dri.edu/summary/</u>Climsmaz.html.

TABLES

TABLE 1 January Adit and January Mine Workings

						Date			
Analyte	Units	SWQS ²	JAN AD ¹	JA#1	JA#1	JAN AD	JA#1	JA#1	JA#1
Analyte	Onits	SWQS	4/14/2016	4/15/2016	6/20/2016	6/20/2016	8/15/2016	2/7/2017	3/14/2017
			Field	Parameters		1			
Flow	gpm	NA	12			5			
Conductivity	μS/cm	NA	3,180	3,425	3,480	3,790	3,687	3,200	3,498
рН	SU	6.5-9.0	5.87	6.20	6.75	6.35	5.87	6.40	5.85
ORP	mV	NA							
Temperature	°C	NA	20.3	21.2	22.1	23.3	21.9	21.2	20.7
			Disso	lved Metals					
Aluminum	mg/L	NA	<2.0	<2.0			<10	<2.0	
Antimony	mg/L	0.03	<0.0050	<0.0050	<0.00050	0.0032	0.0045	< 0.0050	
Arsenic	mg/L	0.15	0.089	0.066	0.024	0.072	0.13	0.085	
Barium	mg/L	NA			0.0072		0.0047	<0.0050	
Beryllium	mg/L	0.0053	<0.0025	<0.0025	<0.00025	0.00036	<0.0013	<0.0025	
Calcium	mg/L	NA			470	520		480	
Cadmium	mg/L	0.0062	0.0035	< 0.0025	< 0.00025	0.0022	0.00040	0.00038	
Chromium	mg/L	1	< 0.0050	<0.0050 <0.0050	0.0024	0.00093	0.0030	<0.0050 <0.0050	
Copper Iron	mg/L mg/L	0.0293	<0.0050 36	<0.0050 31	0.00093 23	0.0014 38	0.0014 42	<0.0050 36	
Lead	mg/L mg/L	0.0109	<0.025	<0.0050	<0.00050	0.0014	0.0078	<0.0050	
Magnesium	mg/L	0.0103 NA	<0.023		260	260		250	
Manganese	mg/L	130.667	68	66	48	62	61	53	
Mercury	mg/L	0.00001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Nickel	mg/L	0.1680	0.055	0.042	0.034	0.057	0.057	0.050	
Selenium	mg/L	NA	0.0031	0.0024	0.0031	0.0039	0.0026	0.0021	
Silver	mg/L	0.0349	<0.0050	<0.0050	<0.00050	<0.00050	<0.00050	<0.00050	
Thallium	mg/L	0.15	<0.025	<0.0050	<0.00050	<0.0010	<0.00050	<0.0050	
Zinc	mg/L	0.379	9.8	0.27	<0.40	8.9	6.0	4.8	
				al Metals	Γ	T	I	T	
Aluminum	mg/L	NA	<2.0	<2.0			<2.0	<2.0	
Antimony	mg/L	0.64	<0.0050	0.011	0.0026	0.0030	0.0052	0.0063	
Arsenic	mg/L	0.03	0.097	0.092	0.025	0.077	0.10	0.11	
Barium	mg/L	98 0.084		<0.0025	0.020	<0.00025	0.013	0.0063	
Beryllium Calcium	mg/L mg/L	0.084 NA	<0.0025 470	450	460	<0.00025 510	450	520	
Cadmium	mg/L	0.05	0.0043	0.035	0.0018	0.0020	0.0005	0.0006	
Chromium	mg/L	1	< 0.0050	< 0.0050	0.0024	0.00069	0.0077	0.0010	
Copper	mg/L	0.5	0.0053	0.010	0.0047	< 0.0050	0.0044	0.0011	
Iron	mg/L	NA	35	38	22	38	40	41	
Lead	mg/L	0.015	0.0092	0.32	0.050	0.0091	0.0088	0.0088	
Magnesium	mg/L	NA	240	250	250	270	260	270	
Manganese	mg/L	130.667	61	61	45	59	64	59	
Mercury	mg/L	0.010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
Nickel	mg/L	4.6	0.0029	0.054	0.026	0.053	0.053	0.040	
Selenium	mg/L	0.002	<0.0050	0.0024	0.0014	0.0051	0.00045	0.0021	
Silver	mg/L	4.667	<0.0050	< 0.0050	0.00077	<0.00050	<0.00050	< 0.00050	
Thallium Zinc	mg/L	0.0072	<0.0010	<0.0050	<0.00050	<0.0050	<0.00050	< 0.00050	
Zinc	mg/L	5.106	10	4.9 organics	1.4	8.1	5.7	5.2	
Alkalinity, Bicarbonate (as CaCO3)	mg/L	NA					170		
Alkalinity, Carbonate (as CaCO ₃)	mg/L	NA					<2.0		
Alkalinity, Hydroxide (as CaCO ₃)	mg/L mg/L	NA					<2.0		
Alkalinity, Total (as CaCO ₃)	mg/L	NA					170		
Hardness -[CALC] Ca (as $CaCO_3$)	mg/L mg/L	NA							
Hardness -[CALC] Ca/Mg (as CaCO ₃) (Dissolved)	mg/L	NA		2100		2400		2200	
Hardness -[CALC] Ca/Mg (as CaCO ₃)	mg/L	NA	2200		2200		2400	2400	
TSS (residue, non-filterable)	mg/L	NA	12	42	71	15	22	<10	
TDS (residue filterable)	mg/L	NA		 Anions	3100	3700	3900	3600	
Cyanide	mg/L	0.2			<0.10		<0.10	<0.10	
Fluoride	mg/L	NA			0.68		0.62	0.95	
	-								
Nitrate + Nitrite	mg/L	NA			<0.10		<0.10	<0.10	
Sulfate Notes:	mg/L	NA							2200

Bold indicates concentration above SWQS (Surface Water Quality Standard)

¹ Jan Ad = January Adit discharge; JA#1 = January Adit Well

² Designated Uses at Alum Gulch: Aquatic & wildlife warm water, full body contact, fish consumption, and Agricultural Livestock watering.

² SWQS - standards for cadmium, copper, lead, nickel, zinc based on a maximum hardness of 400 mg/L

CaCO₃ = calcium carbonate

°C = degrees Celsius

gpm = gallons per minute

mg/L = milligrams per Liter

μS/cm = microsiemens per centimeter

SU = standard units

mV = millivolts NA = no applicable standard TDS = total dissolved solids TSS = total suspended solids -- indicates no sample Duplicate Values separated by a '/'

		Alum Gulch	FC-1	FC-2	HC-1	SW-AL1	SW-AL1	SW-AL1	SW-AL1	SW-AL2	SW-AL2	SW-AL2	SW-AL2	SW-AL 3	SW-AL 3	SW-AL 3	SW-AL 3	SW-AL 4	SW-AL 4	SW-AL 4	SW-AL 4	SW-AL 4	SW-AL4
Analyte	Units	SWQS																					
Analyte	Onics	(mg/L)	12/29/2016	12/29/2016	12/29/2016	4/14/2016	8/15/2016	11/29/2016	2/8/2017	4/14/2016	8/15/2016	11/29/2016	2/8/2017	4/14/2016	8/15/2016	11/29/2016	2/8/2017	4/14/2016	8/15/2016	8/15/16 DUP	11/29/2016	2/8/2017	2/8/17 DUP
	1		1		1	1	L	1		Field Paramet	ers				1				1	1 1		1	<u> </u>
Conductivity	μS/cm	NA	3680	2923	939.8	3541				3334	3030			3233	3220			2573	2140	2140	375	2820	2820
рН	SU	6.5-9.0	3.66	3.94	3.17	5.16	Pooled water	DRY	DRY	5.66	5.80	DRY	DRY	5.31	5.38	DRY	DRY	4.57	4.43	4.43	3.12	4.04	4.04
Temperature	°C	NA	10.6	11.5	10.5	21.4	(No sample	DIT	DIT	19.8	27.9	DIT	DIT	21.8	28.7	DIT	DI	20.4	23.5	23.5	9.1	6.5	6.5
Flow	gpm	NA	0.025	0.2	0.004	0	collected)			3-4	9			3-4	12			7-8	25	25	0.2	1.0	1.0
A b		N.A			[5.4				Dissolved Met				4.0	-10			24	10	10		10.0	15.5
Aluminum Antimony	mg/L	NA 0.03	<0.00050	<0.00050	<0.00050	5.4 <0.0050				<2.0 <0.0050	<10 <0.00050			4.0 <0.0050	<10 <0.00050			24 <0.0050	19 <0.00050	18 <0.00050	<0.0050	18.0 <0.0050	16.6 <0.00050
Arsenic	mg/L mg/L	0.05	<0.0400	<0.00030	<0.00030	<0.0050				<0.0050	0.0013			<0.0050	0.0016			<0.0050	0.0012	0.0013	<0.0050	< 0.0050	0.0013
Barium	mg/L	NA	0.05	<0.050	<0.050																		
Beryllium	mg/L	0.0053	0.016	0.0027	0.0026	< 0.0025				<0.0025	<0.0013			<0.0025	0.0019			0.0029	0.0024	0.0023	0.0031	0.0027	0.0019
Cadmium	mg/L	0.0062	0.21	0.18	0.031	0.092				0.043	0.040			0.074	0.058			0.074	0.084	0.083	0.11	0.20	0.18
Calcium	mg/L	NA	380	350	17																	430	320
Chromium	mg/L	1	0.043	<0.030	< 0.030	< 0.0050				< 0.0050	<0.00050			< 0.0050	<0.00050			<0.0050	0.00054	0.00068	< 0.0050	<0.00050	<0.00050
Copper Iron	mg/L mg/L	0.50	2.1 1.7	0.51 0.42	3.2 5.4	0.092 4.5				0.045 <0.30	0.040 <1.5			0.16 <0.30	0.088 <1.5			0.42 0.33	0.71	0.76 1.3	0.32 0.60	0.72 <0.30	0.64 <0.30
Lead	mg/L	0.0109	0.6	0.42	<0.040	0.68				0.058	0.027			0.30	0.050			0.33	0.13	0.12	0.00	0.11	0.30
Magnesium	mg/L	NA	220	200	17																	260	200
Manganese	mg/L	130.667	190	59	6.5	100				31	39			56	55			54	38	38	72	58	57
Mercury	mg/L	0.00001	<0.0010	<0.0010	<0.0010	<0.0010				<0.0010	<0.0010			<0.0010	<0.0010			<0.0010	<0.0010	<0.0010			
Nickel	mg/L	0.1680	0.39	0.21	0.073	0.25				0.080	0.096			0.14	0.13			0.18	0.15	0.15	0.26	0.22	0.23
Potassium	mg/L	NA	7.1	6.1	5.0																		
Selenium Silver	mg/L mg/L	NA 0.0349	<0.040 0.051	<0.040 0.017	<0.040 <0.010	0.0073 <0.0050				0.0043 <0.0050	0.0027 <0.00050			0.0063 <0.0050	0.0032 <0.00050			0.0051 <0.0050	0.0022	0.0025	0.0071 <0.0050	0.0069 <0.0050	0.0035 <0.00050
Sodium	mg/L	0.0343 NA	78	72	11	<0.0030				<0.0050	<0.00050			<0.0050	<0.00030			<0.0030	<0.00030	<0.00050	<0.0050	<0.0050	<0.00050
Thallium	mg/L	0.15	< 0.00050	<0.00050	0.00058	<0.025				< 0.025	<0.00050			<0.025	< 0.00050			< 0.025	0.00051	<0.00050	< 0.0050	< 0.0050	<0.0050
Uranium	mg/L	NA	0.014	0.0013	0.0045																		
Zinc	mg/L	0.379	76	45	6.4	49				26	24			32	31			34	25	25	45	38	39
				-						Total Metal	5											-	
Aluminum	mg/L	NA				5.2				<2.0	<2.0			3.9	2.6			21	19	19		20.6	20.6
Antimony	mg/L	0.64				< 0.0050				< 0.0050	0.00080			< 0.0050	<0.00050			<0.0050	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050
Arsenic Barium	mg/L mg/L	0.03 98				<0.0050				<0.0050	0.0016			<0.0050	<0.00050			<0.0050	<0.00050	<0.00050	<0.0025	<0.00050	0.00050
Beryllium	mg/L	0.084				<0.0025				<0.0025	0.00051			0.0028	0.0017			0.0030	0.0026	0.0027	0.0029	0.0027	0.0021
Cadmium	mg/L	0.050				0.11				0.052	0.043			0.089	0.062			0.085	0.089	0.090	0.110	0.19	0.18
Calcium	mg/L	NA				480				410	420			470	460			320	230	230	320	320	340
Chromium	mg/L	1				< 0.0050				< 0.0050	0.0082			< 0.0050	0.0078			<0.0050	0.0086	0.0083	< 0.0025	0.0025	0.0026
Copper Iron	mg/L	0.5 NA				0.098				0.054 <0.30	0.034 0.74			0.17 <0.30	0.097 <0.30			0.44 0.33	0.74 1.3	0.73 1.4	0.32	0.66 <0.30	0.66 <0.30
Lead	mg/L mg/L	0.015				0.63				0.049	0.74			0.068	0.046			0.33	0.12	0.12	0.87	0.11	0.10
Magnesium	mg/L	NA				280				230	230			260	250			190	140	140	210	200	200
Manganese	mg/L	130.667				100				33	34			54	56			49	38	39	63	58	61
Mercury	mg/L	0.010				< 0.0010				<0.0010	<0.0010			<0.0010	<0.0010			<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Nickel	mg/L	4.6				0.27				0.094	0.080			0.15	0.13			0.19	0.13	0.13	0.23	0.20	0.18
Potassium Selenium	mg/L	NA 0.002				0.0082				0.0050	0.00089			0.0067	0.0020			0.0054	0.00082	0.00084	0.0037	0.0039	0.0037
Silver	mg/L mg/L	4.667				<0.0082				<0.0050	< 0.00089			< 0.0050	< 0.0020			< 0.0054	<0.00082	<0.00084	< 0.00050	< 0.00050	< 0.00050
Sodium	mg/L	NA																					
Thallium	mg/L	0.0072				<0.0050				< 0.0050	<0.00050			<0.0050	<0.00050			<0.0050	0.00052	<0.00050	<0.00050	<0.00050	< 0.0050
Uranium	mg/L	NA																					
Zinc	mg/L	5.106				50				21	20			30	30			31	24	24	38	36	38
Nitragen Nitrage (+-)	- /1	N1.4	40.50	40.50	-0.50	1		1		Inorganics				1				-	1			0.55	
Nitrogen, Nitrate (as N) Nitrogen, Nitrite (as N)	mg/L mg/L	NA NA	<0.50 <0.10	<0.50 <0.10	<0.50 <0.10																	0.55	<0.50 <0.10
Hardness , Ca/Mg (as CaCO ₃)		NA				2300				2000	2000			2200	2200			1600	1100	1200	1700	2200	1600
TSS (residue, non-filterable)		NA				41				<10	12			<10	<10			<10	<10	<10	<10	<10	<10
TDS (residue, filterable)	mg/L	NA	4100	3100	730																	2800	2800
						1				Anions					1								
Chloride	mg/L	NA	13	15.00	8.1																		
Cyanide	mg/L	0.0097	<0.10	<0.10	<0.10																		
Fluoride	mg/L	140	1.5	0.54	< 0.50																		
Sulfate	mg/L	NA	3200	2100	620																		
Notes:																							

Notes: **Bold** indicates concentration above SWQS (Surface Water Quality Standard) ¹ Dissolved metals SWQSs: Only the most stringent hardness based calculated SWQS of all applicable designated uses is shown above. Designated Uses at Alum Gulch: Aquatic & wildlife warm water, full body contact, fish consumption, and Agricultural Livestock watering.

Designated Uses at Humboldt Canyon (SW-HU-1): Aquatic & wildlife ephemeral, partial body contact.

Hardness based SWQSs calculated using 400 mg/L in Alum Gulch; Humboldt Canyon uses hardness value of the collected sample

CaCO 3 = calcium carbonate μS/cm = microsiemens per centimeter

SU = standard units

°C = degrees Celsius

gpm = gallons per minute

mg/L = milligrams per Liter

NA = no applicable standard

TDS = total dissolved solids

TSS = total suspended solids -- indicates no data available

TABLE 2A Alum Gulch Surface Water Quality

		Humboldt	SW-HU 1	SW-HU 1	SW-HU 1	SW-HU 1
Analyte	Units	Canyon SWQS	4/14/2016	8/15/2016	11/29/2016	2/8/2017
		(mg/L)		0/13/2010	11/25/2010	2/0/2017
			arameters			
Conductivity	μS/cm	NA		717		
рН	SU	6.5-9.0	DRY	3.72	DRY	DRY
Temperature	°C	NA	5	26.0	5	5
Flow	gpm	NA		10		
			ved Metals	r	1	
Aluminum	mg/L	NA		27		
Antimony	mg/L	NA		<0.00050		
Arsenic	mg/L	0.44	-	0.00068		
Barium	mg/L	NA		NA		
Beryllium Cadmium	mg/L	NA 0.072		0.0020 0.050		
Calcium	mg/L	0.072 NA				
Chromium	mg/L mg/L	NA		0.0021		
Copper	mg/L	0.1506		1.8		
Iron	mg/L	0.1300		0.59		
Lead	mg/L	0.1512		0.042		
Magnesium	mg/L	NA				
Manganese	mg/L	NA		4.4		
Mercury	mg/L	0.005		<0.0010		
Nickel	mg/L	0.1512		0.067		
Potassium	mg/L	0.1312 NA		0.067		
Selenium	mg/L	NA		0.00070		
Silver	mg/L	0.0038		< 0.00050		
Sodium	mg/L	NA				
Thallium	mg/L	NA		0.00075		
Uranium	mg/L	2.8				
Zinc	mg/L	3.599		5.3		
			l Metals			
Aluminum	mg/l	NA	il Wietais	26		
Antimony	mg/L mg/L	0.747		<0.00050		
Arsenic	mg/L	0.03		<0.00050		
Barium	mg/L	98				
Beryllium	mg/L	1.867		0.0022		
Cadmium	mg/L	0.07		0.052		
Calcium	mg/L	NA		17		
Chromium	mg/L	NA		0.012		
Copper	mg/L	1.3		1.8		
Iron	mg/L	NA		0.57		
Lead	mg/L	0.015		0.028		
Magnesium	mg/L	NA		16		
Manganese	mg/L	130.667		4.1		
Mercury	mg/L	0.28		<0.0010		
Nickel	mg/L	28		0.065		
Potassium	mg/L	NA				
Selenium	mg/L	0.033		<0.0025		
Silver	mg/L	4.667		<0.00050		
Sodium	mg/L	NA				
Thallium	mg/L	0.075		0.00064		
Uranium	mg/L	2.8				
Zinc	mg/L	280		5.1		
			organics			
Nitrogen, Nitrate (as N)	mg/L	NA				
Nitrogen, Nitrite (as N)	mg/L	NA				
Hardness , Ca/Mg (as CaCO ₃)	mg/L	NA		110		
TSS (residue, non-filterable)	mg/L	NA		<10		
TDS (residue, filterable)	mg/L	NA				
			nions			
Chloride	mg/L	NA				
Cyanide	mg/L	0.084				
Fluoride	mg/L	140				
Sulfate	mg/L	NA				

Bold indicates concentration above SWQS (Surface Water Quality Standard)
¹ Dissolved metals SWQSs: Only the most stringent hardness based calculated SWQS of all applicable designated uses is shown above. Designated Uses at Alum Gulch: Aquatic & wildlife warm water, full body contact, fish consumption, and Agricultural Livestock watering. Designated Uses at Humboldt Canyon (SW-HU-1): Aquatic & wildlife ephemeral, partial body contact.

Hardness based SWQSs calculated using 400 mg/L in Alum Gulch; Humboldt Canyon uses hardness value of the collected sample $CaCO_3 = calcium carbonate$

µS/cm = microsiemens per centimeter

SU = standard units

°C = degrees Celsius

- gpm = gallons per minute
- mg/L = milligrams per Liter
- NA = no applicable standard
- TDS = total dissolved solids
- TSS = total suspended solids
- -- indicates no data available

TABLE 2A Alum Gulch Surface Water Quality

Conductivity µ pH	Field Para SU SU SU SU "C ggm Dissolved mg/L mg/L mg/L	(mg/L) 4 meters NA 6.5-9.0 NA NA	SW-HA 1 //14/2016 DRY 0	SW-HA 1 8/15/2016 DRY 0 -		SW-HA 1 2/8/2017 DRY 0 	SW-HA 2 4/14/2016 DRY 0 	SW-HA 2 8/15/2016 DRY 0 -		SW-HA 2 2/8/2017 DRY 0 	SW-HA 3 4/14/2016 1802 6.95 21.1 15 <2.0 0.0010 0.0027 <0.00025 <0.00025	SW-HA 3 8/15/2016 1043 7.20 24.2 4 <10 0.0014 0.0035 <0.00025	SW-HA 3 11/29/2016 1416 7.47 11.8 25 <0.0050 <0.0050 0.0050	SW-HA 3 2/8/2017 1636 7.42 6.9 2 2 <0.0400 0.00054 0.0026		SW-HA 4 8/15/2016 : DRY . 0 		SW-HA 4 2/8/2017 DRY 0 	1435 6.87 18.4 4-5 <2.0 0.0028	SW-HA 5 8/15/2016 942 7.71 25.2 40 0.0024 0.0054	SW-HA 5 11/29/2016 1308 7.33 14.1 15 <0.0050 <0.0050	SW-HA 5 2/8/2017 1519 8.04 8.6 0.2 <0.0400 0.0020 0.0031	SW-HA 6 8/15/2016 1677 7.25 22.6 5 <pre> </pre> \$ \$ \$	SW-HA 6 11/29/2016 1448 6.88 10.3 15 <0.0050 <0.0050	SW-HA 6 11/29/16 DUP 1448 6.88 10.3 15 <0.0050 <0.0050	SW-HA 6 2/8/2017 1633 7.29 10.1 3
Conductivity µL pH Image: Conductivity pH Image: Conductivity Femperature Image: Conductivity Flow get Aluminum n Antimony n Antimony n Arsenic n Barium n Barium n Cadmium n Calcium n Chromium n Copper n Iron n Maganese n Marganese n Nickel n	Field Para SU SU °C gpm Dissolved mg/L mg/L	Meters NA 6.5-9.0 NA NA Metals NA 0.28 98 1.867 0.290 NA 0.08588 NA 0.5927 NA 130.7	DRY 0	DRY 0 	DRY 0 	DRY 0 	DRY 0 	DRY 0 	DRY 0 	DRY 0	1802 6.95 21.1 15 <2.0 0.0010 0.0027 <0.00025	1043 7.20 24.2 4 <10 0.0014 0.0035 <0.00025	1416 7.47 11.8 25 <0.0050 <0.0050 	1636 7.42 6.9 2 <0.0400 0.00054 0.0026	DRY 0 	DRY 0 	DRY 0 	DRY 0 	1435 6.87 18.4 4-5 <2.0 0.0028	942 7.71 25.2 40 <2.0 0.0024	1308 7.33 14.1 15 <0.0050	1519 8.04 8.6 0.2 <0.0400 0.0020	1677 7.25 22.6 5 <10 0.0037	1448 6.88 10.3 15 <0.0050	1448 6.88 10.3 15 <0.0050 <0.0050	1633 7.29 10.1 3 <0.0400 0.0035
Conductivity µL pH Image: Conductivity pH Image: Conductivity Femperature Image: Conductivity Flow get Aluminum n Antimony n Antimony n Arsenic n Barium n Barium n Cadmium n Calcium n Chromium n Copper n Iron n Maganese n Marganese n Nickel n	S/cm SU °C gpm Dissolved mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	NA 6.5-9.0 NA NA Metals NA 0.28 98 1.867 0.290 NA NA 0.2888 NA 0.08588 NA 0.5927 NA 130.7	0	0 	0 	0 	0 	 	0 	 	6.95 21.1 15 <2.0 0.0010 0.0027 <0.00025	7.20 24.2 4 <10 0.0014 0.0035 <0.00025	7.47 11.8 25 ~~ <0.0050 <0.0050 ~~	7.42 6.9 2 <0.0400 0.00054 0.0026	0 	0 	0	0 	6.87 18.4 4-5 <2.0 0.0028	7.71 25.2 40 <2.0 0.0024	7.33 14.1 15 <0.0050	8.04 8.6 0.2 <0.0400 0.0020	7.25 22.6 5 <10 0.0037	6.88 10.3 15 <0.0050	6.88 10.3 15 <0.0050 <0.0050	7.29 10.1 3 <0.0400 0.0035
pH Image: constraint of the second	SU °C gpm Dissolved mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	6.5-9.0 NA NA Metals NA 0.28 98 1.867 0.290 NA NA 0.290 NA 0.290 NA 0.05828 NA 0.5927 NA 130.7	0	0 	0 	0 	0 	 	0 	 	6.95 21.1 15 <2.0 0.0010 0.0027 <0.00025	7.20 24.2 4 <10 0.0014 0.0035 <0.00025	7.47 11.8 25 ~~ <0.0050 <0.0050 ~~	7.42 6.9 2 <0.0400 0.00054 0.0026	0 	0 	0	0 	6.87 18.4 4-5 <2.0 0.0028	7.71 25.2 40 <2.0 0.0024	7.33 14.1 15 <0.0050	8.04 8.6 0.2 <0.0400 0.0020	7.25 22.6 5 <10 0.0037	6.88 10.3 15 <0.0050	6.88 10.3 15 <0.0050 <0.0050	7.29 10.1 3 <0.0400 0.0035
Temperature Flow Flow flow flow flow flow flow flow flow f	°C gpm Dissolved mg/L	NA NA Metals NA 0.28 98 1.867 0.290 NA 0.288 0.05927 NA 130.7		0 				 		 	21.1 15 <2.0 0.0010 0.0027 <0.00025	24.2 4 	11.8 25 <0.0050 <0.0050 	6.9 2 <0.0400 0.00054 0.0026	0 		0		18.4 4-5 <2.0 0.0028	25.2 40 <2.0 0.0024	14.1 15 <0.0050	8.6 0.2 <0.0400 0.0020	22.6 5 <10 0.0037	10.3 15 <0.0050	10.3 15 <0.0050 <0.0050	10.1 3 <0.0400 0.0035
Flow a generation of the second secon	Dissolved mg/L	Metals NA NA 0.28 98 1.867 0.290 NA 0.08588 NA 0.05927 NA 130.7								 	<2.0 0.0010 0.0027 <0.00025	<10 0.0014 0.0035 <0.00025	 <0.0050 <0.0050 	2 <0.0400 0.00054 0.0026	-				<2.0 0.0028	40 <2.0 0.0024	 <0.0050	0.2 <0.0400 0.0020	5 <10 0.0037	 <0.0050	15 <0.0050 <0.0050	3 <0.0400 0.0035
Aluminum n Antimony n Arsenic n Barium n Beryllium n Cadmium n Cadmium n Calcium n Chromium n Copper n Iron n Magnesium n Marganese n Nickel n	mg/L	NA NA 0.28 98 1.867 0.290 NA 0.08588 NA 0.5927 NA 130.7		[[[[[[[[0.0010 0.0027 <0.00025	0.0014 0.0035 <0.00025	<0.0050 <0.0050 	0.00054 0.0026					0.0028	0.0024	<0.0050	0.0020	0.0037		<0.0050	0.0035
Antimony n Arsenic n Barium n Beryllium n Cadmium n Cadmium n Calcium n Copper n Iron n Iron n Magnese n Marganese n Nickel n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	NA 0.28 98 1.867 0.290 NA NA 0.08588 NA 0.5927 NA 130.7		[[[[[[[[0.0010 0.0027 <0.00025	0.0014 0.0035 <0.00025	<0.0050 <0.0050 	0.00054 0.0026					0.0028	0.0024	<0.0050	0.0020	0.0037		<0.0050	0.0035
Antimony n Arsenic n Barium n Beryllium n Cadmium n Cadmium n Calcium n Copper n Iron n Iron n Magnese n Marganese n Nickel n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.28 98 1.867 0.290 NA NA 0.08588 NA 0.5927 NA 130.7		[[[[[[[[0.0010 0.0027 <0.00025	0.0035 <0.00025	<0.0050	0.0026					0.0028				0.0037		<0.0050	
Arsenic n Barium n Beryllium n Cadmium n Calcium n Chromium n Copper n Iron n Lead n Maganese n Marganese n Mercury n Vickel n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.28 98 1.867 0.290 NA NA 0.08588 NA 0.5927 NA 130.7			 			 		 	0.0027 <0.00025	0.0035 <0.00025	<0.0050	0.0026											<0.0050	
Barium n Beryllium n Cadmium n Calcium n Chromium n Chromium n Copper n Iron n Lead n Maganese n Manganese n Marcury n Nickel n	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	98 1.867 0.290 NA 0.08588 NA 0.5927 NA 130.7			 			 			 <0.00025	 <0.00025							0.0038	0.0054						
Beryllium n Cadmium n Calcium n Chromium n Copper n Iron n Lead n Maganese n Manganese n Mercury n Vickel n	mg/L mg/L mg/L mg/L (mg/L (mg/L mg/L mg/L mg/L mg/L	1.867 0.290 NA NA 0.08588 NA 0.5927 NA 130.7	 	 	 								-0.00025													
Calcium n Chromium n Copper n Iron n Lead n Magnesium n Manganese n Mercury n Nickel n Potassium n	mg/L mg/L (mg/L (mg/L) mg/L) mg/L) mg/L) mg/L)	NA NA 0.08588 NA 0.5927 NA 130.7	 	 	 						<0.00025		< 0.00025	<0.00025					<0.00025	<0.00025	<0.00025	<0.00025	<0.00050	<0.00025	<0.00025	<0.00025
Chromium n Copper n Iron n Lead n Magnesium n Manganese n Mercury n Nickel n Potassium n	mg/L (mg/L (mg/L) mg/L) mg/L) mg/L) mg/L)	NA 0.08588 NA 0.5927 NA 130.7	 		 							0.00025	<0.0025	<0.00025					<0.00025	<0.00025	<0.0025	< 0.00025	0.00037	< 0.0025	<0.0025	< 0.00050
Copper n Iron n Lead n Magnesium n Manganese n Mercury n Nickel n Potassium n	mg/L (mg/L mg/L mg/L mg/L mg/L mg/L	0.08588 NA 0.5927 NA 130.7	 											270								240				280
iron n Lead n Magnesium n Manganese n Mercury n Nickel n Potassium n	mg/L mg/L mg/L mg/L mg/L mg/L	NA 0.5927 NA 130.7									0.0016	0.00059	< 0.00050	<0.00050					0.0011	0.00096	<0.00050	< 0.00050	0.0010	< 0.0050	<0.0050	< 0.0010
Lead n Magnesium n Manganese n Mercury n Vickel n Potassium n	mg/L mg/L mg/L mg/L mg/L	0.5927 NA 130.7									0.0014	0.0031	0.0014	0.00081					0.0016	0.0019	0.0016	0.00097	0.0026	0.0017	0.0019	0.0011
Magnesium n Manganese n Mercury n Nickel n Potassium n	mg/L mg/L mg/L mg/L	NA 130.7									<0.30	<1.5	<0.30	<0.30					<0.30	<0.30	<0.30	<0.30	<1.5	<0.30	<0.30	<0.30
Manganese n Mercury n Nickel n Potassium n	mg/L mg/L mg/L	130.7									<0.00050	<0.00050	<0.0050	<0.00050					0.00068	0.0033	<0.0050	<0.00050	0.0011	<0.0050	<0.0050	<0.00050
Mercury n Nickel n Potassium n	mg/L mg/L													42								45				44
Nickel n Potassium n	mg/L	0.28									0.11	0.038	0.11	0.085					0.022	0.025	0.020	0.016	0.030	0.073	0.062	0.0056
Potassium n	0,										<0.0010	<0.0010							<0.0010	<0.0010			<0.0010			
		13.436									0.011	0.014	0.017	0.0078					0.0092	0.0062	0.012	0.0070	0.015	0.0096	0.0099	0.0081
	mg/L	NA																								
	0/	4.667									0.0023	0.0013	<0.025	0.0012					0.0017	0.0013	<0.025	0.0011	0.0032	<0.025	<0.025	0.0015
	Ċ,	0.0349									<0.00050	<0.00050	<0.0050	<0.00050					<0.00050	<0.00050	<0.0050	<0.00050	<0.00050	<0.0050	<0.0050	<0.0010
	mg/L	NA																								
	0,	0.075									<0.0050	<0.00050	<0.0050	<0.00050					<0.00050	<0.00050	<0.0050	<0.00050	<0.00050	<0.0050	<0.0050	<0.00050
	mg/L	2.8																								
Zinc n	mg/L Total M	3.599									<0.040	<0.20	0.048	<0.040					<0.040	<0.040	<0.040	<0.040	<0.20	0.055	0.048	0.069
a I								<u> </u>			1	1		0.202				[1		0.0800				0.525
	mg/L	NA									<2.0	<2.0		0.282					<2.0	<2.0		0.0896	<2.0			0.535
		0.747									0.0010	0.0018	0.00065	0.00068					0.0028	0.0025	0.0020	0.0019	0.0036	0.0014	0.0014	0.0037
	mg/L	0.28									<0.0050	0.0034	<0.0025	0.0029					0.0052	0.0037	0.0037	0.0022	0.0014	<0.0025	<0.0025	0.0024
	mg/L	98 1.867									<0.0025		<0.00025	<0.0013					<0.00025	<0.00025	<0.00025	<0.00035		<0.0013		<0.00025
	mg/L mg/L	0.7									<0.0025	<0.00025 0.00031	<0.00025	<0.0013					<0.00025	<0.00025	<0.00025	<0.00025 <0.00025	<0.00025 0.00036	<0.0013	<0.0013 <0.00025	<0.00025
	mg/L	NA									300	320	280	300					270	150	260	250	340	340	290	300
	mg/L	NA									0.00099	0.0077	<0.0025	0.0027					0.0012	0.0065	<0.0025	0.0026	0.0067	0.0034	<0.0025	0.0040
	mg/L	1.3									< 0.0050	0.0097	0.0023	0.0027					<0.0012	0.0053	0.0025	0.0015	0.0061	<0.0034	<0.0025	0.0040
	mg/L	NA									<0.30	0.78	<0.30	0.76					<0.30	< 0.30	0.49	< 0.30	<0.30	<0.30	<0.30	0.98
		0.015									<0.0050	0.020	0.0010	0.0048					<0.0050	0.0044	0.018	0.0012	0.0050	0.0017	0.0022	0.0035
	mg/L	NA									44	48	39	45					51	30	50	49	54	43	44	48
-	-	130.7									0.057	0.12	0.11	0.14					0.024	0.072	0.17	0.023	0.081	0.051	0.062	0.078
-	.	0.28									<0.0010	<0.0010	<0.0010	<0.0010					<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010
Nickel n	mg/L	28									0.018	0.019	0.011	0.0082					0.016	0.012	0.010	0.0078	0.019	0.011	0.011	0.010
Potassium n	mg/L	NA																								
Selenium n	mg/L	4.667									0.0017	0.0013	0.0012	0.0010					0.0014	0.00079	0.00080	0.00075	0.0021	0.0012	0.0010	0.0019
	Ċ,	4.667									<0.00050	<0.00050	<0.00050	<0.00050					<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	mg/L	NA																								
	Ċ,	0.075									<0.0050	<0.00050	<0.00050	<0.00050					<0.0050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	mg/L	2.8																	<u> </u>							
Zinc n	mg/L	280									<0.040	0.049	0.048	<0.040					<0.040	<0.040	<0.040	<0.040	0.093	0.042	0.048	0.088
	Inorga			-																						
	0,	3733												<0.50								<0.50				0.52
Nitrogen, Nitrite (as N) n	mg/L	233												<0.10								<0.10				<0.10
	mg/L	NA									930	990	860	850					880	500	860	790	1100	1000	900	880
	mg/L	NA									<10	18	<10	39					<10	<10	14	<10	<10	<10	<10	33
TDS (residue, filterable) n Notes:	mg/L	NA												1400								1300				1400

Notes:

Bold indicates concentration above SWQS (Surface Water Quality Standard)

¹ Dissolved metals SWQSs: Aquatic and Wildlife ephemeral (A&We) use. Hardness based standards (for dissolved cadmium copper, lead, nickel, silver, and zinc)are based on 400 mg/L hardness of the sample.

² Partial Body Contact (PBC) standard applies to total metals

CaCO $_3$ = calcium carbonate

μS/cm = microsiemens per centimeter SU = standard units °C = degrees Celsius

gpm = gallons per minute mg/L = milligrams per Liter TDS = total dissolved solids

TSS = total suspended solids

NA = no applicable standard -- indicates no data available

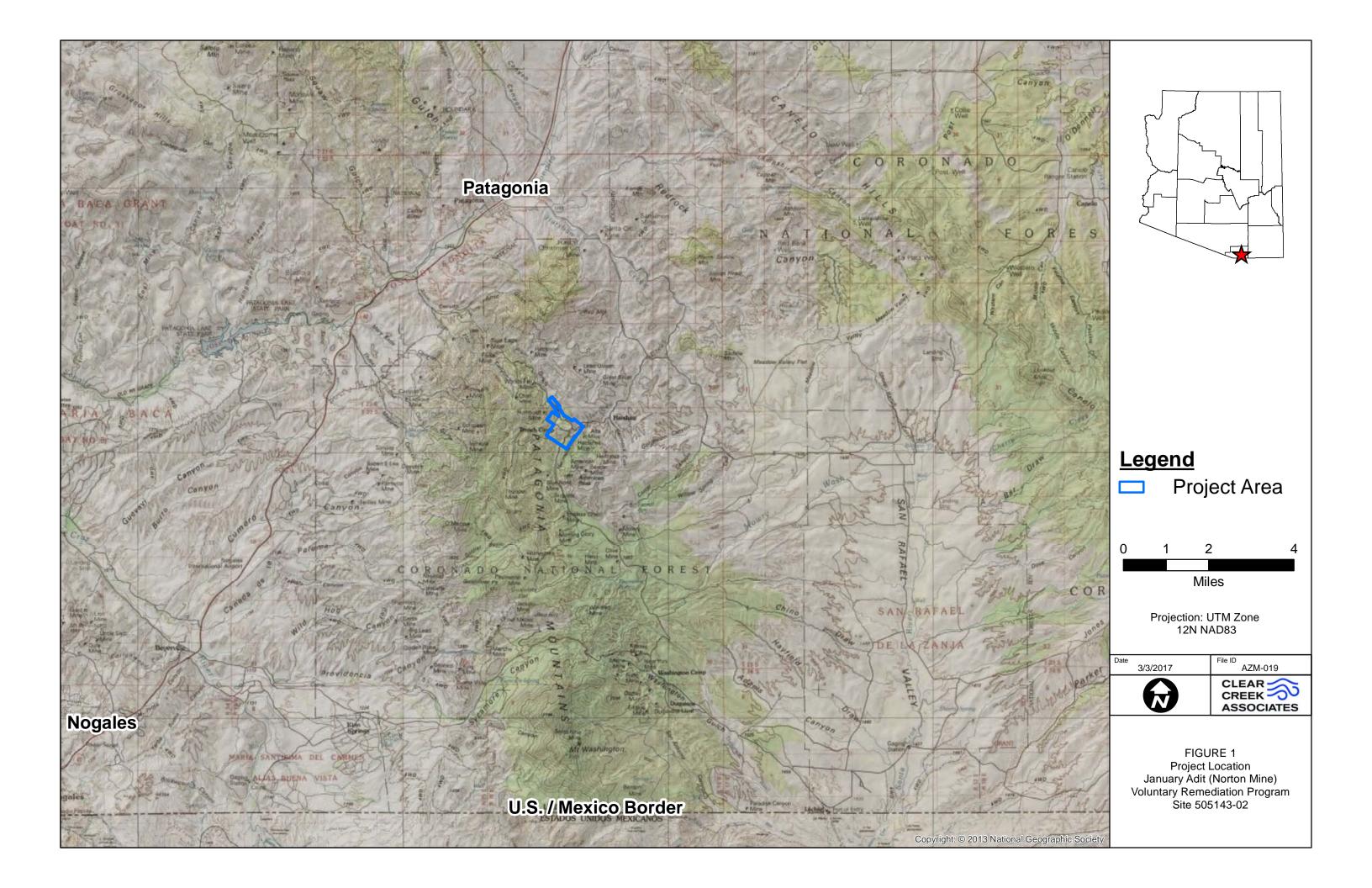
TABLE 2B Harshaw Creek Surface Water Quality

TABLE 3 **MW-3 Groundwater Quality**

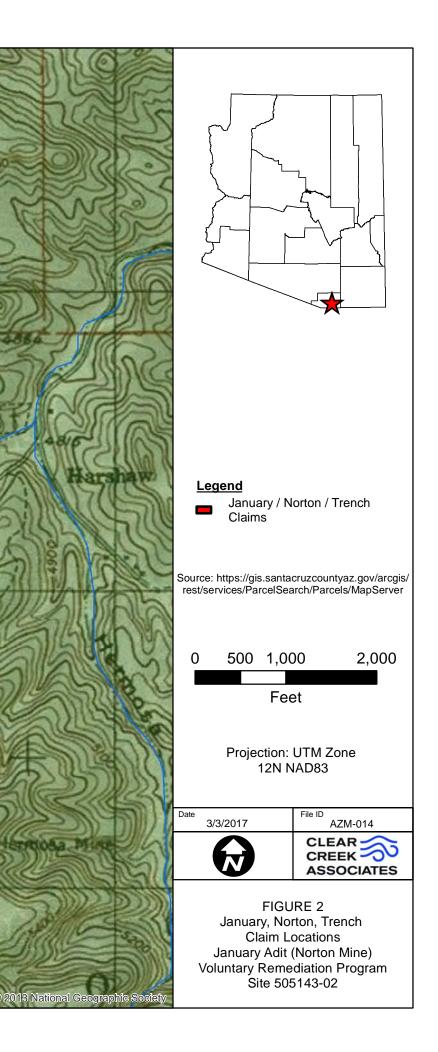
Analyte	Units	AWQS (mg/L)	2/7/2017	4/17/201
	Field Param	eters		
Conductivity	μS/cm	NA	2960	3191
рН	SU	NA	7.98	7.09
Temperature	°C	NA	19.8	19.7
	Dissolved N	letals	T	
Aluminum	mg/L	NA	<2.0	
Antimony	mg/L	0.006	<0.00050	<0.00050
Arsenic	mg/L	0.05	0.0064	0.0087
Barium	mg/L	2	0.027	0.022
Beryllium	mg/L	0.004	< 0.00025	0.00043
Cadmium	mg/L	0.005	0.0051	0.0044
Calcium	mg/L	NA	570	
Chromium	mg/L	0.1	0.00053	<0.0050
Copper	-	NA	0.00080	
	mg/L			
Iron	mg/L	NA	<0.30	
Lead	mg/L	0.05	<0.0050	<0.00050
Magnesium	mg/L	NA	210	
Manganese	mg/L	NA	24	
Mercury	mg/L	0.002	<0.000094	<0.00009
Nickel	mg/L	0.1	0.070	0.071
Selenium	mg/L	0.05	0.0021	0.0065
Silver	mg/L	NA	< 0.00050	
Thallium	mg/L	0.002	<0.0050	<0.00050
Zinc	mg/L	NA	4.7	
	Total Me			l
Aluminum	mg/L		<2.0	
Antimony	mg/L		<0.00050	<0.00050
Arsenic	mg/L		0.0061	0.0068
Barium	mg/L		0.033	0.026
Beryllium	mg/L		0.00066	0.00052
Cadmium	mg/L		0.0065	0.0042
Calcium	mg/L		580	520
Chromium	mg/L		0.0016	0.0066
Copper	mg/L		0.0011	
Iron	mg/L		1.8	
Lead	mg/L		0.00059	0.0027
Magnesium	mg/L		220	200
Manganese	mg/L		24	
Mercury	mg/L		< 0.00094	< 0.00009
Nickel Selenium	mg/L		0.059 0.0021	0.080
Silver	mg/L mg/L		<0.00050	
Thallium	mg/L		<0.00050	<0.00050
Zinc	mg/L		5.8	
	Inorgani	cs		
Hardness, Ca/Mg (as CaCO ₃)	mg/L	NA	2300	
Nitrogen, Nitrate (as N)	mg/L	10	<0.50	<0.50
Nitrogen, Nitrite (as N)	mg/L	1	<0.10	<0.10
TDS (residue, filterable)	mg/L	NA	3300	
TSS (residue, non-filterable)	mg/L	NA	<10	
	Anions			
Cyanide	mg/L	0.2	<0.10	<0.10
Fluoride	mg/L	4	0.80	0.85
Sulfate	mg/L	NA		2100
	Radionucl	1	1	
Uranium-234	μg/L	NA	0.00015 ± 0.00004	
Uranium-235	μg/L	NA	0.010 ± 0.001	
Uranium-238 Uranium Activity (U ²³⁴ , U ²³⁵ , U ²³⁸)	μg/L	NA	1.4 ± 0.5	
	pCi/L	NA	1.4 ± 0.5	
Radium-226 Radium-228	pCi/L pCi/L	NA NA	0.7 ± 0.2 <0.6	<0.3 <0.6
Total Radium Activity	pCi/L	5	0.7 ± 0.2	<0.6

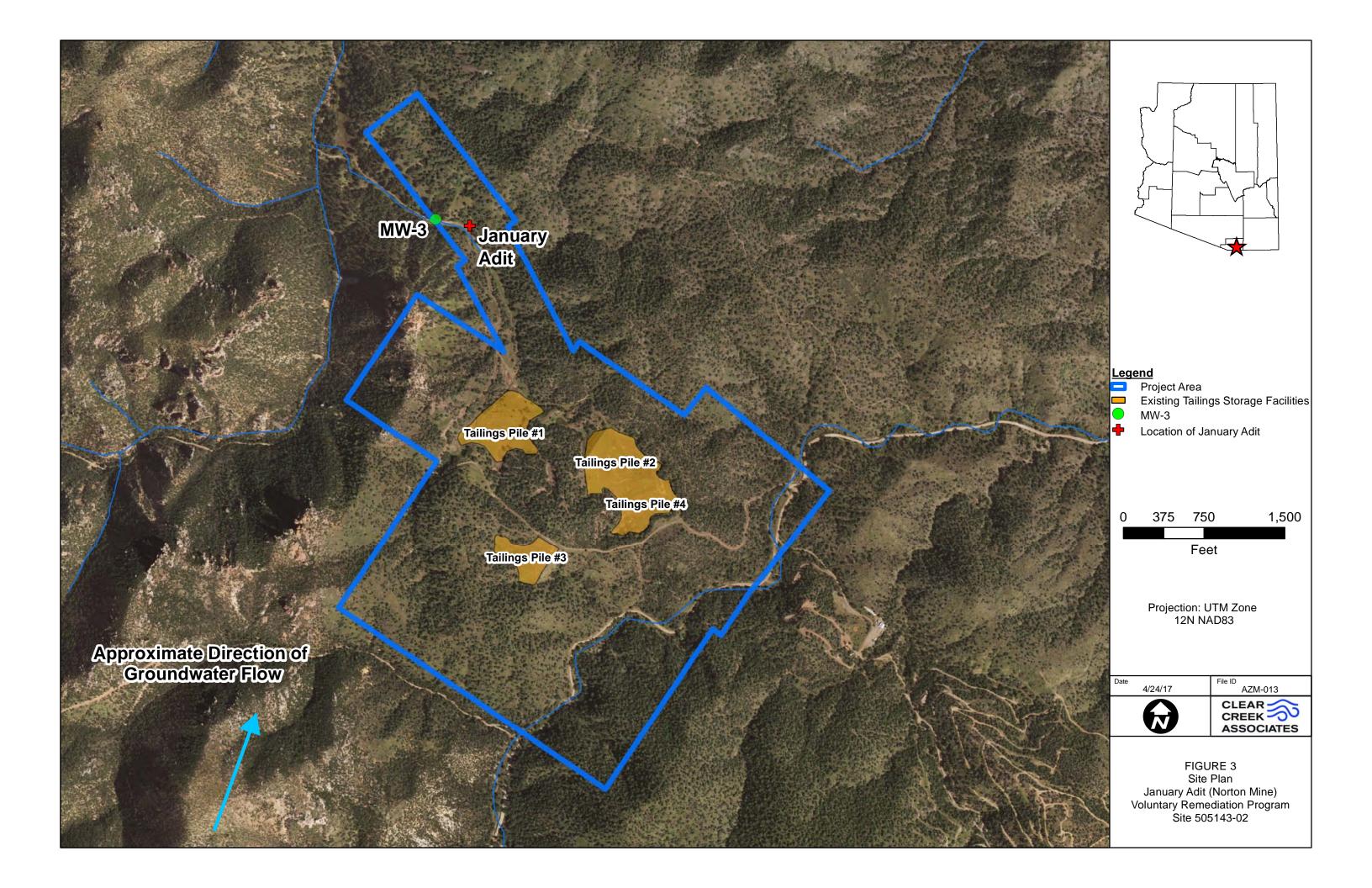
Bold indicates concentration above AWQS (Aquifer Water Quality Standard) CaCO₃ = calcium carbonate

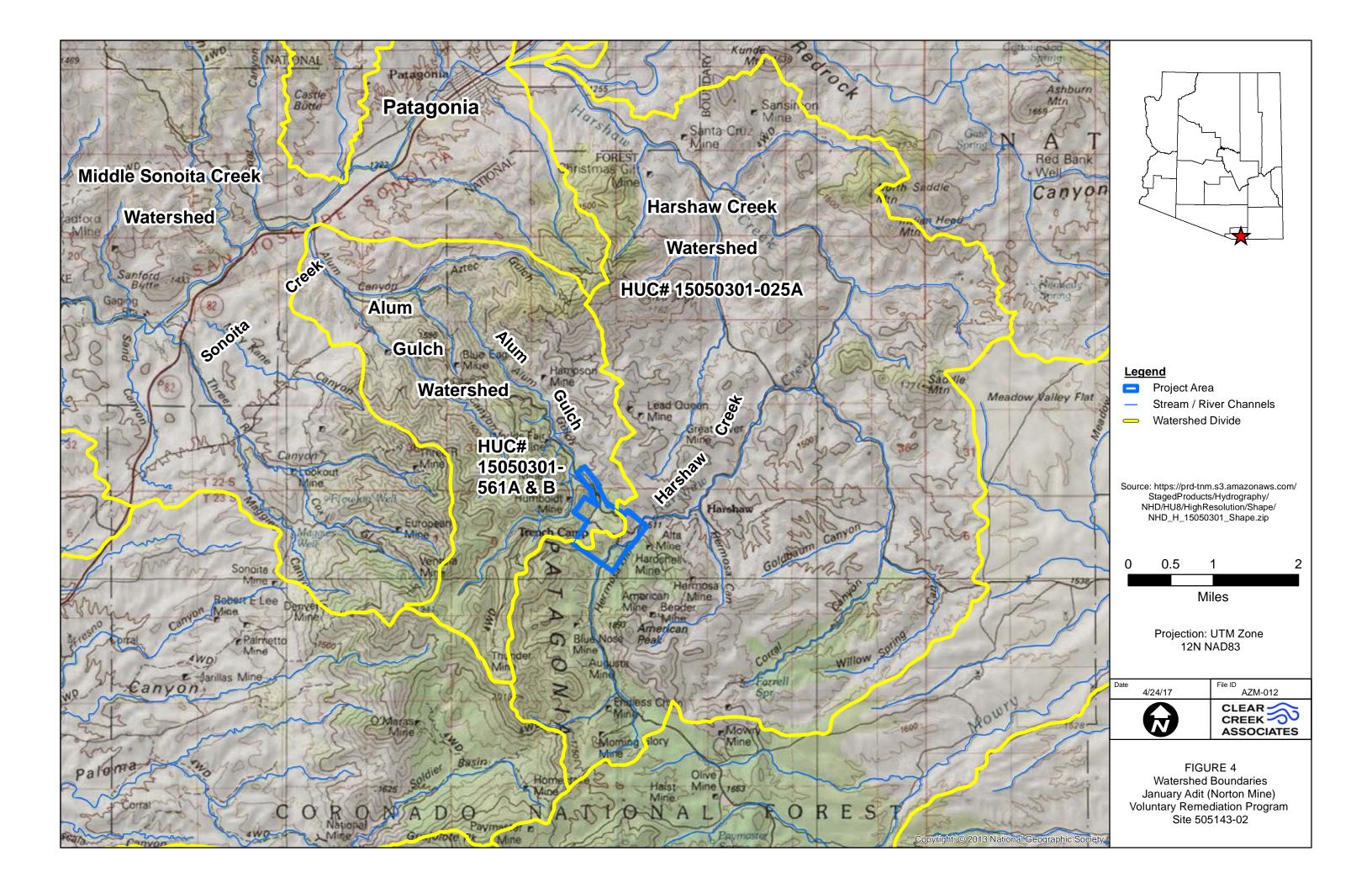
°C = degrees Celsius mg/L = milligrams per Liter NA = no applicable standard SU = standard units

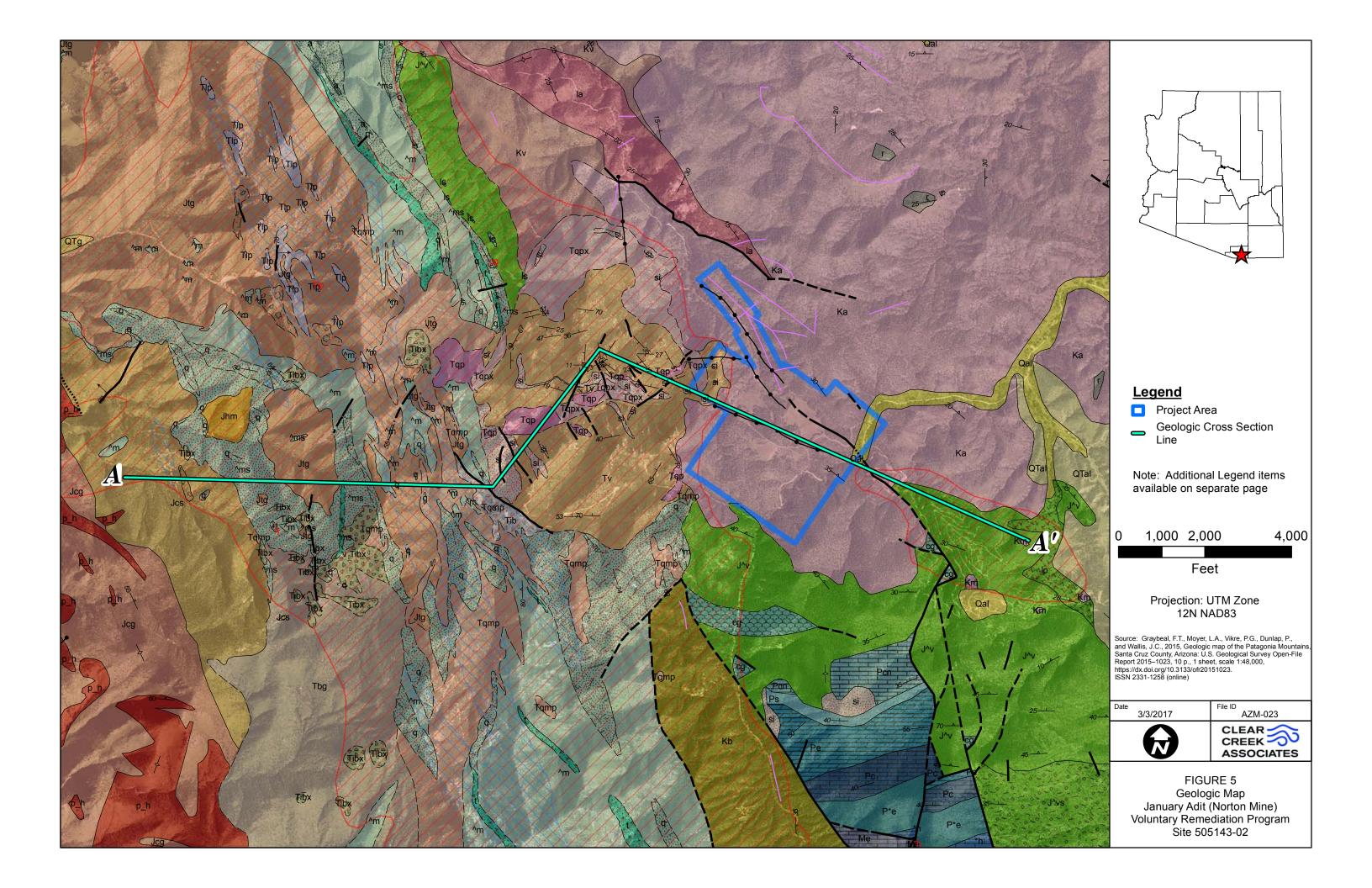

TDS = total dissolved solids TSS = total suspended solids

μS/cm = microsiemens per centimeter


-- indicates no data available




FIGURES

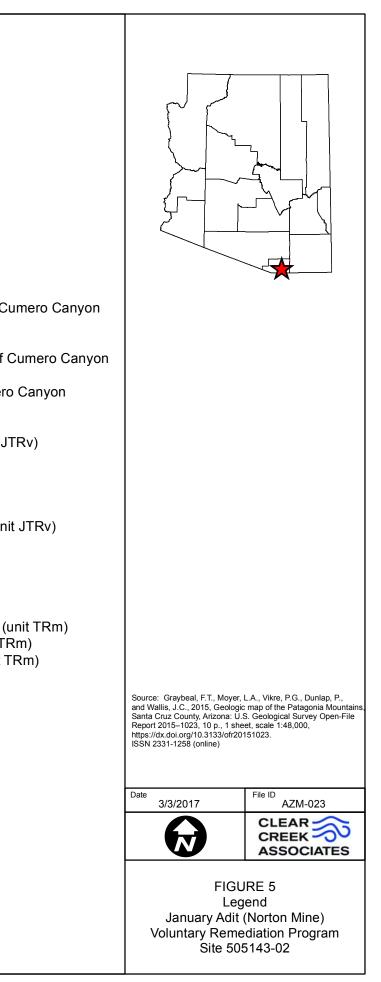


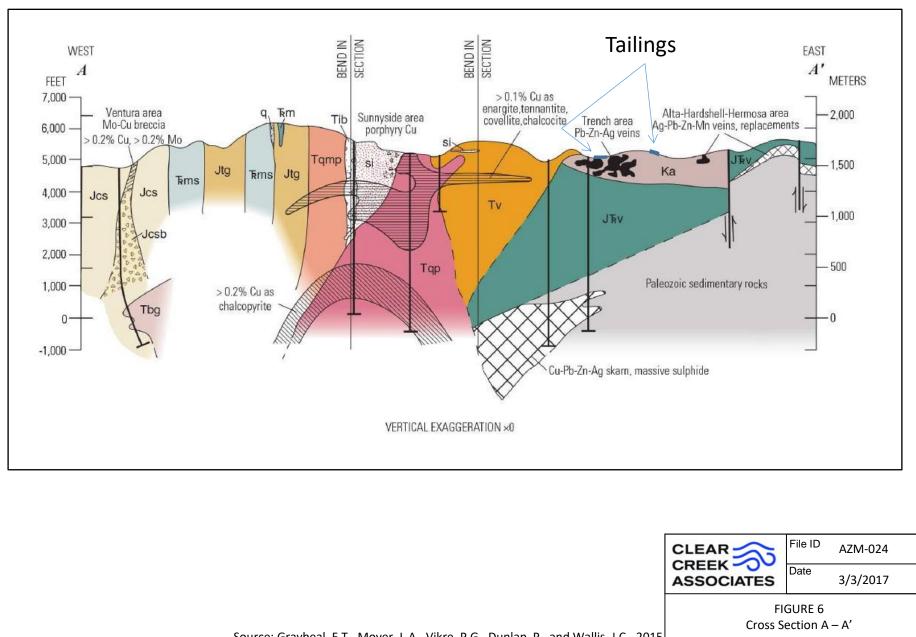
Samual 105-50-001B 0 ARIZONA **MINERALS INC** Humbold !! Notion 105-49-003 ARIZONA 105-50-001A **MINERALS INC** ARIZONA **MINERALS INC** Trench

Legend

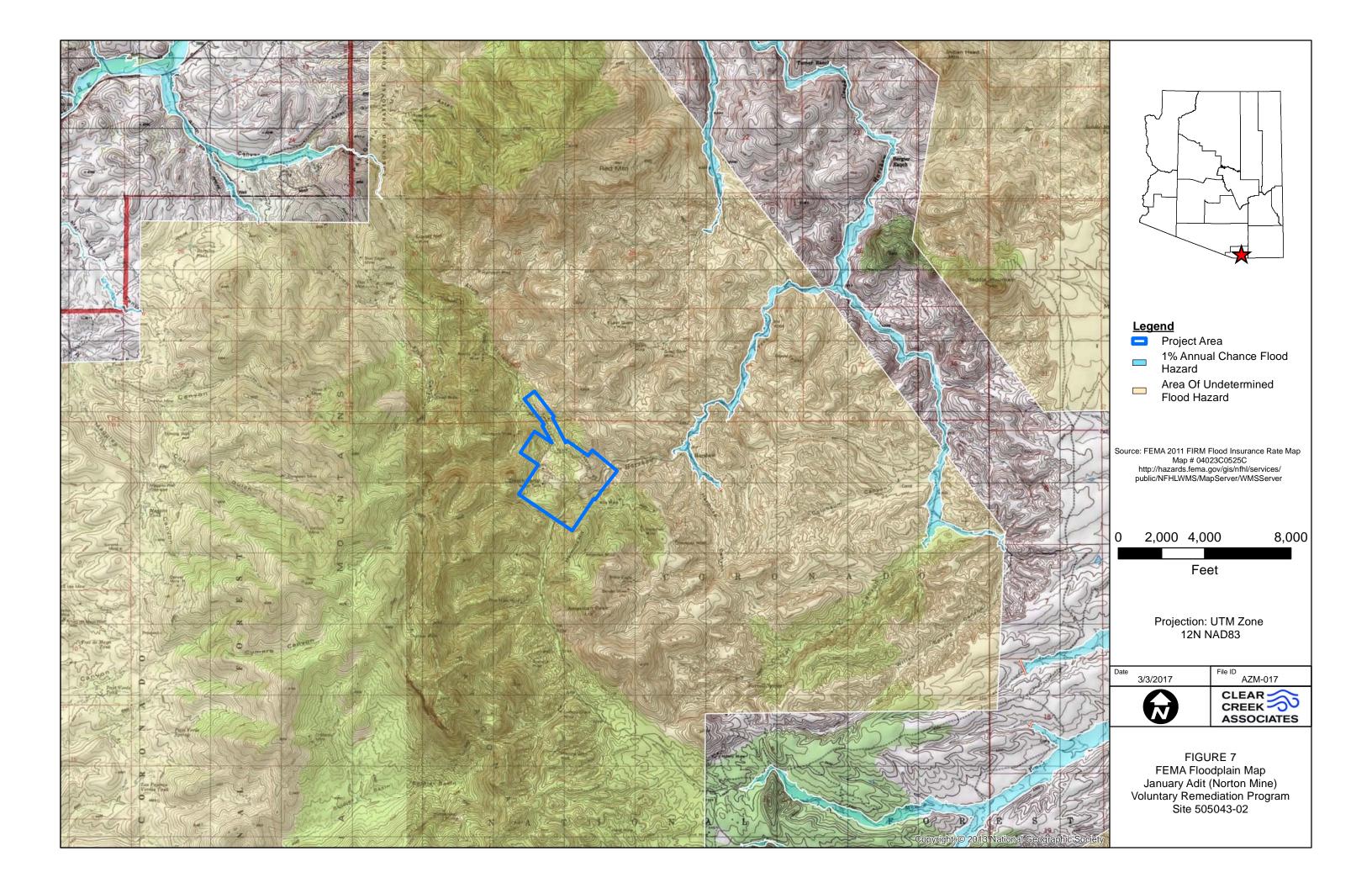
Project Area

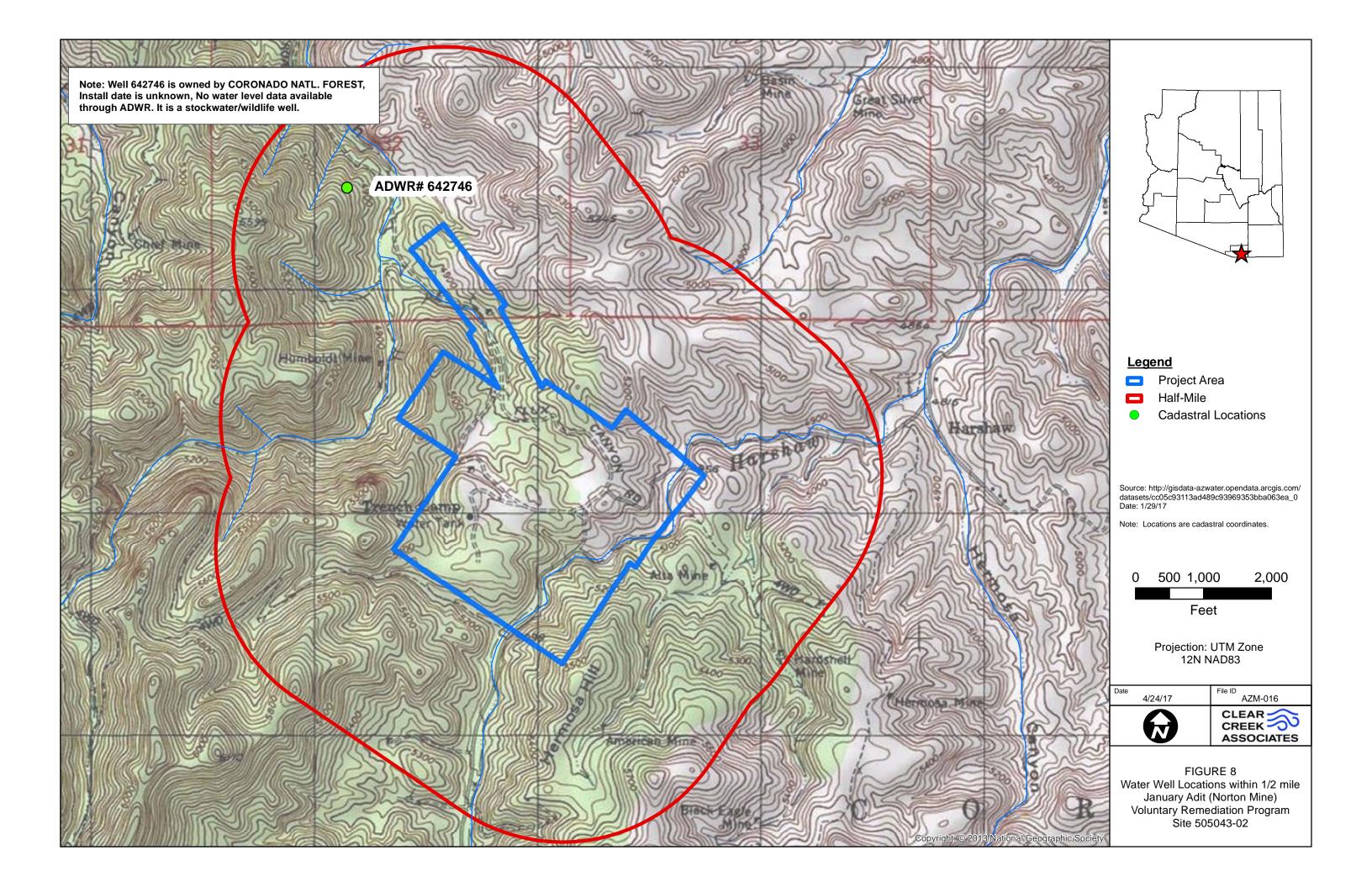
Contacts, faults, folds, and linear units

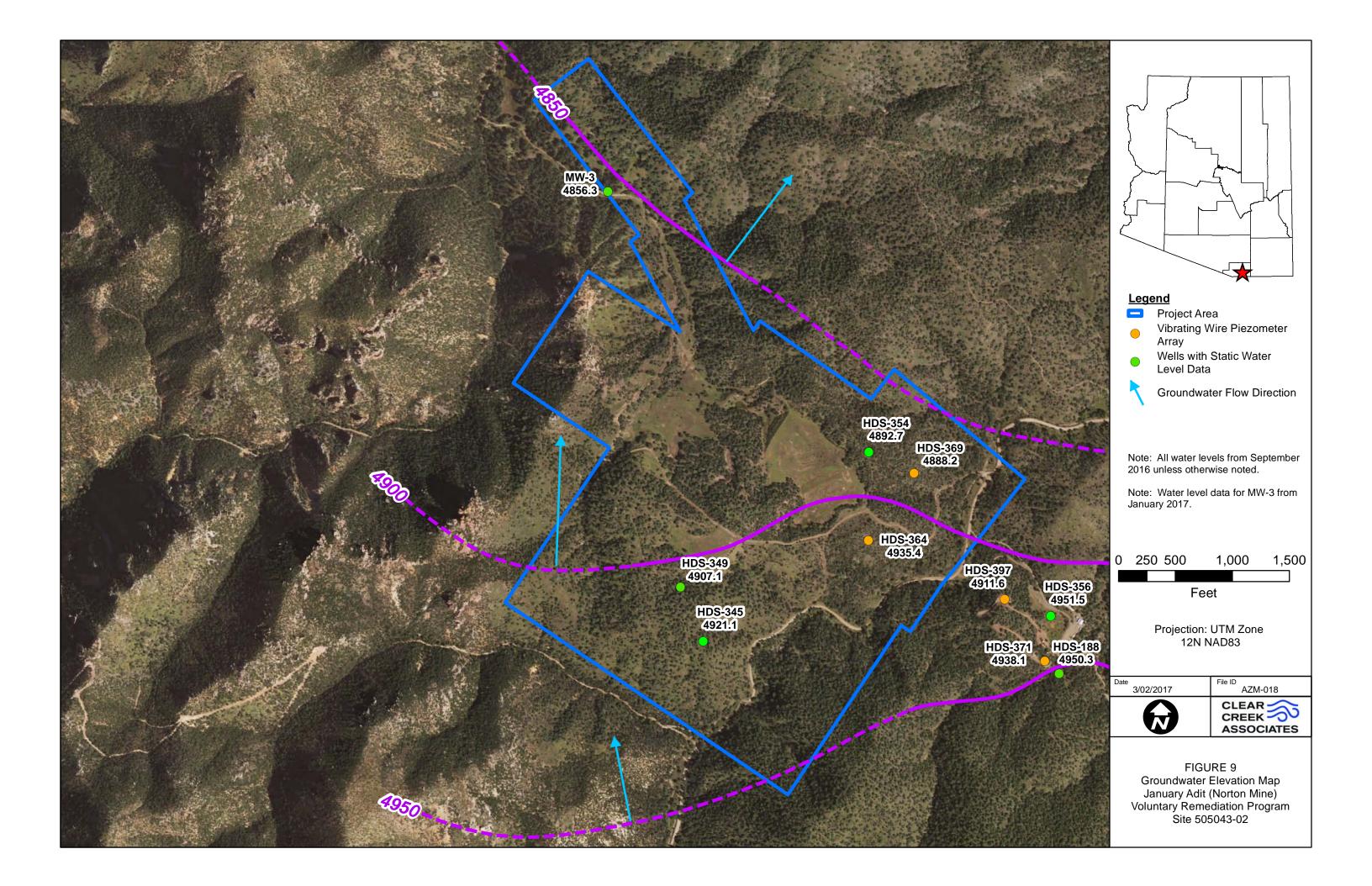

- linear units
- contact, certain
- contact, dashed where approximately located
- $^{\cdots\!\cdots}$ contact, dotted where concealed
- fault, certain
- fault, dashed where approximately located
- m fault, dotted where concealed
- thrust fault, certain
- anticline
- ← vein
- Extent of mapped area
- Shear zones
- Pyrite zones

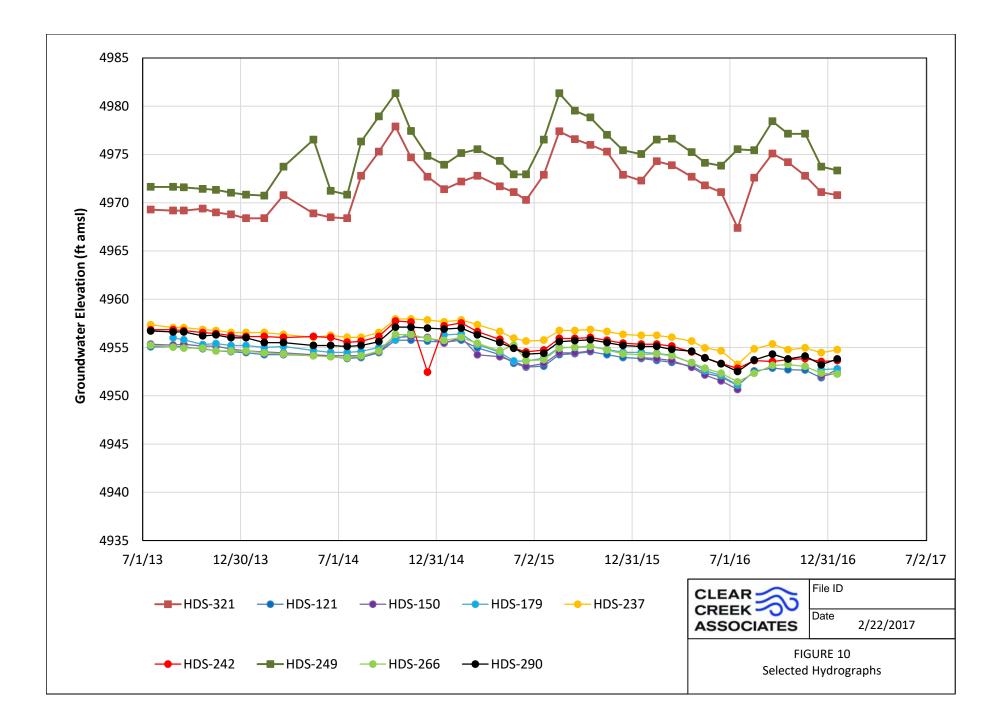

Map units

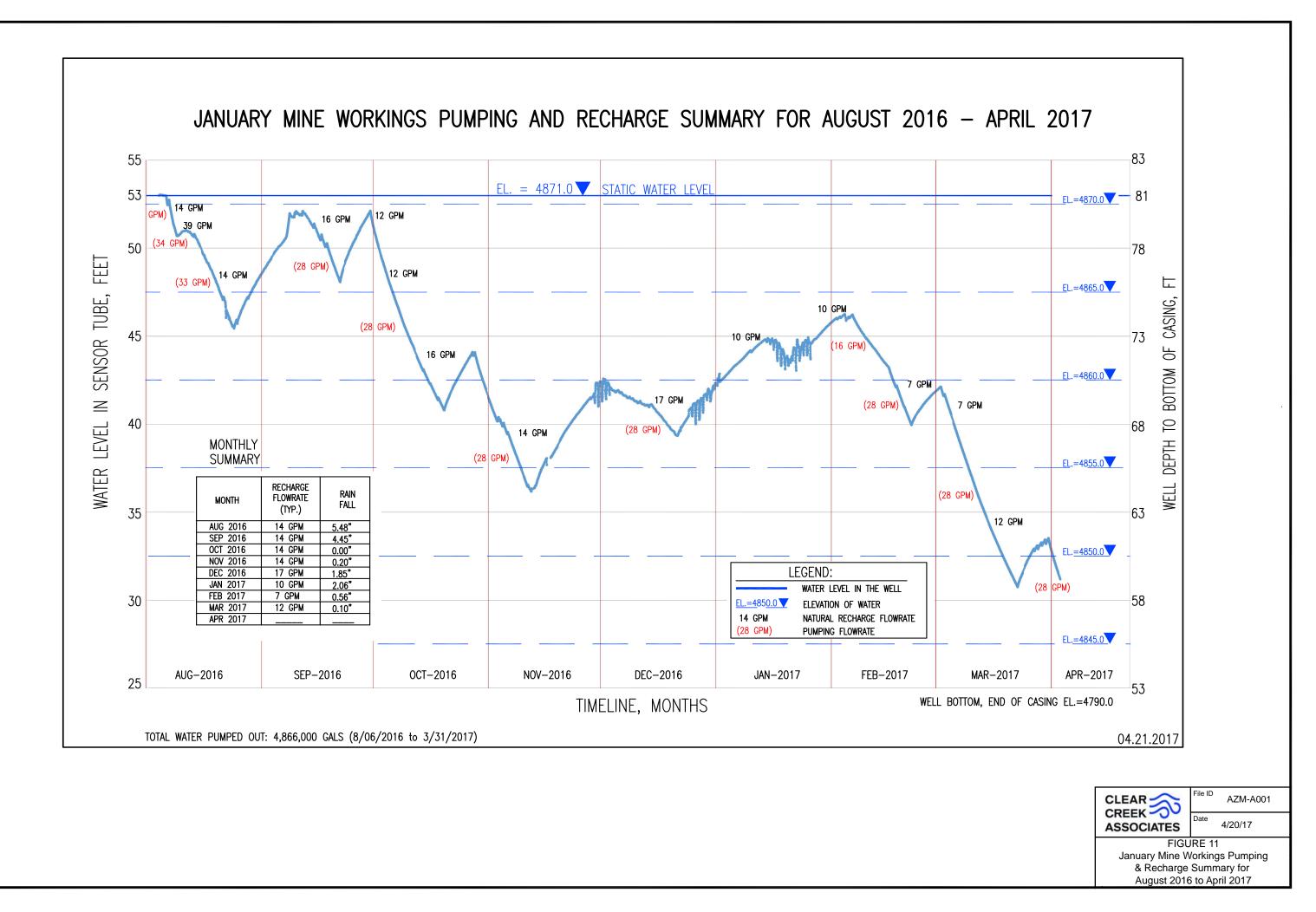
Symbol, Unit name

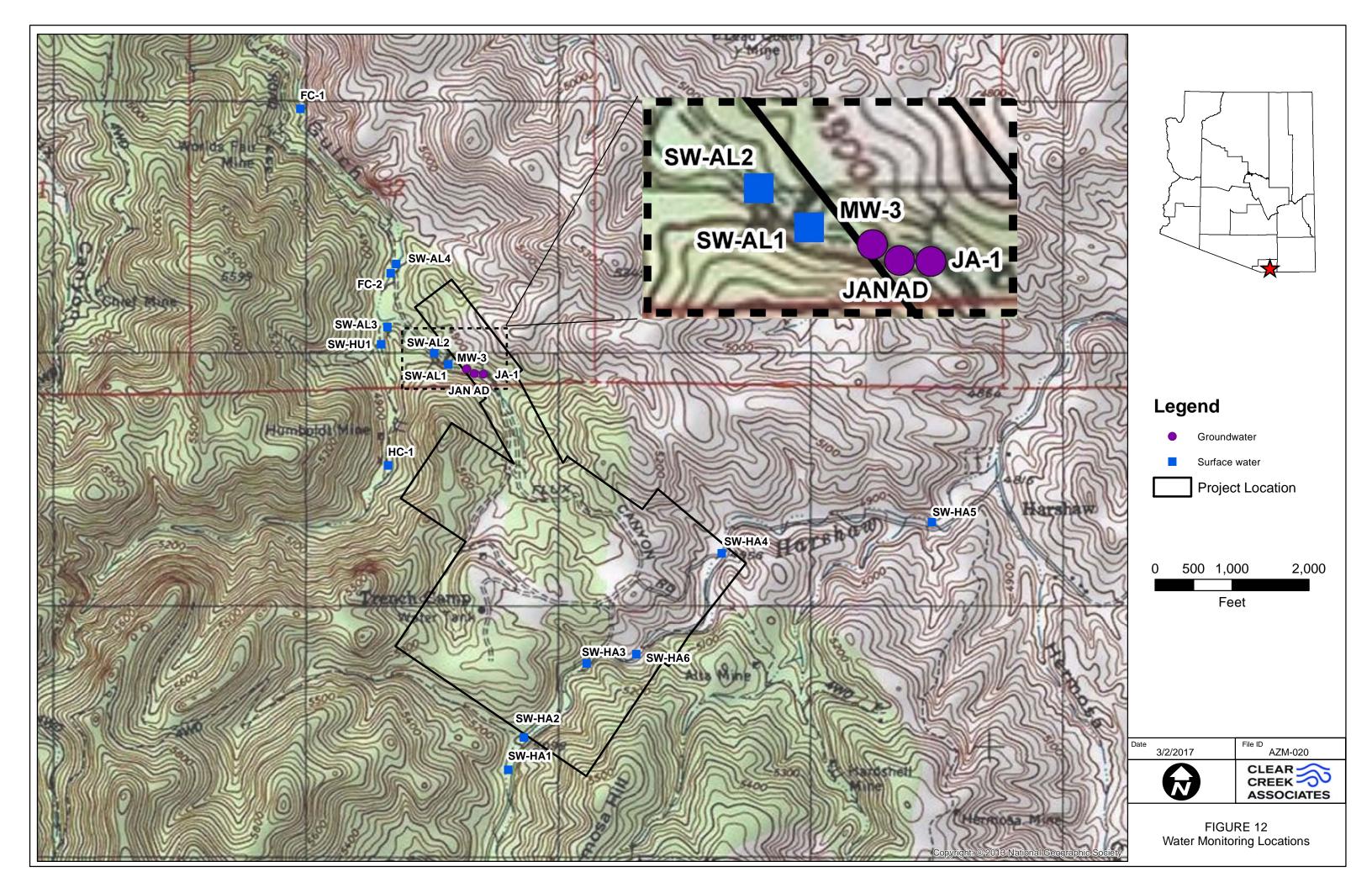

- Qal—Younger alluvium and talus
- QTal—Older alluvium
- QTg—Gravel and conglomerate
- TI—Limestone
- Tt—Biotite rhyolite tuff
- si-Silicification
- Tv—Volcaniclastic rocks of middle Alum Gulch
- Tib—Intrusive breccia of middle Alum Gulch
- Tqp—Quartz feldspar porphyry of middle Alum Gulch
- Tqpx—Xenolithic quartz feldspar porphyry of middle Alum Gulch
- Tqmp—Quartz monzonite porphyry, in granodiorite of the Patagonia Mountains
- Tqmpb—Breccia, in quartz monzonite porphyry (unit Tqmp) of granodiorite of the Patagonia Mountains
- Tg—Granodiorite, in granodiorite of the Patagonia Mountains
- Tgb—Breccia, in granodiorite (unit Tg) of granodiorite of the Patagonia Mountains
- TIp—Latite porphyry, in granodiorite of the Patagonia Mountains
- Tbq—Biotite quartz monzonite, in granodiorite of the Patagonia Mountains
- Tbqb—Breccia, in biotite quartz monzonite (unit Tbq) of granodiorite of the Patagonia Mountains
- **Tbg—Biotite granodiorite, in granodiorite of the Patagonia Mountains**
- Tibx—Intrusion breccia, in granodiorite of the Patagonia Mountains
- Tsy—Syenodiorite or mangerite, in granodiorite of the Patagonia Mountains
- Tag—Biotite augite quartz diorite, in granodiorite of the Patagonia Mountains
- Tmp—Quartz monzonite porphyry of Red Mountain
- TKr—Rhyolite of Red Mountain


- TKggt—Gringo Gulch Volcanics
- Ka—Trachyandesite
- r—Rhyolite or latite, in trachyandesite (unit Ka)
- Km—Pyroxene monzonite
- KI—Biotite quartz latite(?)
- Kv—Silicic volcanics
- la—Biotite latite(?), in silicic volcanics (unit Kv)
- Kpg—Porphyritic biotite granodiorite
- Kb—Bisbee Formation
- Kbc—Conglomerate, in Bisbee Formation (unit Kb)
- Jtg—Granite of Three R Canyon, in granite of Cumero Canyon
- Jtgb—Breccia, in granite of Three R Canyon (unit Jtg) of granite of Cumero Canyon
- Jcm—Porphyritic granite, in granite of Cumero Canyon
- Jcs—Equigranular alkali syenite, in granite of Cumero Canyon
- Jcsb—Breccia, in equigranular alkalik syenite (unit Jcs) of granite of Cumero Canyon
- Jcg—Equigranular granite, in granite of Cumero Canyon
- Jcgb—Breccia, in equigranular granite (unit Jcg) of granite of Cumero Canyon
- Jhm—Hornblende monzonite of European Canyon
- JTRv—Volcanic rocks, in silicic volcanic rocks
- ha—Hornblende andesite dike and (or) plug, in volcanic rocks (unit JTRv)
- b—Volcanic breccia, in volcanic rocks (unit JTRv)
- s—Sedimentary rocks, in volcanic rocks (unit JTRv)
- ➡ cg—Limestone conglomerate, in volcanic rocks (unit JTRv)
- qz—Quartzite, in volcanic rocks (unit JTRv)
- Is—Exotic blocks of upper Paleozoic limestone, in volcanic rocks (unit JTRv)
- w—Rhyolitic welded(?) tuff, in volcanic rocks (unit JTRv)
- Ip—Latite(?) porphyry, in volcanic rocks (JTRv)
- JTRvs—Volcanic and sedimentary rocks, in silicic volcanic rocks
- TRm—Mount Wrightson Formation
- q—Quartzite, in Mount Wrightson Formation (unit TRm)
- a—Biotite(?)-albite andesite lava(?), in Mount Wrightson Formation (unit TRm)
- t—Coarse volcaniclastic beds, in Mount Wrightson Formation (unit TRm)
- TRms—Sedimentary rocks, in the Mount Wrightson Formation (unit TRm)
- Pcn—Concha Limestone
- Ps—Scherrer Formation
- Pe—Epitaph Dolomite
- Pc—Colina Limestone
- PPe—Earp Formation
- Ph—Horquilla Limestone
- Me—Escabrosa Limestone
- T Dm—Martin Limestone
- Ca—Abrigo Limestone
- Cb—Bolsa Quartzite
- pCq—Biotite or biotite-hornblende quartz monzonite
- PCh—Hornblende-rich metamorphic and igneous rocks
- pCm—Biotite quartz monzonite
- pCd—Hornblende diorite






Source: Graybeal, F.T., Moyer, L.A., Vikre, P.G., Dunlap, P., and Wallis, J.C., 2015



wing file: 08392550A002.dwg Jan 29, 2009 – 2:19

ATTACHMENT A

Trench Camp Historic Tailings Geochemistry and Material Characterization

Submitted to: Arizona Minerals Inc.

Submitted by: Schafer Limited LLC Bozeman, MT

Date April, 2017

Arizona Minerals Inc

Trench Camp Historic Tailings Geochemistry and Material Characterization

1.0	Material Characterization	
1.1	Geochemical Characterization Plan	1
2.0	Trench Camp Historic Tailings Area Geochemistry	4
	Historic Tailings Area	
2.2	Development Rock	
2	.2.1 Estimating ANP and AGP from Total Metals Data	
2.3	Expected Water Quality of Contact Water	
Appe	ndix A - Acid Base Accounting Data	

List of Figures Section Title

Figure 1. Location of samples collected from the historic Trench Camp tailings area	2
Figure 2. ANP and AGP of samples collected from the historic tailings area.	5
Figure 3. NNP and Paste pH of samples collected from the historic tailings area	6
Figure 4. NNP and NAG pH of samples collected from the historic tailings area	6
Figure 5. Soluble antimony in samples collected from the historic tailings area.	10
Figure 6. Soluble cadmium in samples collected from the historic tailings area.	10
Figure 7. Soluble lead in samples collected from the historic tailings area	11
Figure 8. Soluble nickel in samples collected from the historic tailings area.	11
Figure 9. Cross section 1 through the Hermosa Taylor Deposit	13
Figure 10. Cross section 2 through the Hermosa Taylor Deposit	13
Figure 11. Distribution of NNP and NAG pH in select exploration samples	14
Figure 12. Distribution and ANP, AGP and Pb+Zn grade in borehole HDS-332	15
Figure 13. Distribution and ANP, AGP and Pb+Zn grade in borehole HDS-364	15
Figure 14. Correlation of measured and estimated AGP in boreholes HDS-332 and HDS-364	17
Figure 15. Correlation of measured and estimated ANP in boreholes HDS-332 and HDS-364	17

List of Tables	
Section Title	Page

Table 1. Number and kind of tests conducted on Trench Camp historic tailings and exploration	on core
from the Hermosa Taylor Deposit	3
Table 2. Soluble constituents in composite samples using SPLP method	
Table 3. Soluble constituents in composite samples using MWMP method	9
Table 4. Average ANP, AGP and PAG abundance in each rock unit in the Hermosa Taylor D	eposit.
-	
Table 5. Likely range in quality of contact water in Trench Camp historic tailings underdrain p	ond.
	19

Page

Page

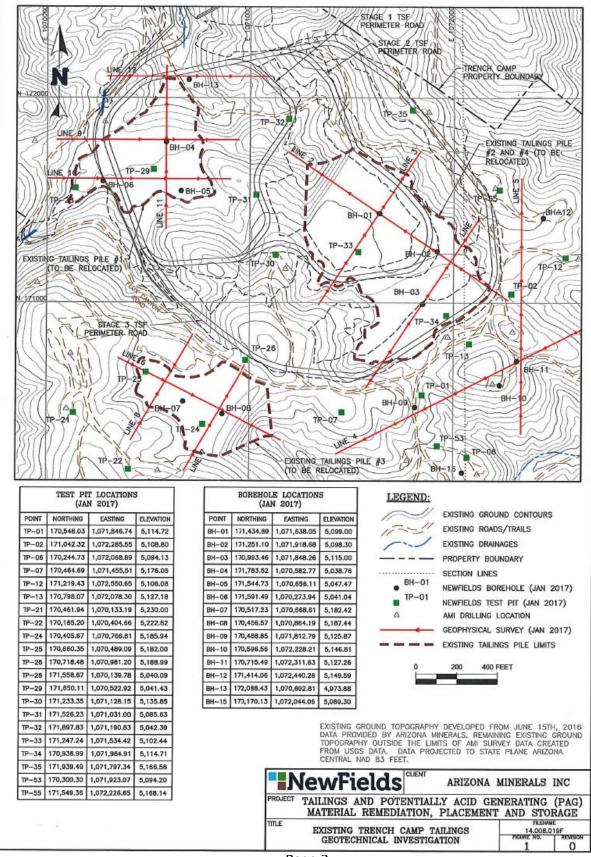
Arizona Minerals Inc

Trench Camp Historic Tailings Geochemistry and Material Characterization

Table A-1. Static test results for Trench Camp historic tailings area samples	21
Table A-2. Static test results for Trench Camp historic tailings area samples	22

1.0 Material Characterization

1.1 Geochemical Characterization Plan


A range of geochemical tests (Table 1) was conducted on representative samples from the historic Trench Camp Tailings piles 1, 2/4 and 3 (Figure 1). Samples consisted of tailings, foundation soils underlying the unlined tailings, and waste rock material located near the base of tailings pile #1. In addition, samples of development rock that will be generated from an exploration decline and a shaft proposed as part of the Hermosa Taylor Deposit were also characterized.

Samples from the historic tailings are grouped into classes of similar materials (tailings, waste rock, and foundation soils) to facilitate test interpretation. Tests for metal solubility were conducted on composite samples. Three tailings composites included waste rock, shallow-oxidized, deeper-unoxidized and non acid-generating categories. The foundation layer soils underlying tailings were grouped by depth beneath base of the tailings (0-2 ft, 2-3 ft, 3-6 ft, and 8-20 ft). Drillhole samples were categorized into major rock units recognized in the Hermosa Taylor Deposit: Meadow Valley Volcanics, Hardshell Volcanics, Concha, Epitaph and Sherrer Formation.

Arizona Minerals Inc.

Trench Camp Historic Tailings Geochemistry and Material Characterization

Table 1. Number and kind of tests conducted on Trench Camp historic tailings and	
exploration core from the Hermosa Taylor Deposit.	

Sample Type	Tests	Purpose
Trench Camp Area	Sobek Acid Base	Assess acid generation and neutralization
Tailings (n=29)	Accounting	risk
Waste Rock (n=6) Foundation Soil and	Paste pH	Assess current degree of weathering and acidification
Rock (n=19)	MWMP and EPA 1312	Performed on composites of the waste rock, tailings (shallow and deep), and
		foundation samples to assess metal leaching risk
	Multi element analysis	Total metals in 4-acid digest of samples
Exploration Drillhole	Sobek Acid Base	Assess acid generation and neutralization
Core (n=35,000)	Accounting	risk
	Paste pH	Assess current degree of weathering and acidification on 307 representative samples
	Multi element analysis	Total metals in 4-acid digest of samples

2.0 Trench Camp Historic Tailings Area Geochemistry

2.1 Historic Tailings Area

Static test results (Appendix A) for historic tailings samples (Figure 2 and 3) show the potential for rock to produce or to neutralize acidity as a result of weathering. The Acid Generation Potential (AGP) is based on the quantity of pyritic sulfur contained in a sample and expresses the amount of acidity that a sample could release if all pyrite was to fully oxidize. The AGP is expressed in units of kg/t as CaCO₃. Acid Neutralization Potential (ANP) is the capacity of a sample to neutralize acidity and is expressed in the same units as AGP. The ANP minus AGP is the Net Neutralization Potential (NNP) and in theory a sample is potentially acid generating if the NNP is less than zero. Conversely, a sample with a NNP greater than zero would be considered non-acid generating. In practice, there is some uncertainty for samples with NNP between -20 and +20 kg/t, and test results in this range are often considered uncertain in terms of the acid generation risk.

Virtually all historic tailings and waste rock samples would be considered acid generating (Figure 2) because of the NNP values that are less than -20 kg/t as CaCO₃. However, most of the tailings samples have not yet become acidic in pH owing to the abundance of carbonates in the tailings material. Only five tailings samples, all located in the upper few feet of the tailings piles, have developed a pH of less than 5 (Figure 3). Two of the lower pH samples were in Pile 3 and the others were in Pile 2/4. In these samples, oxidation of the sulfides has removed most the ANP, thus allowing the pH to drop from 7 to below 5. Given a long enough period of exposure to oxygen, all tailings would eventually become acid, but this would likely require many decades of exposure given the limited oxidation evidenced after more than 50 years of exposure of the historic Trench Camp tailings to weathering. Therefore, after the historic Trench Camp tailings are removed and replaced on a liner, they are not likely to change appreciably from the conditions currently found in surface tailings. Ultimately, the re-handled tailing piles, which are placed on the liner, will be compacted, sloped, and covered in a manner that limits infiltration of meteoric water and oxygen, thus minimizing long-term oxidation and acidification risk.

Samples were analyzed using the Net Acid Generation pH (NAG pH, Figure 4) test in which hydrogen peroxide is added to a sample and allowed to react with sulfides for 24 hours before pH is recorded. NAG pH provides a reliable indication of long-term pH that would develop is a sample after years of weathering. While most tailings samples had a NAG pH less than 4.5, which indicates acid generation risk, many samples with low NNP (<-100 kg/t as CaCO3) also had NAG pH above 4.5. These samples were likely dominated by lead and zinc sulfide minerals that may have high sulfur and low NNP but do not form acidity upon oxidation. Tailings samples with NAG pH above 4.5 were grouped for the soluble metals tests under the non potentially acid generating (non-PAG) tailings category.

Waste rock samples, although much lower in total sulfur than tailings also had much lower ANP values. The relative lack of ANP allowed these samples to acidify more quickly than tailings. As a result all waste rock samples had low pH values, even though they were buried by several feet of tailings in Tailings pile #1. Given their pH, water in contact with waste rock is likely to be more strongly acidic and have higher metals and sulfate than tailings contact water. To the extent possible, waste rock will be buried by tailings in the lined repository to minimize contact with water.

Arizona Minerals Inc. Trench Camp Historic Tailings

Geochemistry and Material Characterization

Foundation soil and rock samples were much lower in sulfur than either tailings or waste rock but 4 of the 19 samples still had pyritic sulfur greater than 0.3%, which would likely generate acidic conditions after sufficient exposure to oxygen. The higher sulfide samples were all encountered in boreholes 1 and 2 beneath pile 2/4. It is possible that some of the foundation soil and rock material in this area consist of historic sulfide waste or may contain naturally occurring sulfides. However, any sulfides beneath the tailings in pile 2/4 will be covered by the liner for the new repository, which will prevent any contact with water.

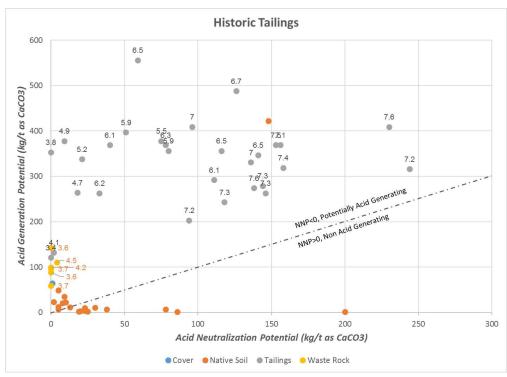


Figure 2. ANP and AGP of samples collected from the historic tailings area.

Arizona Minerals Inc.

Trench Camp Historic Tailings Geochemistry and Material Characterization

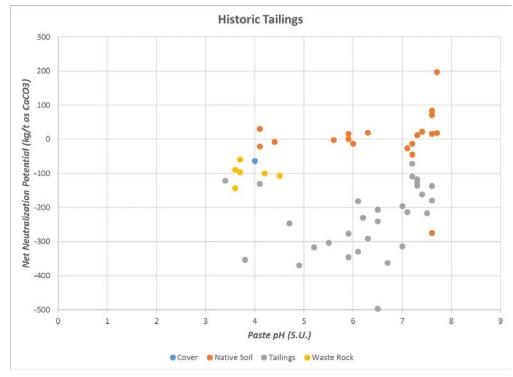


Figure 3. NNP and Paste pH of samples collected from the historic tailings area.

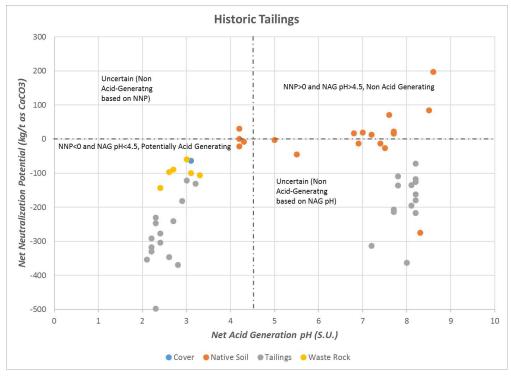


Figure 4. NNP and NAG pH of samples collected from the historic tailings area.

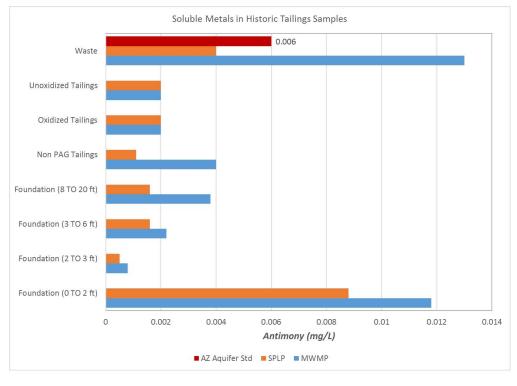
Arizona Minerals Inc.

Trench Camp Historic Tailings Geochemistry and Material Characterization

Soluble metals were determined using both Meteoric Water Mobility Procedure (MWMP) and Synthetic Precipitation Leaching Procedure (SPLP) tests. These methods differ primarily in the water to rock ratio. The SPLP is a more dilute extraction 20:1 than the MWMP, which is 1:1. Eight composite samples were tested including shallow oxidized and deeper unoxidized tailings, waste rock, and 4 foundation layers (Table 2 and 3). Soluble metals in SPLP extracts exceeded Arizona aquifer standards for four constituents in one or more samples: antimony, cadmium, lead, and nickel (Figures 5 to 8). Since contact water within the lined repository will be collected and treated, the elevated levels of metals will not pose an environmental risk. All other constituents met Arizona Ambient Water Quality Standards. The MWMP tests tended to have higher levels of soluble constituents than the SPLP tests due to differences in the water to rock ratio used in the tests. The MWMP tests were used to estimate contact water quality in section 2.3.

Constituent								
(mg/L)	Unoxidized Tailings	Oxidized Tailings	Non PAG Tailings	Waste	Foundation (0 TO 2 ft)	Foundation (2 TO 3 ft)	Foundation (3 TO 6 ft)	Foundation (8 TO 20 ft)
Aluminum	<0.03	<0.03	0.1	13.8	<0.03	< 0.03	0.09	< 0.03
Antimony	<0.002	<0.002	0.0011	0.004	0.0088	0.0005	0.0016	0.0016
Arsenic	0.001	0.002	0.0008	0.005	0.0138	0.0054	0.0098	0.0011
Barium	0.01	0.014	0.014	0.011	0.023	0.004	0.018	0.016
Boron	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01	0.02	0.01
Cadmium	0.069	0.145	0.0247	0.128	0.0019	0.0008	0.0066	0.0037
Calcium	586	582	318	267	30.3	14.1	22.1	86.5
Chloride	<0.5	6.5	23.3	<0.5	<0.5	<0.5	<0.5	16.6
Chromium	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Cobalt	0.05	0.13	< 0.01	0.07	< 0.01	< 0.01	0.01	< 0.01
Conductivity (uS/cm)	2350	2410	1470	1680	385	199	257	574
Copper	< 0.01	< 0.01	< 0.01	0.12	< 0.01	< 0.01	0.02	< 0.01
Cyanide, WAD	<0.003	0.013	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	<0.003
Fluoride	0.07	0.34	0.35	1.07	0.23	0.46	0.16	0.35
Iron	<0.02	<0.02	0.13	2	<0.02	<0.02	<0.02	<0.02
Lead	0.0467	0.599	0.118	2.6	0.0002	0.0004	0.001	0.0089
Magnesium	6.1	11.3	15.6	35	19.2	8.2	9	12.2
Manganese	47.9	68.8	9.3	37.9	3.79	3.75	4.81	5.61
Mercury	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	< 0.0002
Molybdenum	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Nickel	0.026	0.077	<0.008	0.065	<0.008	<0.008	<0.008	<0.008
Nitrate/Nitrite as N	0.03	0.04	0.04	0.04	0.04	0.03	0.04	0.04
Phosphorus	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Potassium	0.4	0.8	1.3	2.4	4	1.6	2.2	2.3
Selenium	0.0046	0.0032	0.0019	0.0016	<0.0002	0.0002	<0.0002	0.0009
Silver	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sodium	0.5	0.3	0.5	0.3	1.8	1.9	1.1	1.2
Strontium	0.164	0.186	0.129	0.054	0.104	0.045	0.077	0.111
Sulfate	1550	1550	809	1000	159	72.7	103	232
Thallium	<0.0005	0.0006	0.0007	<0.0005	0.0007	< 0.0001	<0.0002	0.0002
Thorium	<0.005	<0.005	< 0.002	<0.005	<0.002	< 0.001	<0.002	< 0.002
Tin	<0.04	<0.04	< 0.04	<0.04	<0.04	< 0.04	<0.04	<0.04
Uranium	<0.0005	<0.0005	<0.0002	0.0005	<0.0002	< 0.0001	<0.0002	< 0.0002
Vanadium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zinc	3.36	14.4	1	30.4	0.07	0.01	0.71	0.05

Table 2. Soluble constituents in composite samples using SPLP method.


Table 3. Soluble constituents in composite samples using MWMP method.

Constituent								
(mg/L)					0	(2	(3	(8
	a a				uo	uo	uo	u
	Unoxidized Tailings	Oxidized Tailings	Non PAG Tailings	0)	Foundation (0 TO 2 ft)	Foundation (2 TO 3 ft)	Foundation (3 TO 6 ft)	Foundation TO 20 ft)
	Unoxidiz Tailings	idiz ling	n P ling	Waste	Foundai TO 2 ft)	Foundat TO 3 ft)	unc 6 f	unc 20
	Un Tai	Oxidized Tailings	No Tai	Ma	Foi TO	Foi	Foundat TO 6 ft)	Foi
Aluminum	0.08	<0.06	<0.06	108	<0.06	<0.06	0.43	<0.06
Antimony	<0.002	0.002	0.004	0.013	0.0118	<0.0008	0.0022	0.0038
Arsenic	0.002	0.002	0.0016	0.012	0.0171	0.0085	0.0223	0.0019
Barium	0.024	<0.006	0.021	<0.006	0.031	0.018	0.025	0.048
Boron	0.02	0.04	0.04	0.04	0.09	0.03	0.13	0.16
Cadmium	1.96	1.05	0.182	1.43	0.0294	0.0138	0.0847	0.0429
Calcium	495	498	604	434	312	160	316	603
Chloride	0.9	94	265	5.8	2.2	0.6	1.3	159
Chromium	<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	<0.02
Cobalt	1.7	1.68	0.14	0.66	<0.02	<0.02	0.08	0.04
Conductivity	4390	4500	3230	5150	2750	1450	2110	3110
(uS/cm)								
Copper	0.11	0.05	<0.02	0.33	<0.02	<0.02	0.05	<0.02
Cyanide, WAD	<0.003	0.097	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003
Fluoride	0.05	0.35	0.54	0.26	0.38	0.43	0.34	0.39
Iron	0.18	0.06	<0.04	14.3	<0.04	< 0.04	<0.04	<0.04
Lead	0.88	3.2	0.586	2.65	0.0017	0.0026	0.0048	0.0828
Magnesium	106	241	188	362	250	91.2	121	147
Manganese	1110	761	75.6	428	50.8	37.4	67.5	69.5
Mercury	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Molybdenum	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Nickel	0.93	1.48	0.1	0.67	<0.02	<0.02	0.12	<0.02
Nitrate/Nitrite	0.09	<0.02	0.03	<0.2	0.06	0.02	0.04	<0.1
as N								
Phosphorus	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Potassium	1.7	9.8	14.8	26.2	20.4	8.3	13.8	18.7
Selenium	0.0324	0.03	0.0147	0.0116	0.0012	0.0018	0.0011	0.0088
Silver	<0.2	<0.1	<0.02	<0.05	<0.02	<0.02	<0.02	<0.02
Sodium	5.4	4.9	10.2	5.3	25.8	20	14.6	20.7
Strontium	0.77	0.28	0.56	0.16	1.1	0.46	0.78	1.07
Sulfate	3800	3620	2170	4440	1940	837	1400	2040
Thallium	<0.0005	0.0036	0.0031	0.0006	0.0019	0.0005	0.0005	0.0012
Thorium	<0.005	<0.005	<0.002	<0.005	<0.002	<0.002	<0.002	<0.002
Tin	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08
Uranium	<0.0005	<0.0005	0.0007	0.0029	<0.0002	<0.0002	<0.0002	0.0015
Vanadium	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zinc	129	158	24.9	306	0.55	0.31	5.74	1.73

Arizona Minerals Inc.

Trench Camp Historic Tailings Geochemistry and Material Characterization

Figure 5. Soluble antimony in samples collected from the historic tailings area.

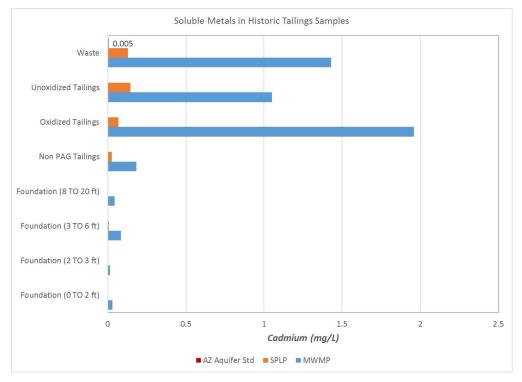
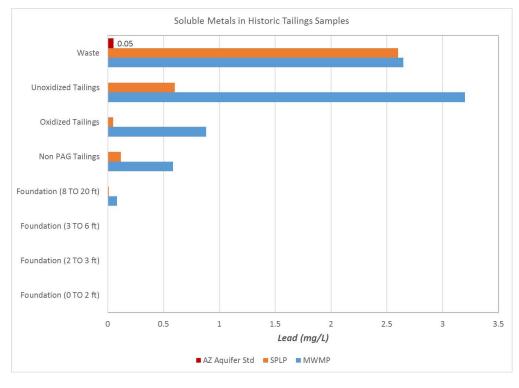



Figure 6. Soluble cadmium in samples collected from the historic tailings area.

Trench Camp Historic Tailings Geochemistry and Material Characterization

Figure 7. Soluble lead in samples collected from the historic tailings area.

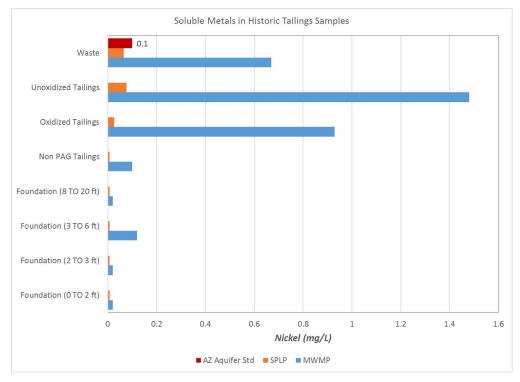


Figure 8. Soluble nickel in samples collected from the historic tailings area.

2.2 Development Rock

Potentially acid generating (PAG) development rock from the proposed Hermosa Taylor Deposit project will be placed in the same lined facility as the historic tailings and waste rock. Extensive data have been collected from rock units to be mined in the Taylor project including 307 samples from 2 representative boreholes (HDS-332 and HDS-364) that were analyzed for Sobek acid base accounting NAG pH and paste pH. In addition, total metals were measured on over 35,000 samples across all exploration holes.

The NAG pH and NNP of samples from boreholes HDS-332 and HDS-364 (Figure 9 and 10) show three distinct groups of samples (Figure 11). The vast majority of rocks encountered in the Taylor Deposit is strongly alkaline and not expected to become acidic or to leach appreciable levels of metals. Unlike the historic tailings and waste rock that was volcanic-hosted, the Taylor Deposit, the first group in Figure 11, is a deeper Carbonate Replacement Deposit, accounting for the preponderance of alkaline rock. The second group of materials is potentially acid generating (PAG), due to the pyritic sulfur content. In order to access the carbonate host rock, a decline will be developed through approximately 1,000 feet of volcanic rock. The surficial Meadow Valley Volcanics and deeper Hardshell Volcanics contain a proportion of PAG material with NNP <0 and NAG pH < 4.5. The third group of samples is zinc-lead-silver ore. Ore in the carbonate sequence had low NNP but also had high NAG pH. In these samples, the majority of sulfur is in the form of galena and sphalerite, which are not acid generating sulfides like pyrite. The Sobek test therefore overestimates acid generating risk in samples where pyrite is not the primary sulfide mineral. Ore samples will be processed to recover economic sulfides as a concentrate (that will be shipped off-site) and the resultant tailings will be non acid-generating based on preliminary tests.

The vertical distribution of ANP, AGP and lead plus zinc grade in HDS-332 and HDS-364 is shown in Figures 12 and 13, respectively. PAG Zones occur where the red bars are more pronounced than the blue bars. In the upper volcanic units, PAG material will be treated as waste and will be placed in the lined repository to prevent release of acidity or metals in contact water. Most zones that appear as PAG in the carbonate units are actually ore and will be processed to remove the economic sulfides.

Arizona Minerals Inc.

Schafer Schafer

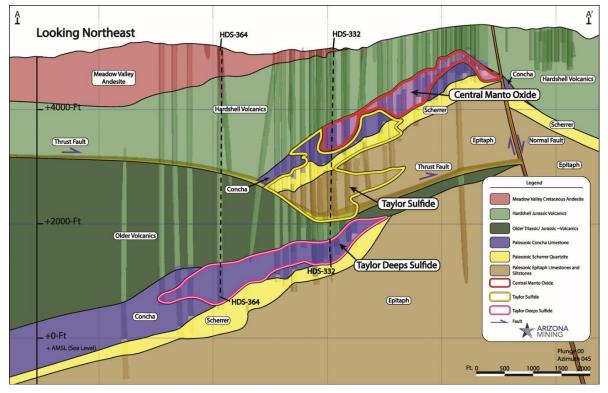


Figure 9. Cross section 1 through the Hermosa Taylor Deposit.

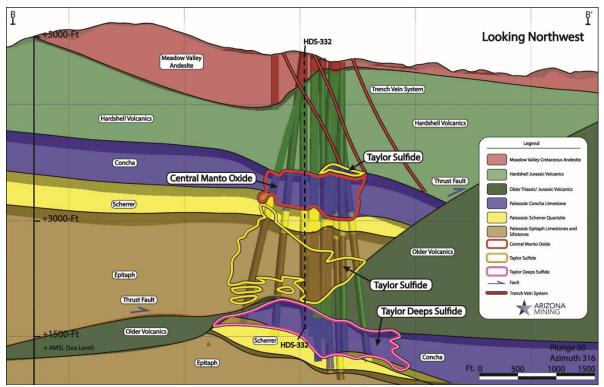


Figure 10. Cross section 2 through the Hermosa Taylor Deposit.

Arizona Minerals Inc. Trench Camp Historic Tailings

Geochemistry and Material Characterization

Schafer

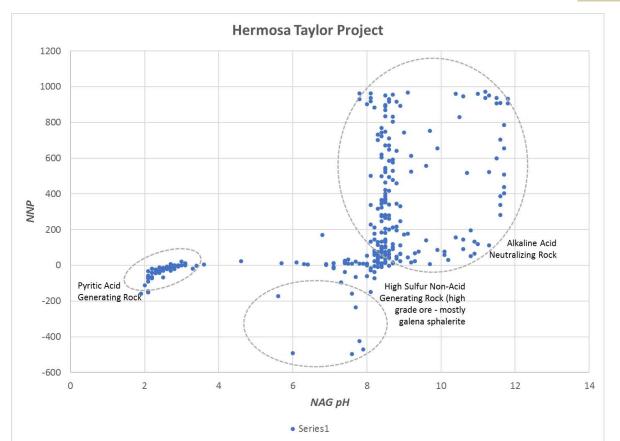


Figure 11. Distribution of NNP and NAG pH in select exploration samples.

Trench Camp Historic Tailings Geochemistry and Material Characterization

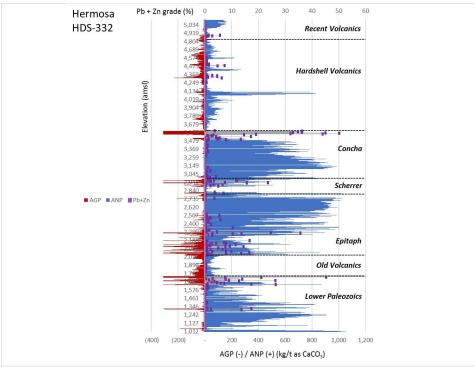


Figure 12. Distribution and ANP, AGP and Pb+Zn grade in borehole HDS-332.

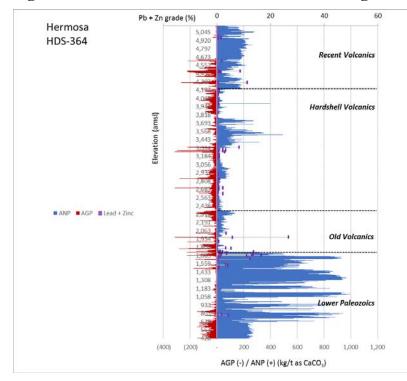


Figure 13. Distribution and ANP, AGP and Pb+Zn grade in borehole HDS-364.

Trench Camp Historic Tailings Geochemistry and Material Characterization

2.2.1 Estimating ANP and AGP from Total Metals Data

Arizona Minerals Inc. has performed multi-element analyses on over 35,000 samples to date using a 4-acid digestion and ion determination by ICP AES and MS methods (ALS Chemex ME-MS61m). The ANP and AGP values for all 35,000 samples were estimated by assuming all calcium and magnesium are present as carbonate and all sulfur is pyrite according to equation [1]. The estimated ANP and AGP from multi element data will provide more spatially extensive information about the Hermosa Taylor deposit. However, it is important to establish whether the estimated ANP and AGP derived from equation 1 are in agreement with ANP and AGP measured using the standard Sobek method.

Estimated NNP (kg/t as CaCO3) = ANP (Total Ca % x 10 x 40.1/100 + Total Mg % x 10 x 24.3/100) - AGP (Total S % x 31.25)

[1]

Estimated ANP and AGP based on multi-element data (Figure 14 and 15) provided good correlation with the Sobek method as shown for the 307 samples tested by both methods. Estimated and measured AGP had an R² of 0.9888 and a slope of 1.01 while estimated and measured ANP had an R² of 0.9341 and a slope of 0.9865. Based on the strong correlation, the multi-element data available for all boreholes provide an accurate and precise estimate ANP and AGP.

Based on average composition (Table 4) all Paleozoic units (Concha, Epitaph and Sherrer plus older Paleozoics below the Sherrer) are strongly alkaline with ANP ranging from 320 to 610 kg/t as CaCO3. Some PAG material was found in the Paleozoic units in or near ore zones where mineralization caused increases in sulfide sulfur and significant loss of carbonates due to alteration. PAG abundance varied from 3 to 8% in the Concha, Epitaph, Scherrer and older Paleozoic rocks. Most drifts and ore development will occur in the Paleozoic units although much of the waste produced would likely be placed underground as backfill.

The volcanic units had somewhat lower alkalinity than the Paleozoic rocks with ANP averaging 161 kg/t as $CaCO_3$ in the Meadow Valley and 73 kg/t in the deeper Hardshell Volcanics. Pyritic sulfur averaged about 0.5% in the Meadow Valley (AGP = 18 kg.t) and was a little over 1% in the Hardshell (AGP = 39 kg/t). The Hardshell Volcanics had 20.5% PAG material and this PAG development rock will be placed on the lined facility. The upper volcanics in the Meadow Valley Unit had more carbonate so contain only 4% PAG material.

Schafer

Trench Camp Historic Tailings Geochemistry and Material Characterization

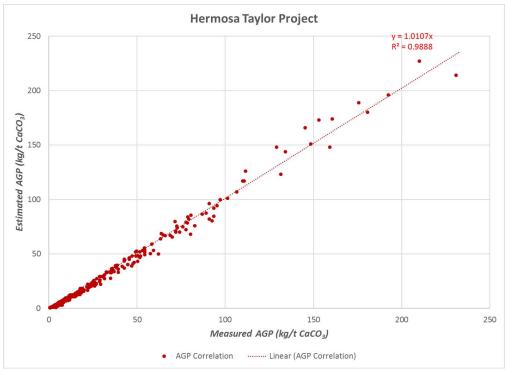


Figure 14. Correlation of measured and estimated AGP in boreholes HDS-332 and HDS-364.

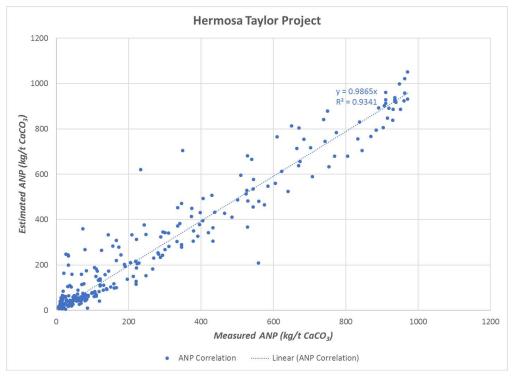


Figure 15. Correlation of measured and estimated ANP in boreholes HDS-332 and HDS-364.

Row Labels	n	Average of ANP	Average of AGP	Average of NNP	PAG (%)
Meadow Valley Volcanics	3,777	161	18	143	4.3%
Hardshell Volcanics	12,727	73	39	33	20.5%
Concha Formation	2,671	412	38	374	8.1%
Scherrer Formation	1,510	322	44	278	6.7%
Epitaph Formation	3,884	610	53	557	2.8%
Old Volcanics	4,723	57	45	12	17.5%
Lower Paleozoics	5 <i>,</i> 780	478	32	446	2.7%

Table 4. Average ANP, AGP and PAG abundance in each rock unit in the Hermosa Taylor Deposit.

2.3 Expected Water Quality of Contact Water

Water that comes into contact with materials placed on the liner will be directed to the lined underdrain pond where it will be stored for eventual treatment and re-use or discharge under an approved permit. Tests of different materials to be placed in the liner repository indicate that contact water quality may vary spatially depending on the kind of material contacted. This variability will cause some variation in water fed to the water treatment plant, although the variability will be less pronounced than the range of values in Table 5 because underdrain pond water will be an average across the facility. An overall average water quality was computed by assuming that about 40% of the contact water is represented by oxidized tailings, 25% by unoxidized tailings, 25% by non-PAG tailings and 10% by waste rock. The composite water quality was estimated by combining these three water types in a geochemical equilibrium model (PHREEQC). Reasonable low temperature solid phases were allowed to form and sorption on ferrihydrite was permitted. Contact water pH may range between 3.8 and 6.8 with a most likely pH of 4.2. Sulfate may range from 2,170 to 4,440 mg/L with a most likely concentration of around 3,300 mg/L. Most metals levels will be relatively low except for cadmium, manganese and zinc with likely concentrations of 1.1, 645 and 133 mg/L respectively.

Table 5. Likely range in quality of contact water in Trench Camp historic tailings underdrain pond.

Constituent (mg/L)	Minimum	Maximum	Expected
рН	3.8	6.8	4.17
Aluminum	<0.06	108	5.05
Antimony	< 0.002	0.013	0.0036
Arsenic	0.0016	0.012	0.003
Barium	< 0.006	0.024	0.003
Boron	< 0.02	0.04	0.04
Cadmium	0.182	1.96	1.09
Calcium	434	604	480
Bicarbonate	<2	51.2	9.82
Chloride	0.9	265	105
Chromium	< 0.02	<0.02	<0.02
Cobalt	0.14	1.7	1.20
Copper	< 0.02	0.33	0.09
Fluoride	< 0.05	0.54	0.31
Iron	< 0.04	14.3	1.45
Lead	0.59	3.2	1.59
Magnesium	106	362	207.1
Manganese	75.6	1,110	645
Mercury	< 0.0002	<0.0002	<0.0002
Molybdenum	< 0.04	<0.04	<0.04
Nickel	<0.1	1.48	0.92
Nitrate/Nitrite as N	< 0.02	0.2	0.06
Phosphorus	<0.2	<0.2	<0.2
Potassium	1.7	26.2	9.32
Selenium	0.0116	0.0324	0.025
Silver	< 0.02	0.2	0.10
Sodium	4.9	10.2	6.42
Strontium	0.16	0.77	0.46
Sulfate	2,170	4,440	3,287
Thallium	0.0005	0.0036	0.002
Thorium	<0.002	<0.005	<0.005
Tin	<0.08	<0.08	<0.08
Uranium	0.0005	0.0029	0.001
Vanadium	<0.01	< 0.01	<0.010
Zinc	24.9	306	133

Trench Camp Historic Tailings Geochemistry and Material Characterization

Appendix A - Acid Base Accounting Data

Table A-1. Static test results for Trench Camp historic tailings area samples.

	Acid		Net			
	Generation	Acid	Neutralizatio		Neutraliza	
	Potential	Neutralizatio	n Potential	Net Acid	tion	pH,
	(calc on	n Potential	(calc on	Generation	Potential	Saturated
Sample	Sulfur total)	(calc)	Sulfur total)	Procedure	as CaCO3	Paste
BH-01/S-1	64.4	1	-63.4	3.1	0.1	2
BH-01/S-2	356	116	-240	2.7	11.6	6.5
BH-01/S-3	369	156	-213	7.7	15.6	
BH-01/S-4	409	230			23	
BH-01/S-5	369	153	-216	8.2	15.3	
BH-01/S-6	422	148	-274			
BH-01/S-8	3.13	20				
BH-02/S-2	132	2	-130	3.2		
BH-02/S-3	378	9	-369	2.8	0.9	4.9
BH-02/S-4	331	136	-195		13.6	
BH-02/S-6	316	244				
BH-02/S-7	34.7	9		7.5		
BH-02/S-8	49.1	5	-44.1	5.5	0.5	
BH-03/S-2	369	40	-329			
BH-03/S-3	369	78	-291	2.2		
BH-03/S-4	279	144	-135			
BH-03/S-5	263	146	-117			
BH-03/S-6	22.2	10	-12.2			
BH-04/S-1	121	0	-121	3		3.4
BH-04/S-2	397	51	-346			
BH-04/S-3A	347	141	-206			
BH-04/S-3B	99.7	0				4.2
BH-04/S-4	88.8	0	-88.8			3.6
BH-04/S-5	143	0	-143			3.6
BH-04/S-6	23.1	2	-21.1	4.2		
BH-05/S-2	409	96	-313			
BH-05/S-3A	556	59	-497	2.3	5.9	6.5
BH-05/S-3B	10	23				
BH-05/S-4	1.88	25	23.1	7.7		
BH-05/S-5	4.06	23				
BH-06/S-2	110	4				
BH-06/S-3	59.1	0	-59.1	3		3.7
BH-06/S-4	96.3	0	-96.3			3.7
BH-07/S-2	353	0	-353			3.8
BH-07/S-3	338	21	-317			
BH-07/S-4	263	33	-230			
BH-07/S-6A	203	94	-109			
BH-07 / S-6B	11.6	13	1.4			
BH-07/S-7	12.5	5	-7.5			
BH-07/S-8	7.19		-2.2			
BH-07/S-9	1.88	19	17.1	6.8		
BH-08/S-2	378	75	-303			
BH-08/S-3	488	126	-362			
BH-08/S-4	319	158	-161	8.2		
BH-08/S-5	243	118	-125			
BH-08/S-6	274	138	-136			
BH-08/S-8	6.56	78	71.4			
BH-08/S-9	1.56	86	84.4			
BH-08/S-10	1.56	200	198			
TP-24/S-1	356	80	-276			
TP-24/S-2	10.6	30	19.4			
TP-25/S-1	264	18	-246			
TP-25/S-2	6.88	38	31.1	4.2		
TP-34/S-1	292	111	-181	2.9		
TP-34/S-2	20.6	8	-12.6			

Table A-2. Static test results for Trench Camp historic tailings area samples.

							Total		
		Sulfur	Sulfur	Sulfur			Sulfur		
Comple	Sulfur HCI Residue	HNO3 Residue	Organic Residual	Pyritic Sulfide	Sulfur Sulfate	Sulfur Total	minus Sulfate	Material	Depth
Sample BH-01/S-1	0.39				1.67			Cover	-1.5
BH-01/S-2	7.11	0.00	0.00	7.11	4.26	11.4		Tailings	-5.75
BH-01/S-3	7.67	0.01	0.01	7.66	4.11	11.8		Tailings	-15.75
BH-01/S-4	10.1	0.01	0.01	10	3.01	13.1		Tailings	-25.75
BH-01/S-5	10.9			10.9	0.95			Tailings	-35.75
BH-01/S-6	12			12		13.5		Native Ground	
BH-01/S-8	0.05			0.05	0.05	0.1	0.05	Native Ground	-53.25
BH-02/S-2	0.54			0.54	3.69	4.23	0.54	Tailings	-5.75
BH-02/S-3	7.66	0.01	0.01	7.65	4.48	12.1	7.66	Tailings	-15.75
BH-02/S-4	9.78	0.04	0.04	9.74	0.78	10.6	9.78	Tailings	-25.75
BH-02/S-6	9.42	0.05	0.05	9.37	0.71	10.1	9.42	Tailings	-35.75
BH-02 / S-7	1	0.69	0.69	0.31	0.11	1.11	1	Native Ground	
BH-02/S-8	1.56	1.17		0.39		1.57		Native Ground	
BH-03 / S-2	7.78	0.02				11.8		Tailings	-4.75
BH-03/S-3	8.99	0.03			2.77	11.8		Tailings	-15.75
BH-03/S-4	7.88	0.03				8.94		Tailings	-25.75
BH-03/S-5	5.79	0.03				8.4		Tailings	-35.8
BH-03/S-6	0.67	0.47		0.2		0.71		Native Ground	
BH-04/S-1	1.48	0.02			2.38	3.86		Tailings	-1.3
BH-04/S-2	8.52	0.02			4.13			Tailings	-5.75
BH-04/S-3A	7.82	0.01	0.01	7.81	3.27	11.1		Tailings	-15.55
BH-04/S-3B	1.2	0.02						Waste Rock	-16
BH-04/S-4	0.95	0.01	0.01	0.94				Waste Rock	-20.75
BH-04/S-5	2.2	0.03			2.38	4.58		Waste Rock	-25.75
BH-04/S-6	0.22	0.19				0.74		Native Ground	
BH-05/S-2	11.3					13.1		Tailings	-5.75
BH-05/S-3A	16.4	0.01	0.01	16.4	1.38	17.8		Tailings	-15.55
BH-05 / S-3B	0.16	0.04		0.12		0.32	U.I6	Native Ground	
BH-05/S-4	0.00	0.01	0.01	0.00	0.06	0.06	0.00	Native Ground	
BH-05/S-5	0.06	0.10	0.10	0.06	0.07	0.13		Native Ground	
BH-06/S-2	0.94 0.73	0.12 0.01	0.12 0.01	0.82 0.72		3.52 1.89		Waste Rock Waste Rock	-10.75 -20.75
BH-06/S-3								Waste Rock Waste Rock	-20.75 -22.65
BH-06/S-4	1.79	0.03 0.01		1.76 7.93		3.08 11.3			-22.65 -5.75
BH-07 / S-2 BH-07 / S-3	7.94 7.47	0.01	0.01 0.01	7.93	3.31 3.35	10.8		Tailings Tailings	-10.75
BH-07/S-3	6.14	0.01			2.27	8.41		Tailings	-10.75 -20.75
BH-07 / S-6A	5.15	0.03				6.51		Tailings	-20.75
BH-07 / S-6B	0.23	0.03			0.14	0.37		Native Ground	
BH-07 / S-7	0.23	0.18		0.03		0.37		Native Ground	
BH-07/S-8	0.21	0.10		0.03	0.07	0.23		Native Ground	
BH-07/S-9	0.01	0.15	0.15	0.01	0.07	0.25		Native Ground	
BH-08/S-2	7.12	0.11	0.11	7.01	5			Tailings	-5.75
BH-08/S-3	14.7	0.26				15.6		Tailings	-15.75
BH-08/S-4	9.51	0.22				10.0		Tailings	-25.75
BH-08/S-5	6.33	0.16						Tailings	-35.75
BH-08/S-6	7.14							Tailings	-45.75
BH-08/S-8	0.11	5.5	0.0	0.11	0.1	0.21		Native Ground	
BH-08/S-9				0.11	0.05	0.05	0.11	Native Ground	
BH-08/S-10	0.02			0.02		0.05	0.02	Native Ground	
TP-24/S-1	7.98	0.13	0.13					Tailings	-7.5
TP-24/S-2	0.06	0.10	0.10	0.06		0.34		Native Ground	
TP-25/S-1	5.44	0.14	0.14					Tailings	-9
TP-25/S-2	0.02	0.01	0.01	0.01	0.2			Native Ground	
TP-34/S-1	5.56	0.08				9.34		Tailings	-6
TP-34/S-2	0.61	0.41	0.41	0.2				Native Ground	

ATTACHMENT B

ATTACHMENT C

TRENCH CAMP PROPERTY WATER TREATMENT PLANT

PRELIMINARY ENGINEERING REPORT

Prepared For

Arizona Minerals, Inc.

April 20, 2017

65% COMPLETE ISSUED FOR VRP REVIEW

NOT FOR CONSTRUCTION

TABLE OF CONTENTS

1.0	INTRODUCTION	Ĺ
2.0	WTP BACKGROUND	l
3.0	DESIGN CRITERIA 1	l
3.1	FLOW RATES1	l
3.2	WATER CHEMISTRY	2
3.	2.1 Water Treatability Jar Tests	2
4.0	PROCESS DESIGN	1
4.1	PROCESS SUMMARY	1
4.2	PROCESS DESCRIPTION6	5
4.3	PROCESS AND INSTRUMENTATION DIAGRAMS	3
4.4	FACILITY GENERAL ARRANGEMENT	3
4.5	MAJOR EQUIPMENT	3
5.0	CHEMICAL FIRST FILL REQUIREMENTS	3

LIST OF TABLES

TABLE 3-1	
	2 1 2
	· J-1 ··································

LIST OF FIGURES

GURE 4-1

APPENDIX A - PFD, PID, GA, MEL

APPENDIS B - EQUIPMENT DATA SHEETS

1.0 INTRODUCTION

This preliminary engineering report is provided by Water Engineering Technologies, Inc. (WET) to Arizona Minerals, Inc. (AMI) for the water treatment plant (WTP) located at the Trench Camp Property (Trench Camp, January Mine, and Norton Mine Claims) Project (Project) located in Santa Cruz County, AZ. This report contains sections on: WTP background; design criteria including water chemistry and flow rates; process design including a process flow diagram, process and instrumentation diagrams, mechanical equipment list, a facility general arrangement, and major equipment data sheets; and a cost estimate for capital expenditures (Capex) and annual operating expenditures (Opex).

2.0 WTP BACKGROUND

AMI wants to engineer and install a water treatment plant capable of treating underdrain seepage and storm water runoff from a tailings storage facility (TSF) located on the Project property and water from the January Mine (Mine) workings. The flow rate from the TSF Underdrain Collection Pond (UP) is estimated to fluctuate up to a maximum of 120 gallons per minute (gpm) in reaction to monsoon rains, then fall to a minimum of less than ten gpm during extended dry periods. The flow rate from the Mine also fluctuates because of hydrologic influences from monsoon rains and dry periods and is estimated to be between 39 and 7 gpm, respectively.

It is anticipated that treated water will be utilized for on-going mine exploration, dust control, construction soil conditioning, and future milling and mining operations. Periodic, short-term discharge of treated water or a portion of treated water to Alum Gulch may be necessary during periods of exploration or mine development. This discharge would be authorized under an AZPDES permit.

3.0 DESIGN CRITERIA

3.1 FLOW RATES

Water sources to the WTP consist of TSF UP flow and January Mine water flow. It is understood both sources are heavily influenced by meteoric precipitation events and thus highly variable.

Several factors in addition to source flow variability must also be considered when selecting a WTP throughput value, including:

- (1) water storage availability in the TSF UP;
- (2) desired mine water level and drawdown resulting from mine water pumping; and
- (3) WTP operation shift schedule.

AMI has developed plans for installing a lined underdrain collection pond in conjunction with the TSF, so the amount of future water storage has already been determined. AMI has collected data that provide a good understanding of the effects of pumping and resulting drawdown of the January Mine workings, and have in place a dedicated mine water pumping system. AMI will operate the WTP on a variable shift schedule up to 24-hours per

day as needed to respond to seasonal fluctuations in UP water volumes and mine water levels. Given all these factors, it was determined than a nominal WTP throughput to be used as a basis of design is 120 gpm. The two water sources will be combined prior to treatment, with the ratio of Mine water to UP water variable dependent on local meteorological conditions.

3.2 WATER CHEMISTRY

Water chemistry from mine water and the existing tailings seepage (worst-case surrogate for UP water) were characterized using water samples collected the week of January 9, 2017. In addition to characterizing the two separate water sources, these waters were combined in a 20:3 ratio (Mine to seep water) and characterized. Water chemistry of these three waters is shown in Table 3-1.

3.2.1 Water Treatability Jar Tests

Water treatability jar tests were performed using the two site waters and the combined site waters in a 20:3 ratio. The jar test protocol was developed using best professional judgement based on the site water chemistry and anticipated effluent requirements. Twelve different jar tests were undertaken on seep water and mixed water (mine to seep at 20:3) mimicking six different treatment processes consisting of:

- pH adjustment to 9.0
- pH adjustment to 9.0 plus aeration
- pH adjustment to 9.0 plus aeration and filtration
- pH adjustment to 10.5
- pH adjustment to 10.5 plus aeration
- pH adjustment to 10.5 plus aeration and filtration

The lab test protocol describing the treatment processes is provided in Appendix 1. The jar tests were performed by Veolia Water under WET direction.

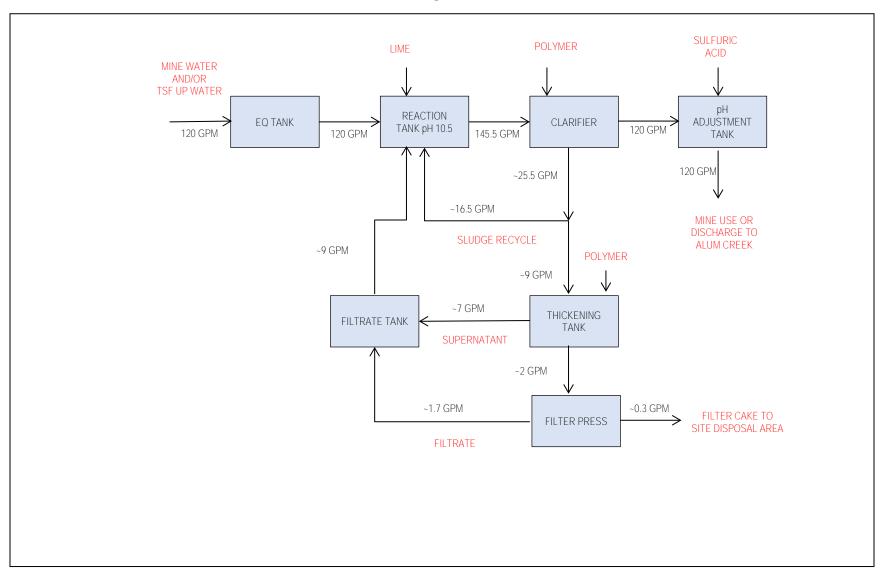
The supernatant from each of the twelve jar tests was analyzed by Turner Laboratories for select anions and cations. Results of all twelve jar tests are summarized in Appendix 2, along with laboratory data from Turner Laboratories. Select results from the jar tests as well as potentially applicable Alum Gulch surface water quality standards that may be used as the basis for permit limits are shown in Table 3-1. Any discharge will be to a portion of Alum Gulch classified as ephemeral; Table 3-1 includes aquatic and wildlife EDW standards in the event they are used as the basis for permit limits pursuant to A.A.C. R18-11-113.

Table 3-1

						3	Surfac	e Water Qu	ality Standa	ards
Constituent	l Inite	Mine Dow	Case Daw	Mine + Seep Mixed 20:3	Mixed	Mixed	A&W (EDW)	A&W (EDW)	Partial Body	Ag & Livestock
Constituent	Units	4600	Seep Raw 14000	6000	pH 9.0	pH 10.5	chronic (1)	acute (1)	Contact	Watering
Conductivity	µmhos/cm	2100	4200	2300	2000	0700				
Hardness Ca, Dissolved	mg/L	480		440	2900 720	2700 870				
Fe, Dissolved	mg/L	<0.0044		< 0.0044	<0.0044	<0.022	1			
Mg, Dissolved	mg/L	220		280	280	130	!			
Al, Dissolved	mg/L	<0.0400		10.6	0.0701	<0.40				
As, Dissolved	mg/L	0.00099	and the second se	0.0030	0.0010	<0.00050	0.15	0.34		
	mg/L	< 0.00099		0.0030	< 0.00025	< 0.00030	0.15	0.065		
Be, Dissolved Cd, Dissolved	mg/L	<0.00025		0.0045	0.00025		0.0053	0.01912		
Cr, Dissolved	mg/L	0.00025	0.0027	0.00053	0.00072	< 0.00025	0.00022	0.01912		
	mg/L						0.00000	0.04060		
Cu, Dissolved	mg/L	0.0015		0.35	0.00093	0.00075	0.02928	0.04962		-
Mn, Dissolved	mg/L	56	1200			0.30	0 40004	1.51289		
Ni, Dissolved	mg/L	0.062	1.2	0.23	0.051		0.16804			
Pb, Dissolved	mg/L	<0.00050	0.015	<0.0050 0.0081	<0.0050 0.004	< 0.00050	0.01094	0.28085		
Se, Dissolved TI, Dissolved	mg/L	<0.0022	< 0.0050	< 0.0081	< 0.004	0.0017	0.15	0.7		
	mg/L	-	<0.0050	<0.0050	0.0050	<0.00050				
Zn, Dissolved	mg/L	6.3 21		21			0.3793	0.3793		
Fe, Total	mg/L		2.5 176		<0.0044 <0.40	<0.0044 <0.800				
Al, Total	mg/L	< 0.400	0.029	25.0 0.054	<0.0050	<0.800			0.00	0.0
As, Total	mg/L	0.048							0.28	0.2
Be, Total	mg/L	<0.0025	0.042	0.0058	<0.0025 0.021	<0.0050 0.0035			1.867	0.05
Cd, Total	mg/L								0.7	0.05
Cr, Total	mg/L	< 0.0050		< 0.0050	< 0.0050	< 0.010			1.3	1
Cu, Total	mg/L	< 0.0051	2.8	0.38	0.0051	0.0045				0.5
Mn, Total	mg/L	65	1200	200	110	4.5			130.667	
Ni, Total	mg/L	0.053	1.5	0.29	0.040	0.053			28	0.4
Pb, Total	mg/L	0.0075	< 0.025	0.011	0.0015	0.00090	0.000		0.015	0.1
Se, Total	mg/L	0.0031	0.063	0.011	0.0028	0.0011	0.002		4.667	0.05
TI, Total	mg/L	<0.00050		< 0.00050	< 0.00050	< 0.00050			0.075	
Zn, Total	mg/L	6.6		91	0.83	0.60			280	25
TDS	mg/L	3200		4400						
SO4 Notes:	mg/L	2200	8800	3100			silver, zinc) a			6 400

4.0 PROCESS DESIGN

4.1 PROCESS SUMMARY


The selected treatment process for 100 percent mine water, 100 percent UP water, or a combination of both waters for a total combined flow of 120 gpm producing effluent capable of meeting potential effluent limits consists of pH adjustment to 10.5 followed by liquid/solids separation. This process is summarized as follows:

- Mine water & UP water routed to equalization (EQ) tank.
- Water from the EQ tank is routed to a reaction tank with agitator for pH adjustment to 10.5 using hydrated lime.
- Water from the reaction tank is routed to a clarifier for liquid/solids separation. A flocculant is added to the clarifier to enhance hydroxide floc formation and settling.
- Clarifier overflow is routed to a reaction tank for pH adjustment to less than 8.5 using sulfuric acid.
- Water from the acid reaction tank is pumped back to a tank or tanks for use in exploration, dust control, or mine (mill and mine operations) for re-use, or discharge to Alum Gulch.
- Clarifier underflow sludge is primarily routed to a sludge thickening tank, with a portion of sludge recycled back to the lime reaction tank;
- Thickening tank overflow is routed back to the lime reaction tank;
- Thickening tank underflow is routed to a sludge filter press for dewatering;
- Dewatered sludge is routed to the TSF for permanent storage;

A block flow diagram (BFD) showing this treatment process is shown in Figure 4-1.

- 5 -

4.2 **PROCESS DESCRIPTION**

A description of the treatment process is described in the following paragraphs. Refer to the process flow diagram (PFD) and process and instrumentation diagrams (PID) in Appendix A for further information on equipment sizes, pipe sizes and materials, and instrumentation. Equipment data are found in the equipment data sheets contained in Appendix B.

EQ Tank. Mine water and UP water are pumped at a combined flow rate of 120 gpm to the 10,000-gallon equalization (EQ) tank. These waters are co-mingled in this tank then routed via gravity through a tank overflow pipe to the reaction tank. Flow rates of mine water and UP water are both measured on the inlet piping to the EQ tank.

Reaction Tank. Water from the EQ tank overflow is piped to the 4,500-gallon reaction tank for pH adjustment using hydrated lime supplied from the lime system. This tank utilizes an agitator to ensure adequate lime mixing into solution with the untreated water. The pH is adjusted to a pre-determined set point, which for the purposes of this design is assumed to be 10.5 based on the jar testing described in previous sections. The amount of hydrated lime to be added based on the jar tests is 1.0 g/l; the actual lime addition rate will be determined upon WTP startup and commissioning. The hydraulic residence time in the reaction tank is 30 minutes at the 120 gpm design flow. pH is measured using in the reaction tank. As the pH of the untreated water changes due to differing ratios of mine water to UP water, the amount of hydrated lime required to reach the pH set point will be adjusted based on the output signal from the pH probe controlling the amount of hydrated lime pumped from the lime system. pH adjusted water is routed via gravity through a tank overflow pipe to the clarifier.

Hydrated Lime System. The lime system will utilize a silo sized to store 1,700 cubic feet of hydrated lime at 35 pounds per cubic feet. The silo includes a single discharge cone providing one feed train. The system includes a dry product metering system and dilution equipment to produce a lime slurry. Fresh water from the fresh water tank is used to make up the lime slurry. The lime slurry is pumped to the reaction tank for pH adjustment. The silo system will be controlled by a PLC and will include an operator interface with local indication of conditions and alarms.

Fresh Water System. The fresh water system consists of a 2,000-gallon tank and forwarding pump. Fresh water is supplied to the tank from an on-site fresh water well. Fresh water is pumped to the lime system for dilution; Water is also pumped for use as service water in the WTP.

Flocculation System. The flocculation system consists of a chemical tote containing a liquid anionic polymer flocculant and two chemical feed pumps. Flocculant is pumped to the clarifier to assist with particle flocculation. The amount of flocculant to be added based on the jar tests is 1.0 mg/l; the actual flocculant addition rate will be determined upon WTP startup and commissioning. Flocculant is also pumped to the thickening tank to assist with thickening the solids in the tank.

Clarification. Water from the reaction tank overflow is fed to the clarifier for liquid/solids separation. Flocculant from the flocculation system is added to the clarifier center well to assist with hydroxide floc formation. As the flocs settle in the water column, an internal impeller circulates the solids within the center well to mix with incoming solids formed in the reaction tank. Solids separate in the water column within the tank and settle in the bottom of the tank. Clarified water overflows the internal weir at the top of the tank and is piped to the pH reaction tank. Sludge is formed in the clarifier as the gypsum and metal hydroxide solids formed in the reaction tank settle in the cone-shaped area of the clarifier bottom. The clarifier utilizes a slow-moving rake powered by a 1 h.p. motor to ensure the sludge continuously moves toward the center of the cone at the bottom of the clarifier. The sludge is diverted back to the reaction tank where it mixes with the lime and untreated water. This sludge recycle helps solids formation to occur in the reaction tank as well as utilize un-reacted lime contained in the sludge.

Final pH adjustment. Clarifier overflow is routed to pH adjustment tank for pH adjustment to 8.5 using sulfuric acid. The acid will be fed from the acid feed system. A pH probe in the tank will relay a signal to the acid feed pump to regulate the acid feed rate from the chemical feed pump. Overflow from the pH adjustment tank will be routed to the mine supply pump for use at the mine site or discharged to Alum Creek.

Acid Feed System. The sulfuric acid system consists of a chemical tote containing 92% sulfuric acid, a chemical feed pump, and a secondary containment tray. The acid is pumped to the pH adjustment tank using a feed rate determined by the pH in the tank.

Mine Supply Pump. Overflow from the pH adjustment tank is piped to the mine supply pump for use at the mine. This pump is rated at 20 h.p., with a flow rate of 120 gpm. Treated water not needed for mining is diverted through a tee to the discharge pipe for discharge into Alum Creek.

Clarifier Sludge Forwarding Pump. Clarifier underflow sludge is pumped to the sludge thickening tank using an 1 h.p. centrifugal pump. The pump discharge is piped to the thickening tank, with a diversion valve in the pipe that enables some sludge to be recycled back to the reaction tank. The operator controls the amount of sludge recycle based on manual observation of solids formation in the reaction tank and subsequent settling in the clarifier. This is an iterative procedure that is undertaken as the mine water to UP water flow ratio changes. During periods of steady water ratios, the sludge recycle rate will remain constant.

Sludge Thickening Tank. Sludge from the clarifier underflow is pumped to the sludge thickening tank. This tank has a cone shaped bottom and slow-moving rake to concentrate the sludge in the tank bottom. This allows water to separate from the solids to create a supernatant which then flows out of the tank through the effluent piping. The supernatant flows by gravity to the filtrate tank. The remaining sludge is expected to be greater than approximately 5 percent solids by weight. The thickened sludge is pumped from the tank bottom to the filter press. Anionic polymer is fed to this tank from the flocculation system. The flocculant feed rate will be optimized by the operator based on the actual sludge

production rate occurring in the clarifier, but is expected to be on the order of 2-5 mg/l of clarifier sludge.

Thickened Sludge Forwarding Pump. Thickened sludge from the thickening tank is pumped to the filter press using a 0.75 h.p. progressive cavity pump. The pump operates in a non-continuous mode; that is, after the filter press completes a press cycle and is emptied the operator will manually engage this pump to remove sludge from the thickening tank and transfer it to the filter press for de-watering.

Filter Press. The 30-cubic foot (cf) filter press receives thickened sludge from the thickening tank and removes the free water from the sludge during a press run. Sludge is pumped in-between filter panels by the thickened sludge forwarding pump. The press uses pressurized air to force the water filtrate from the sludge to produce a filter cake, expected to be greater than 25 percent solids by weight. The press run is complete when the filtrate is completely removed from the solids. The filtrate flows by gravity pipe to the filtrate tank. The de-watered solids are manually removed from the filter panels by the operator. The filter cake falls from the filter panels into a collection area beneath the press. The operator removes the filter cake from the collection area using a backhoe or skid-steer type bucket for transport to the TSF. The frequency of the press run will be determined once the WTP is under operation, but is not expected to be more often than once per operating shift.

Filtrate Tank and Filtrate Pump. Supernatant from the sludge thickening tank and the filter press are routed by gravity to the filtrate tank. This tank supplies water to the 0.25 h.p. filtrate pump which transfers supernatant from the filtrate tank to the reaction tank for further treatment.

4.3 PROCESS AND INSTRUMENTATION DIAGRAMS

PIDs for the entire WTP process are included in Appendix A.

4.4 FACILITY GENERAL ARRANGEMENT

The general arrangement of the WTP is shown on Sheet GA-101 in Appendix A.

4.5 MAJOR EQUIPMENT

The major equipment list is shown on Sheet MEL-101 in Appendix A.

The major equipment data are shown on Equipment Data Sheets in Appendix B.

5.0 CHEMICAL FIRST FILL REQUIREMENTS

Chemicals designated for use in the WTP include and their respective on-site storage capacities are:

- Hydrated lime 1,700 cubic feet, housed in the storage silo;
- Anionic polymer flocculant 250-gallon tote; and
- Sulfuric acid 330-gallon tote with secondary containment.

APPENDIX A

PROCESS FLOW DIAGRAM PROCESS AND INSTRUMENTATION DIAGRAMS GENERAL ARRANGEMENT DIAGRAM MECHANICAL EQUIPMENT LIST

LEGAL DESCRIPTION

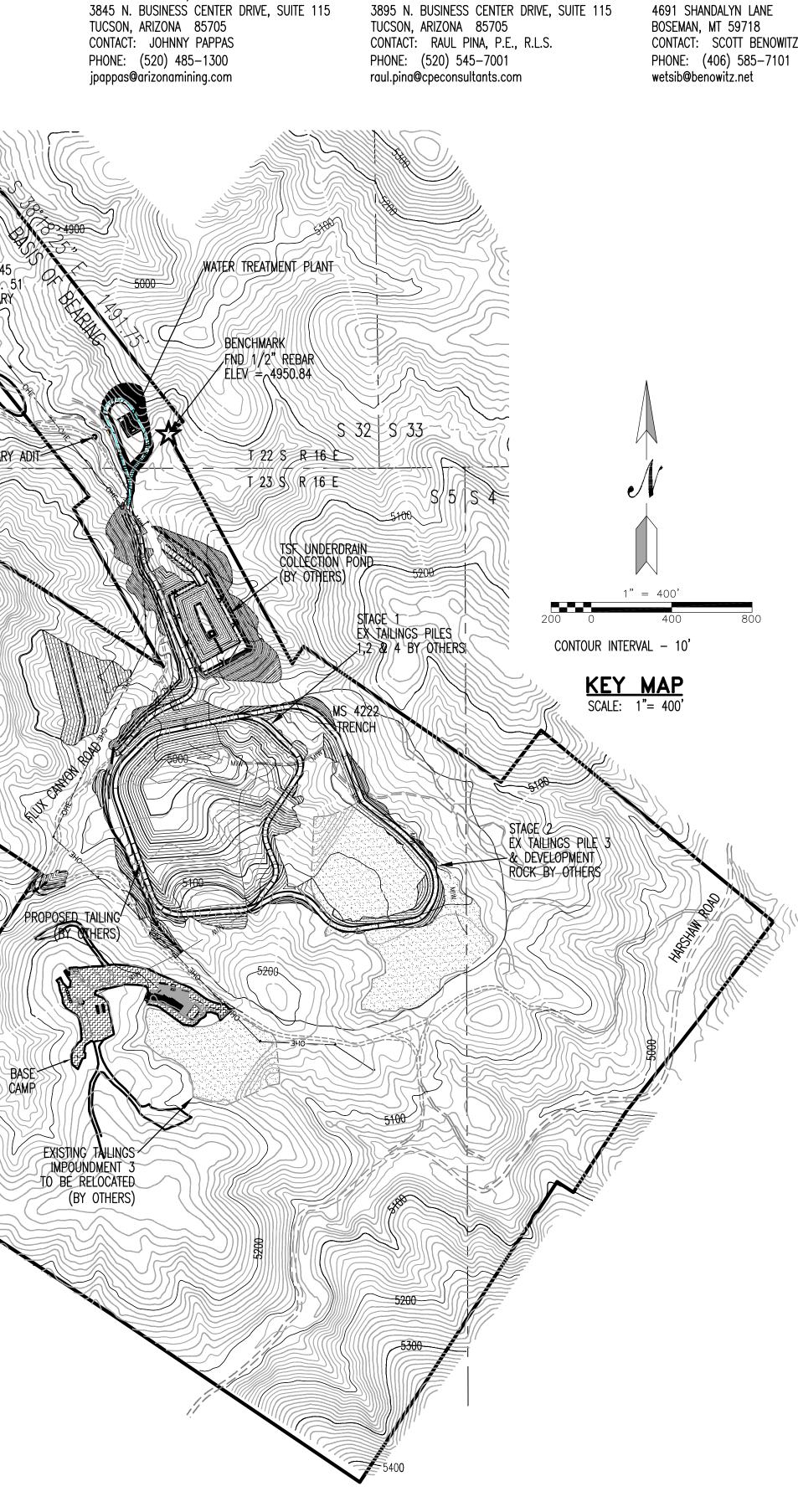
JANUARY & NORTON MINING CLAIMS

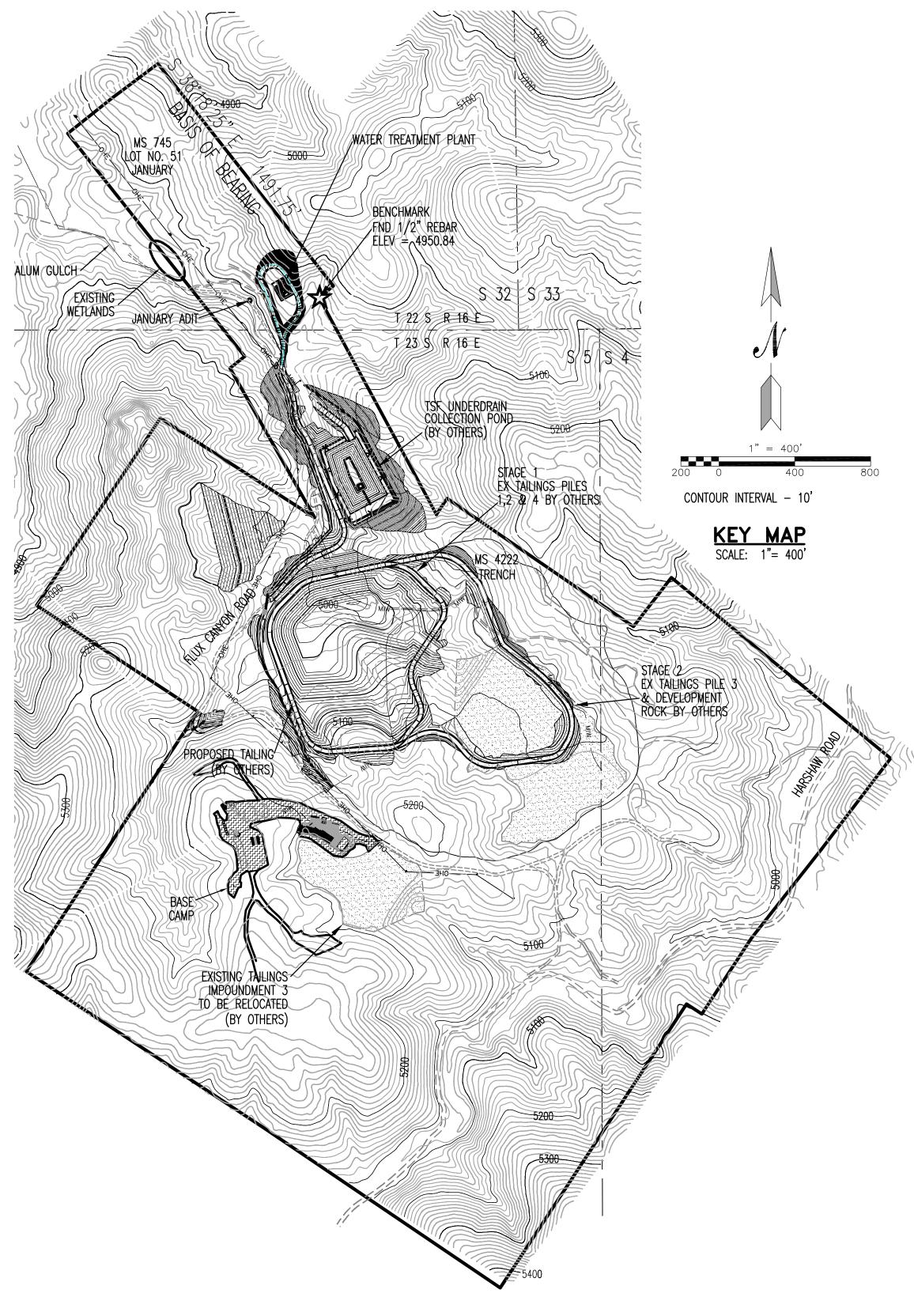
MINERAL SURVEYS (MS) NO.'S 745 & 929 LYING IN A PORTION OF UNSURVEYED SECTION 5, TOWNSHIP 23 SOUTH, RANGE 16 EAST, & SURVEYED SECTION 32, TOWNSHIP 22 SOUTH, RANGE 16 EAST, GILA AND SALT RIVER BASE AND MERIDIAN, SANTA CRUZ COUNTY, ARIZONA

HARDSHELL NO. 7; JOSEPHINE; TRENCH NO. 2, TRENCH NO. 3; TRENCH NO. 4; TRENCH NO. 5; TRENCH NO. 6; TRENCH NO. 7; TRENCH NO. 8; TRENCH EXTENTION NO. 1; TRENCH EXTENTION NO. 2; TRENCH EXTENTION NO. 3; AND TRENCH EXTENTION 4 LOAD MINING CLAIMS, DESIGNATED AS SURVEY NO. 4222, BEING A PORTION OF SECTIONS 4 AND 5, TOWNSHIP 23 SOUTH, RANGE 16 EAST OF GILA AND SALT RIVER BASE AND MERIDIAN, SANTA CRUZ COUNTY, ARIZONA.

EARTHWORK QUANTITIES

<u>SITE</u> CUT: 50,930 CY FILL: 1 CY


BENCHMARK


BASIS OF ELEVATION: NE CORNER OF NORTON MINERAL CLAIM MS 929. POINT BEING A FOUND 1/2" REBAR WITH ALUMINUM CAP ELEVATION = 4950.84 (NAVD 88)

BASIS OF BEARINGS

THE BASIS OF BEARING IS GRID, BASED ON ARIZONA STATE PLANE COORDINATES, CENTRAL ZONE NAD83. THE BASIS OF BEARING IS BETWEEN FOUND MONUMENTATION OF THE SE AND NE CORNER OF THE JANUARY MINERAL CLAIM MS 745. BEARING BEING S 38°18'25'' E.

	MATERIAL QUANITIES
QTY	DESCRIPTION
LF	UGE - UNDERGROUND ELECTRIC
LF	3" SDR-11 HDPE
4350 LF	3" SDR-17 HDPE
5730 LF	4" SDR-17 HDPE
381 LF	6" SDR-17 HDPE
EA	3" CLEANOUT
EA	4" CLEANOUT
CY	RIP-RAP D50=4", T=8"
CY	RIP-RAP D50=12", T=24"

ARIZONA MINERALS JANUARY ADIT (NORTON MINE) VRP SITE SANTA CRUZ COUNTY, ARIZONA WATER TREATMENT SYSTEM

OWNER/DEVELOPER

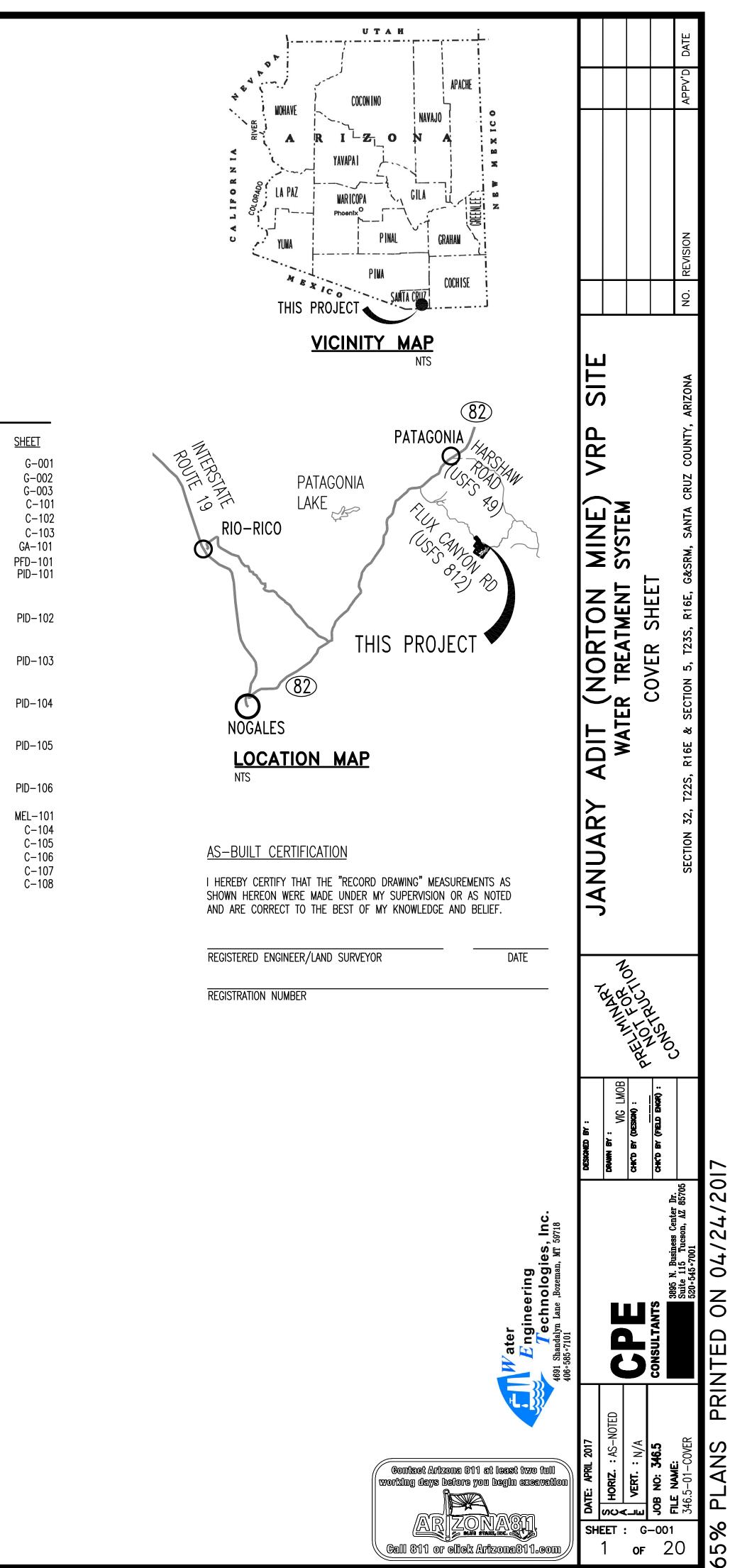
ARIZONA MINERALS, INC.

ENGINEER

CPE CONSULTANTS 3895 N. BUSINESS CENTER DRIVE, SUITE 115

PROCESS ENGINEER

WATER ENGINEERING TECHNOLOGIES, INC. 4691 SHANDALYN LANE CONTACT: SCOTT BENOWITZ, P.E.


ELECTRICAL ENGINEER

SGS NORTH AMERICA INC. 3845 N. BUSINESS CENTER DRIVE, SUITE 111 TUCSON, ARIZONA 85705 CONTACT: ALISTAIR RASQUINHA PHONE: (520) 579-8315 alistair.rasquinha@sqs.com

SHEET INDEX

<u>PAGE #</u> DESCRIPTION

- 1 COVER SHEET 2 GENERAL NOTES, SPECIFICATIONS AND CLARIFICATIONS
- 3 ABBREVIATIONS AND LEGEND
- 4 HORIZONTAL CONTROL PLAN
- 5 PROJECT OVERVIEW
- 6 PROJECT OVERVIEW SECTIONS
- WATER TREATMENT PLANT GENERAL ARRANGEMENT PLAN
- 8 PROCESS FLOW DIAGRAM (PFD)
- 9 PROCESS AND INSTRUMENTATION DIAGRAMS (PID): - EQUALIZATION TANK & FORWARDING PUMPS; - REACTION TANK & FORWARDING PUMPS
- 10 PROCESS AND INSTRUMENTATION DIAGRAMS (PID): - SOLIDS CONTACT CLARIFIER & SLUDGE PUMP; – pH ADJUSTMENT TANK & RE-USE PUMP
- 11 <u>PROCESS AND INSTRUMENTATION DIAGRAMS (PID)</u> SLUDGE THICKENING TANK & FILTER PRESS FEED PUMP;
- FILTER PRESS 12 PROCESS AND INSTRUMENTATION DIAGRAMS (PID) - FILTRATE TANK & FILTERATE PUMP;
- FRESH WATER TANK & PUMP 13 PROCESS AND INSTRUMENTATION DIAGRAMS (PID) - HYDRATED LIME SYSTEM;
- CHEMICAL FEED PUMPS
- 14 PROCESS AND INSTRUMENTATION DIAGRAM (PID) - AIR COMPRESSOR SYSTEM
- 15 MECHANICAL EQUIPMENT LIST
- 16 UTILITY PLAN 17 WATER WELL AND PUMP DETAILS
- 18 WELL HOUSE PIPING PLAN
- 19 GRADING AND DRAINAGE OVERVIEW PLAN
- 20 DRAINAGE PLAN AND DETAILS

PRINT AN %

GENERAL NOTES

1. ALL CONSTRUCTION AND TEST METHODS SHALL BE IN ACCORDANCE WITH MARICOPA ASSOCIATION OF GOVERNMENTS (MAG) UNIFORM STANDARD SPECIFICATIONS AND DETAILS FOR PUBLIC WORKS CONSTRUCTION, EDITION 2015, EXCEPT AS MODIFIED, SHOWN AND ACCEPTED BY DETAIL WITHIN THESE PLANS.

2. THE CONTRACTOR SHALL COMPLY WITH ALL APPLICABLE OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION REGULATIONS.

3. THE CONTRACTOR IS RESPONSIBLE FOR COMPLYING WITH ALL REGULATIONS AND REQUESTS BY THE ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY (ADEQ).

4. CONTRACTOR SHALL VERIFY AND OBTAIN ALL PERMITS REQUIRED BY THE GOVERNMENTAL AGENCIES, TO INCLUDE BUT NOT LIMITED TO: UNITED STATES FOREST SERVICE AND SANTA CRUZ COUNT, PRIOR TO CONSTRUCTION.

5. A STAMPED COPY SET OF THE LATEST APROVED PLANS SHALL BE ON THE JOB SITE AT ALL TIMES.

6. ALL REVISIONS TO THESE PLANS MUST BE APPROVED BY ARIZONA MINERALS, INC., CPE CONSULTANTS, AND THE APPLICABLE DESIGN ENGINEER SEALING THE PLANS PRIOR TO CONSTRUCTION.

7. ERRORS. OMISSIONS OR CONFLICTS BETWEEN VARIOUS ELEMENTS OF THE DRAWINGS. NOTES. AND DETAILS SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER AND RESOLVED BEFORE PROCEEEDING WITH THE WORK.

8. EXISTING UTILITIES ARE SHOWN BASED UPON THE BEST INFORMATION AVAILABLE. THE CONTRACTOR SHALL VERIFY LOCATIONS AND ELEVATIONS OF ALL EXISTING UTILITIES PRIOR TO ANY CONSTRUCTION. THE CONTRACTOR SHALL CONTACT BLUE STAKE (CALL 811 OR CLICK Arizona811.com) TO VERIFY LOCATION OF ALL UTILITIES PRIOR TO COMMENCEMENT OF CONSTRUCTION.

9. DURING CONSTRUCTION, SHOULD CONFLICTS WITH ANY EXISTING UTILITES BECOME EVIDENT. THE ENGINEER OF RECORD IS TO BE CONTACTED BEFORE ANY ADJUSTMENTS ARE MADE WHICH DIFFER FROM THIS PLAN.

10. THE CONTRACTOR IS NOT PERMITTED TO MAKE AUTONOMOUS DECISIONS TO CARRY OUT CONSTRUCTION FIELD CHANGES WITHOUT WRITTEN APPROVAL FROM THE ENGINEER OF RECORD AND ARIZONA MINERALS, INC.

11. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO FURNISH, HAUL AND APPLY ALL WATER REQUIRED FOR COMPACTION AND FOR THE CONTROL OF DUST FROM CONSTRUCTION ACTIVITY. THE COST THEREOF IS TO BE INCLUDED IN THE GRADING CONSTRUCTION PRICE.

12. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CARE, MAINTENANCE, REPAIR, OR REPLACEMENT OF EXISTING IMPROVEMENTS IN THE WORK AREA WHICH HAVE BEEN REMOVED OR DAMAGED DURING THE COURSE OF CONSTRUCTION. ALL REPAIR, REPLACEMENT, OR CLEANUP SHALL BE DONE TO THE SATISFACTION OF THE OWNER.

13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CARE AND MAINTENANCE OF EXISTING VEGETATION TO REMAIN IN THE WORK AREA.

14. ALL WORK TO BE LIMITED TO THE PROJECT SITE AND NO CONTRACTOR ACTIVITIES SHALL BE ON USFS LANDS OR PUBLIC RIGHT-OF-WAY WITHOUT PRIOR WRITTEN CONSENT OF THE APPROPRIATE PARTY.

15. THE ENGINEER OF RECORD OR HIS REPRESENTATIVE, SHALL OBSERVE, INSPECT, AND TEST ALL EARTHWORK OPERATIONS, INCLUDING BUT NOT LIMITED TO: CLEARING, GRUBBING, SUBGRADE PREPARATION, STRUCTURAL AND TRENCH EXCAVATION AND BACKFILL, TOGETHER WITH PLACEMENT AND COMPACTION AND FILL.

16. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR AND OR THE SURVEYOR PROVIDING THE CONSTRUCTION STAKING AND LAYOUT TO VERIFY THE BENCHMARK AND COMPARE THE SITE CONDITIONS WITH THE PLANS AND NOTIFY THE OWNER OR ENGINEER OF RECORD OF ANY DISCREPANCIES OBSERVED. SHOULD ANY BENCHMARK. GRADE. OR DESIGN INDICATED ON THE PLANS BE INTERPRETED TO BE INCORRECT, THE OWNER OR ENGINEER OF RECORD SHALL BE NOTIFIED BEFORE CONSTRUCTION BEGINS.

17. DRAINAGEWAYS AND ADJOINING AREAS ARE SUBJECT TO FLOODING. NO EQUIPMENT. TOOLS. OR MATERIALS SHALL BE STAGED. STOCKPILED. PARKED OR LEFT WITHIN A DRAINAGEWAY BEYOND OR OUTSIDE OF THE WORKING HOURS OF EACH DAY. THE OWNER ASSUMES NO LIABILITY FOR DAMAGE TO CONTRACTOR'S PROPERTY OR WORK AS THE RESULT OF STORMWATER RUNOFF.

SPECIFICATIONS AND CLARIFICATIONS:

<u>GENERAL</u> – THE FOLLOWING NOTES/SPECIFICATIONS ARE FOR CLARIFICATION AND/OR THE CONVENIENCE OF THE CONTRACTOR AND DO NOT RELIEVE THE CONTRACTOR FROM COMPLIANCE WITH ALL SECTIONS, AS APPLICABLE, OF THE MAG UNIFORM STANDARD SPECIFICATIONS AND DETAILS FOR PUBLIC WORKS CONSTRUCTION, EDITION 2015 (MAG SPECS).

1. THE FOLLOWING DEFINITIONS OF SECTION 101.2 DEFINITIONS AND TERMS OF THE MAG SPECS ARE REVISED TO READ: OWNER: ARIZONA MINERALS, INC.; ENGINEER: CPEC OR OTHER ENGINEER DESIGNATED BY OWNER.

2. THE CONTRACTOR SHALL PERFORM ALL WORK AS MAY BE NECESSARY TO COMPLETE THE CONTRACT IN A SATISFACTORY AND ACCEPTABLE MANNER IN FULL COMPLIANCE WITH THE PLANS, SPECIFICATIONS AND TERMS OF THE CONTRACT. IN THE EVENT A CONFLICT EXISTS BETWEEN CONTRACT DOCUMENTS THE ORDER OF PRECEDENCE LISTED IN DESCENDING ORDER SHALL BE AS FOLLOWS: CHANGE ORDERS ADDENDA

SPECIAL PROVISIONS PROJECT PLANS MAG UNIFORM STANDARD SPECIFICATIONS MAG STANDARD DETAILS

3. CLEARING AND GRUBBING: THE AREAS OF THE CONSTRUCTION SITE TO BE IMPROVED PER THESE PLANS SHALL BE CLEARED OF ALL TREES. STUMPS. BRUSH. ROOTS. RUBBISH. DEBRIS AND OTHER OBJECTIONABLE MATTER. EXCEPT THAT THE CONTRACTOR SHALL AVOID, AS FAR AS PRACTICABLE, INJURY TO TREES, SHRUBBERY, PLANTS, GRASSES AND OTHER VEGETATION GROWING OUTSIDE OF THE AREAS TO BE IMPROVED. WITHIN EXCAVATED AREAS, ALL STUMPS, ROOTS AND OTHER OBSTRUCTIONS 3 INCHES OR OVER IN DIAMETER SHALL BE GRUBBED TO A DEPTH OF NOT LESS THAN 18 INCHES BELOW FINISH GRADE. IN EMBANKMENT AREAS ALL STUMPS, ROOTS AND OTHER OBSTRUCTIONS SHALL NOT BE LEFT HIGHER THAN SPECIFIED IN TABLE 201–1 OF THE MAG SPECS. ALL TREE TRUNKS. STUMPS. BRUSH. LIMBS, ROOTS, VEGETATION AND OTHER DEBRIS REMOVED IN CLEARING AND GRUBBING SHALL BE REMOVED, CHIPPED/MULCHED, AND STOCKPILED ONSITE, FOR FUTURE USE, AS DIRECTED BY THE OWNER/ENGINEER.

4. EXCAVATION: EXCAVATION SHALL CONSIST OF EXCAVATION INVOLVED IN THE GRADING AND CONSTRUCTION OF BASINS AND OTHER IMPROVEMENTS SHOWN ON THE PLANS, EXCEPT STRUCTURE EXCAVATION, TRENCH EXCAVATION AND ANY OTHER EXCAVATION SEPARATELY DESIGNATED.

5. UNSUITABLE MATERIAL: MATERIAL SHALL BE CONSIDERED UNSUITABLE FOR FILL, SUBGRADE, AND OTHER USES IF IT CONTAINS ORGANIC MATTER, SOFT SPONGY EARTH, OR OTHER MATTER OF SUCH NATURE THAT COMPACTION TO THE SPECIFIED DENSITY IS UNOBTAINABLE. MATERIAL THAT IS UNSUITABLE FOR THE INTENDED USE SHALL BE EXCAVATED AND STOCKPILED AT THE SITE OR OTHERWISE DISPOSED OF AS DIRECTED BY THE OWNER OR ENGINEER.

6. SURPLUS MATERIAL: SURPLUS SUITABLE MATERIAL SHALL BE STOCKPILED ONSITE, FOR FUTURE USE, AS DIRECTED BY THE OWNER/ENGINEER. SURPLUS SUITABLE MATERIAL, AS APPLICABLE, SHALL BE PLACED IN TWO STOCKPILES. ONE STOCKPILE SHALL CONSIST OF MATERIAL SUITABLE FOR PLACEMENT IN EMBANKMENTS (FILLS) AND THE SECOND SHALL CONSIST OF ROCK MATERIAL GENERALLY EXCEEDING 4 INCHES IN GREATEST DIMENSION. ROCK MATERIAL IS INTENDED FOR FUTURE USE AS ROCK RIP-RAP SLOPE PROTECTION. EMBANKMENT MATERIAL IS INTENDED FOR FUTURE USE IN FILL OF OTHER AREAS OF THE SITE AS DESIGNATED BY THE OWNER/ENGINEER.

7. FILL CONSTRUCTION: PLACEMENT OF FILL MATERIAL FOR THE CONSTRUCTION OF EMBANKMENTS SHALL BE IN ACCORDANCE WITH SECTION 211 OF THE MAG SPECS.

8. ROCK RIPRAP: RIPRAP CONSTRUCTION SHALL BE IN ACCORDANCE WITH SECTION 220 OF THE MAG SPECS AND CONSIST OF FURNISHING AND PLACING STONE, WITHOUT GROUT, AND UNDERLAIN WITH FILTER MATERIAL OF GRANULAR FILTER BLANKETS OR EROSION CONTROL GEOSYNTHETIC FABRIC. THE DEPTH AND TYPE OF RIPRAP FOR BASIN SLOPE PROTECTION SHALL BE 18" IN DEPTH AND D50=12". OTHER RIPRAP DEPTH AND TYPE SHALL BE AS SHOWN ON THE PLANS OR IN THE SPECIAL PROVISIONS.

9. CONCRETE STRUCTURES: CONCRETE STRUCTURES SHALL BE IN ACCORDANCE WITH SECTION 505 OF THE MAG SPECS AND SHALL CONSIST OF CLASS A CONCRETE UNLESS OTHERWISE SPECIFIED ON THE PLANS OR PROJECT SPECIFICATIONS.

10. TRENCHING: TRENCH EXCAVATION, BACKFILL, AND COMPACTIONS SHALL BE IN ACCORDANCE WITH SECTION 601 OF THE MAG SPECS EXCEPT WHERE MODIFIED BY THE PLANS AND/OR PROJECT SPECIAL PROVISIONS.

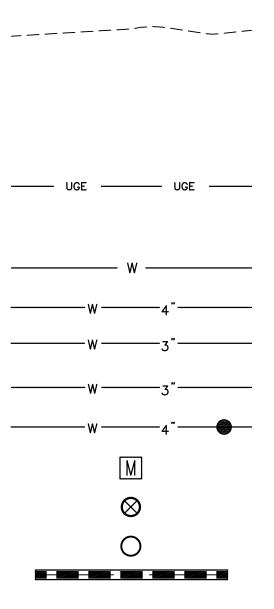
11. WARNING TAPE: UNDERGROUND MARKING TAPE SHALL BE A 4" WIDTH, DETECTABLE MARKING TAPE, WITH A MINIMUM 5.0 MIL OVERALL THICKNESS. TAPE SHALL BE MANUFACTURED USING A 0.8 MIL CLEAR VIRGIN POLYPROPYLENE FILM. REVERSE PRINTED AND LAMINATED TO A 0.35 MIL SOLID ALUMINUM FOIL CORE, AND THEN LAMINATED TO A 3.75 MIL CLEAR VIRGIN POLYETHYLENE FILM. TAPE SHALL BE PRINTED USING A DIAGONALLY STRIPED DESIGN FOR MAXIMUM VISIBILITY. AND MEET THE APWA COLOR-CODE STANDARD FOR IDENTIFICATION OF BURIED UTILITIES. TAPE SHALL MEET THESE SPECIFICATIONS OR AN APPROVED EQUAL.

12. FRENCH DRAIN FILTER FABRIC: FILTER FABRIC SHALL BE A NON-WOVEN, 100% POLYPROPYLENE GEOTEXTILE, US FABRICS US 180NW OR EQUAL. SHALL BE PLACED PER MANUFACTURER SPECIFICATIONS.

13. FRENCH DRAIN IMPERVIOUS LINER: IMPERVIOUS LINER SHALL BE IMPERVIOUS PLASTIC SHEETING, MINIMUM 60 MIL, DOUBLE THICKNESS. SHALL BE PLACED PER MANUFACTURER SPECIFICATIONS AND PLACED TO AVOID PUNCTURE DURING INSTALLATION.

14. GUNITE LINING: REPLACEMENT OF EXISTING GUNITE LINING REMOVED FOR THE FORCEMAIN INSTALLATION SHALL CONFORM TO SECTION 525 OF THE MAG SPECS OR AS APPROVED BY THE OWNER/ENGINEER.

			REVISION APPV'D DATE	
	JANUARY ADIT (NORTON MINE) VRP SITE WATER TREATMENT SYSTEM	GENERAL NOTES, SPECIFICATIONS AND CLARIFICATIONS	SECTION 32, T22S, R16E & SECTION 5, T23S, R16E, G&SRM, SANTA CRUZ COUNTY, ARIZONA	
jies, Inc. MT 59718	DESIGNED BY : DRAWIN BY : VIG LMOB CHKD BY (DESIGN) : CHIMINPAL	3895 N. Rusiness Center Dr.	Suite 115 Tucson, AZ 85705 520-545-7001	ON 04/24/2017
Toporting anorthy paratures and the substance of the subs	DATE: APRIL 2017 A VERT : N/A SHEET : N/A C MORIZ: N/A	DB NO: 346.5 CONSULTA		65% PLANS PRINTED 0

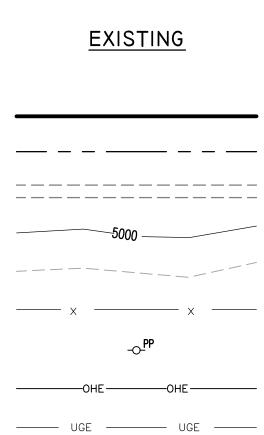

ABBREVIATIONS

			AB	BREVIA	HONS
ABBREVIATION	WORDS	ABBREVIATION	WORDS	ABBREVIATION	WORDS
A ©	AT	E	EAST	М (м)	MEASURED
NBC	AGGREGATE BASE AGGREGATE BASE COURSE	ELEC EA	ELECTRIC, ELECTRICITY EACH	MAG	MARICOPA ASSOCIATION OF GOVERNMENTS
IBDN IC	ABANDONED ACRES	ECC EF	ECCENTRIC EACH FACE	MAINT	MAINTENANCE, MAINTAIN
CI	AMERICAN CONCRETE INSTITUTE	EG EL	EXISTING GRADE	MATL MAX	MATERIAL MAXIMUM
DDL DEQ	ADDITIONAL ARIZONA DEPARTMENT OF	ELEV	ELECTRICAL ELEVATION	MECH MEL	MECHANICAL MECHANICAL EQUIPMENT LIST
DJ	ENVIRONEMENTAL QUALITY ADJACENT, ADJUSTABLE	elb Emb	ELBOW EMBANKMENT	MFR MH	MANUFACTURER MANHOLE
FF GG	AT FINISH FLOOR AGGREGATE	ENGR ENT	ENGINEER ENTRANCE	M&I MI	MUNICIPAL AND IDUSTRIAL MILE OR MILES
ISC	AMERICAN INSTITUTE OF STEEL CONSTRUCTION	EP OR EOP EQ	EDGE OF PAVEMENT EQUATION	MIN	MINIMUM
LUM	ALUMINUM	EQPMT	EQUIPMENT	MIW ,	MINE INFLUENCED WATER MINUTES
LT MT	ALTERNATE AMOUNT	EST E/W EXC	ESTIMATE EACH WAY	MISC MJ	MISCELLANEOUS MECHANICAL JOINT
ng PPROX	ANGLE APPROXIMATE, APPROXIMATELY	EX, EXST	EXCAVATION EXISTING	MO MOD	Month Modify or Modified
PW STM	AEROBIC POLISHING WETLAND AMERICAN SOCIETY FOR TESTING MATERIALS	EXP EXP JT	EXPOSED EXPANSION JOINT	MON MRB	MONUMENT MANGANESE REMOVAL BED
SSY TS	ASSEMBLY ACTIVE TREATMENT SYSTEM	EXT EXT	EXTEND OR EXTENSION EXTERNAL	MT MTD	MOUNTAIN WALL MOUNTED
UTO UX	AUTOMATIC AUXILIARY			MTG	MOUNTING
VG	AVERAGE	F		MTL MTL	MATERIAL METAL
WWA	AMERICAN WATER WORKS ASSOCIATION	'/FT FAB	FEET PER FOOT FABRICATION	MW MWS	MONITORING WELL MAXIMUM WATER SURFACE
}		FC	FLEXIBLE COUPLING		
AL	BALANCE	FCA FD	FLANGED COUPLING ADAPTER FOUND	Ν	
CR CSM	BIOCHEMICAL REACTOR BRASS CAP SURVEY MONUMENT	FDN FED	FOUNDATION FEDERAL	N	NORTH
DRY F	BOUNDARY BLIND FLANGE, BOTTOM FACE	F.F.E. FG	FINISHED FLOOR ELEVATION FINISHED GRADE	N/A NATL	NOT APPLICABLE NATIONAL
' GN K	BEGIN	FIG. FIN	FIGURE	NAD NAVD	NORTH AMERICAN DATUM NORHT AMERICAN VERTICAL DATUM
KFL	BACK, BOOK BACKFILL	FL	FLOWLINE	NE NIC	NORTHEAST NOT IN CONTRACT
BLDG M	BUILDING BENCH MARK	FLEX FLG	FLEXIBLE FLANGE	NO NOM	NUMBER NOMINAL
OR OTT	BORROW BOTTOM	FLR FM	FLOOR FORCE MAIN	NORM	NORMAL
P RG	BANK PROTECTION BEARING	FND FOW	FOUND FACE OF WALL	NPI NPT	NON PAY ITEM NATIONAL PIPE TREAD
BTWN	BETWEEN	FPS FR	FEET PER SECOND FRAME	NTS NW	NOT TO SCALE NORTHWEST
₩ V	BARBED WIRE BALL VALVE, BUTTERFLY VALVE	FST	FOREST	NWS	NORMAL WATER SURFACE
		FT OR ' FTG	FOOT, FEET FOOTING, FILLING	-	
C		FURN FUT	Furnish or furnised Future	0	
TOC INPL	CENTER TO CENTER COMPLETE IN PLACE	FWD	FORWARD	O&M OC	OPERATION & MAINTENANCE OF CENTER
ALC OR (C)	CALCULATED			OD OF	OUTSIDE DIAMETER OUTSIDE FACE, OVERFLOW
AP EM	CAPACITY CEMENT	G		OH OPNG	OVERHEAD OPENING
F FM	CUBIC FEET CUBIC FEET PER MINUTE	G GA	GAS GAUGE	OPP ORIG	OPPOSITE ORIGINAL
FS HAN	CUBIC FEET PER SECOND CHANNEL	GA GAL	GENERAL ARRANGEMENT GALLON	OVFL	OVERFLOW
HDPEPP	CORRUGATED HIGH-DENSITY POLYETHYLENE PLASTIC PIPE	GB	GRADE BREAK		
-I-P	CAST IN PLACE	GND GND COMP	GROUND GROUND COMPACTION	Ρ	
<u>)</u> LR	CENTER LINE CLEAR	GOV'T GPD	GOVERNMENT GALLONS PER DAY	PAR PE	PARCEL POLYETHYLENE
C/L CMP	CHAIN LINK, CONTROL LINE CORRUGATED METAL PIPE	GPH GPM	GALLONS PER HOUR GALLONS PER MINUTE	PFD PG	PROCESS FLOW DIAGRAM PAGE
O. OMP	COUNTY COMPACT OR COMPACTION	GR GRB	GRADE GRUBBING	PIP	PROTECT IN PLACE
ONC	CONCRETE CONNECTION	GSRM	GILA & SALT RIVER MERIDIAN	P&ID PL	PROCESS & INSTRUMENTATION DIAGRAM
OND	CONDUIT	GV	GATE VALVE, GAS VALVE	P/L POB	PROPERTY LINE POINT OF BEGINNING
onst Ont	CONSTRUCTION, CONSTRUCT CONTINUOUS	Н		POE PP	POINT OF ENDING POWER POLE
oord Or	COORDINATE CORNER	H, HT	HEIGHT	PRELIM PREFAB	PRELIMINARY PREFABRICATED
:ORR :P	Correction Control Points	hdpe Hdwr	HIGH DENSITY POLYETHYLENE HARDWARE	PRESS	PRESSURE
, PLG TR	COUPLING CENTER	HGL HGT	HYDRAULIC GRADE LINE HEIGHT	pri Prj	PRIMARY PROJECT
TRD	CENTERED	HORIZ	HORIZONTAL HORSEPOWER	PROP PROP	PROPOSED PROPERTY
U ULV	CUBIC CULVERT	HW	HEADWATER	PRT PRV	PROTECTION PROVISION OR PROVIDE
V WS	CHECK VALVE CALCULATED WATER SURFACE	HWS	HIGH WATER SURFACE	PS PSI	PUMP STATION, PRESSURE SWITCH POUNDS PER SQUARE INCH
Y, CU YD	CUBIC YARD OR CUBIC YARDS	1		PSIG	POUNDS PER SQUARE INCH, GAUGE
		I	INDICATE	PSF PT	POUNDS PER SQUARE FOOT POINT
)		iD IF	INSIDE DIAMETER INVERT ELEVATION	PV PVC	PLUG VALVE, PRESSURE VALVE POLYVINYL CHLORIDE
EG OR •	DELTA DEGREES	IE IF	INSIDE FACE	PVMT	PAVEMENT
	DEGREE OF CURVE DEPTH	IMPR IN OR "	IMPROVEMENT INCH OR INCHES	_	
A BL	DRAINAGE AREA DOUBLE	INCL	INCLUDE, INCLUDED, OR INCLUSIVE	Q	
EMO	DEMOLITION	INSTM INSUL	INSTRUMENTATION INSULATE	Q	QUANTITIY OF DRAINAGE RUNOFF, FLOW RATE (CFS) QUANTITY OR QUANTITIES
EPT G	DEPARTMENT DOWN GUY	INT	INTERIOR	QTY QUAD	QUANTITY OR QUANTITIES QUADRANT
DIA DIAG	DIAMETER DIAGONAL	INV IP	INVERT IRON PIN		
0IM 0IP	DIMENSION DUCTILE IRON PIPE	J		R	
NISCH	DISCHARGE	JT JCT	JOINT JUNCTION	R (R)	RANGE RECORD
				řád RB	RADIUS REBAR
N PR	DRIVE DRAIN OR DRAINAGE	•			
'N R RN TL	DRAIN OR DRAINAGE DETAIL	L		RC	REINFORCED CONCRETE ROAD
N R RN TL WG WS	DRAIN OR DRAINAGE DETAIL DRAWING DESIGN WATER SURFACE	L LAT	LEVEL, LENGTH LATERAL	RC RD RDWY	ROAD ROADWAY
DN DR DRN DTL DWG DWS DWY	DRAIN OR DRAINAGE DETAIL DRAWING	LB LF	lateràl Pound Linear feet	RC RD RDWY REBAR RED	ROAD ROADWAY REINFORCING BAR REDUCER
N R RN TL WG WS	DRAIN OR DRAINAGE DETAIL DRAWING DESIGN WATER SURFACE	LB	LATERÁL POUND	RC RD RDWY REBAR	ROAD ROADWAY REINFORCING BAR

		PROCES	SS FLOW DI	AGRAM LEGE	ND		
<u>ABBREVIATION</u> R REINF	WORDS REINFORCE, REINFORCED,		UMP NATIONS		SC. NATIONS		
RELOC REM REQD RET REV	REINFORCING RELOCATE, RELOCATION OR RELOCATED REMOVE REQUIRED RETAIN OR RETAINING REVISED OR REVISION		HORIZONTAL CENTRIFUGAL PUMP		MIXER		=
rt Rte Rtn Rwgv S	RIGHT Route Return Resilient wedge gate valve		SUBMERSIBLE PUMP		VALVE MOTOR OPERATED GRAVITY FLOW		_
S SALV SB SCHED SD SDR SE SEC	SOUTH SALVAGE SOIL BORING SCHEDULE STORM DRAIN STANDARD DIMENSION RATIO SOUTHEAST SECTION		CHEMICAL INJECTION	VALV	E		_
SEC OR " SF SG	SECONDS SQUARE FEET SUBGRADE		PUMP	DESIGNAT	IONS		_
SGL SH SHLDR SHR SIM	SINGLE SHEET SHOULDER SHRINKAGE SIMILAR		UNSPECIFIED PUMP		SOLENOID		_
SK SL, S SM SP SPCL	SKEW SECTION LINE, SURVEY LINE SELECT MATERIAL SPACE, SPACES SPECIAL		PERISTALTIC PUMP		GLOB VALVE BUTTERFLY VALVE		_
SPEC SPEC'D SPLY SQ	SPECIFICATIONS SPECIFIED SUPPLY SQUARE				CHECK VALVE		
SQ FT SQ YD SR SST, SS STA STD	SQUARE FEET SQUARE YARD STATE ROUTE STAINLESS STEEL STATION STANDARD		ROTARY SCREW		THREE WAY VALVE		
STL STRL STRUCT SUR SURF SUSP	STEEL STRUCTURAL STRUCTURE SURVEY SURFACE SUSPEND		COMPRESSOR	PRESSURE DEVICE			
SW SW SY SYMM	SOUTHWEST SWELL SQUARE YARDS SYMMETRICAL				PRESSURE RELEIEF (SAFETY) VALVE		
T T&B TB TBM TDH TECH TECH	Township Top & Bottom Thrust Block Temporary Bench Mark Total Dynamic Head Technical Technical	M magnetic	flow meter MBOLS		PRESSURE REDUCING REGULATOR		_
TF THD THK THRD TO TOP TOL	TOP FACE THREAD THICK THREADED TOP OF TOP OF BANK TOP OF LINING	 -+++++++++	———— Electi	RY LINE SEGMENT RIC SIGNAL IATIC SIGNAL			MEA SURED OR INIT
TOP TOPO TRANS TS TW TYP	TOP OF PIPE TOPOGRAPHY TRANSITION TOP OF SLOPE TOP OF WALL TYPICAL					A B C D E	USER'S CHOICE (TY) CONDUCTIVITY - ELI USER'S CHOICE (TY) OR SPECIFIC GRAVI
U/g UBC UGND UNK UNO USFS	UNDERGROUND UNIFORM BUILDING CODE UNDERGROUND UNKNOWN UNLESS NOTED OTHERWISE UNITED STATES FOREST SERVICE	XX FIE	TROLS LD/LOCAL MOUNTED DEVICI NEL MOUNTED DEVICE	Ξ		F G H J K	FLOW RATE USER'S CHOICE OR ((DIMENSIONAL) HAND CURRENT (ELECTRIC POWER TIME, TIME SCHEDUL
V VAR VERT VOL	VARIABLE VERTICAL VOLUME		AG			L M N O	LEVEL USER'S CHOICE (TYT MOISTURE OR HUMI USER'S CHOICE USER'S CHOICE
W W W/ WS WSEL WWF	WATER, WEST WIDE OR WIDTH WITH WATER STOP, WATER SURFACE WATER SURFACE ELEVATION WELDED WIRE FABRIC	AC A AC A AIC A AS A CF C	RECOMPRESSOR NALYSIS INDICATOR CONTRO IR SUPPLY HEMICAL FEED PUMP LARIFIER	θL		P Q R S T	PRESSURE, VACUUR QUANTITY OR HEAT RADIATION SPEED, FREQUENCY TEMPERATURE
ww⊦ WV X	WATER VALVE	F Fl FIC Fl FP Fl	Low Low Indicator Control Lter Press UMP			U V	MULTIVARIABLE VIBRATION, MECHAI
XFMR X—ING X—SECT	ELECTRICAL TRANSFORMER CROSSING CROSS SECTION	PL PI S SI TK T/	OMP IPELINE CREEN ANK ALVE			W X Y	UNCLASSIFIED
YD YR	YARD YEAR					Z	POSITION, DIMENSIO

PROPOSED \bigstar

- 5000 _____

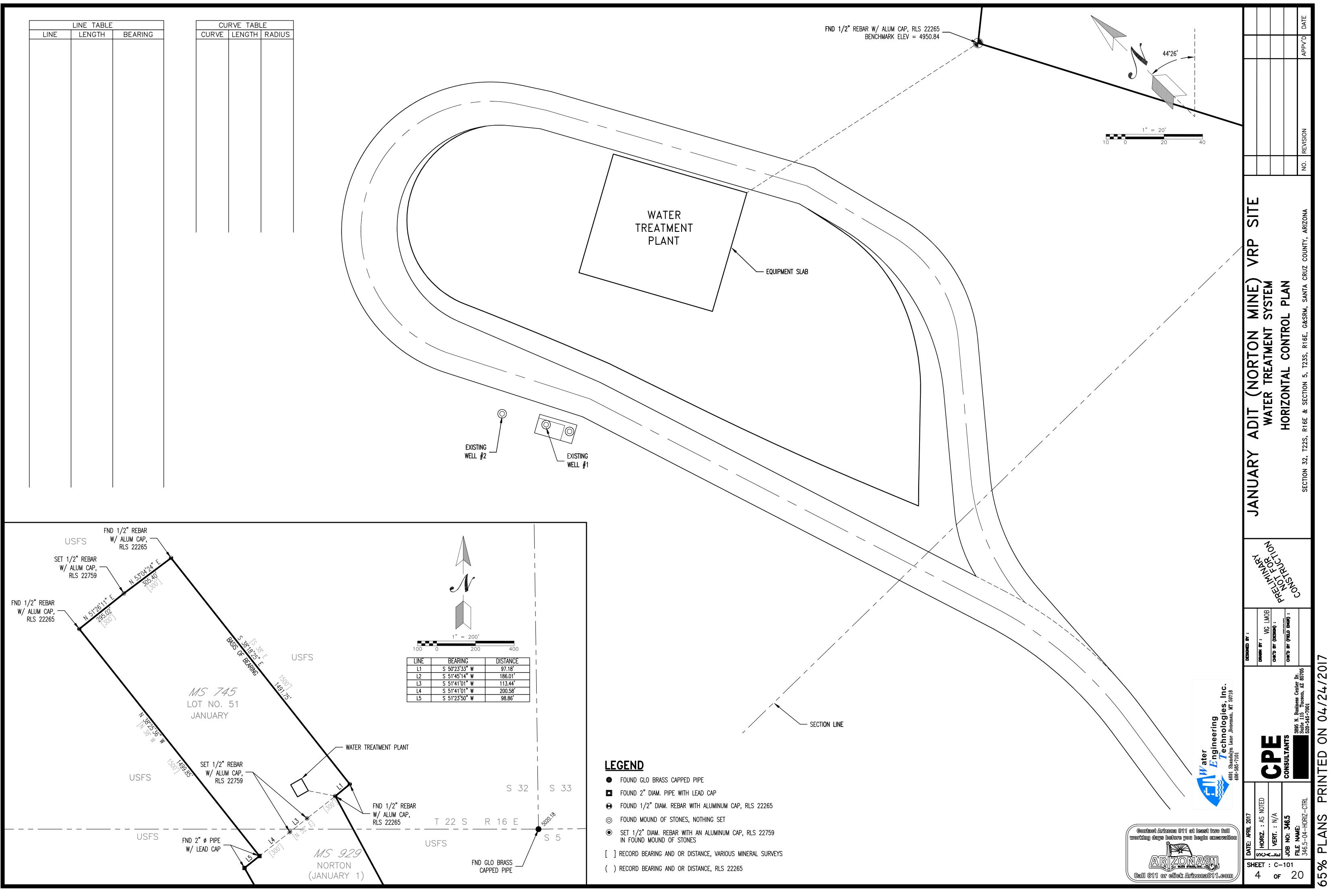

1.00% -5003.5 _____V ______ c _____ c _____ GRADING LIMIT – DAYLIGHT LINE (CUT AREA) ——— F _____ $\begin{pmatrix} 1 \\ 20 \end{pmatrix}$

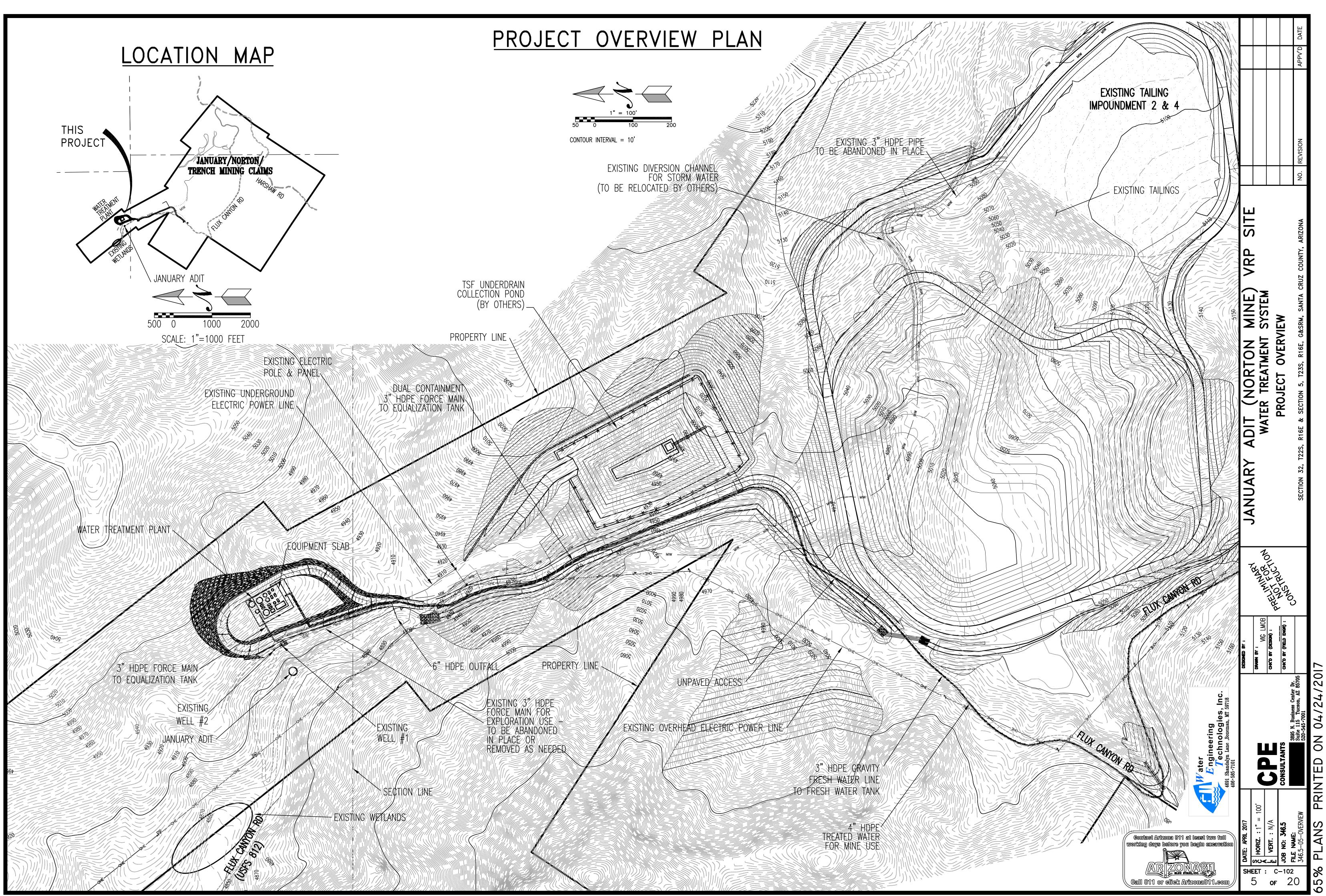
INSTRUMENT IDENTIFICATION LETTERS

		CATION LETTER		
FIRST LETTER		SUCCEEDING LETTERS		
OR INITIATING VARIABLE	MODIFIER	READOUT OR PASSIVE FUNCTION	OUTPUT FUNCTION	MODIFIER
		ALARM		
ME, COMBUSTION		USER'S CHOICE	USER'S CHOICE	USER'S CHOICE
XE (TYPICALLY Y - ELECTRICAL)			CONTROL	CLOSED
E (TYPICALLY DENSITY GRAVITY)	DIFFERENTIAL			DIVERT
		SENSOR (PRIMARY ELEMENT)		
	RATIO (FRACTION)			
E OR GA UGING _)		GLASS, VIEWING DEVICE		
				HIGH
ECTRICAL)		INDICATE		
	SCAN			
HEDULE	TIME RATE OF CHANGE		CONTROL STATION	
		LIGHT		LOW
E (TYPICALLY HUMIDITY)	MOMENTARY			MIDDLE, INTERMEDIATE
E		USER'S CHOICE	USER'S CHOICE	USER'S CHOICE
Æ		ORIFICE, RESTRICTION		OPEN
ACUUM		POINT (TEST) CONNECTION		
R HEAT DUTY	INTEGRATE, TOTALIZE			
		RECORD		
JENCY	SAFETY		SWITCH	
E			TRANSMIT	TRANSMIT
LE		MULTIFUNCTION	MULTIFUNCTION	MULTIFUNCTION
ECHANICAL ANALYSIS			VALVE, DAMPER, LOUVER	
Œ		WELL		
)	XAXIS	UNCLASSIFIED	UNCLA SSIFIED	UNCLA SSIFIED
E OR PRESENCE	Y AXIS		RELAY, COMPUTE, CONVERT	
ENSION	ZAXIS		DRIVER, ACTUATOR, UNCLASSIFIED FINAL	

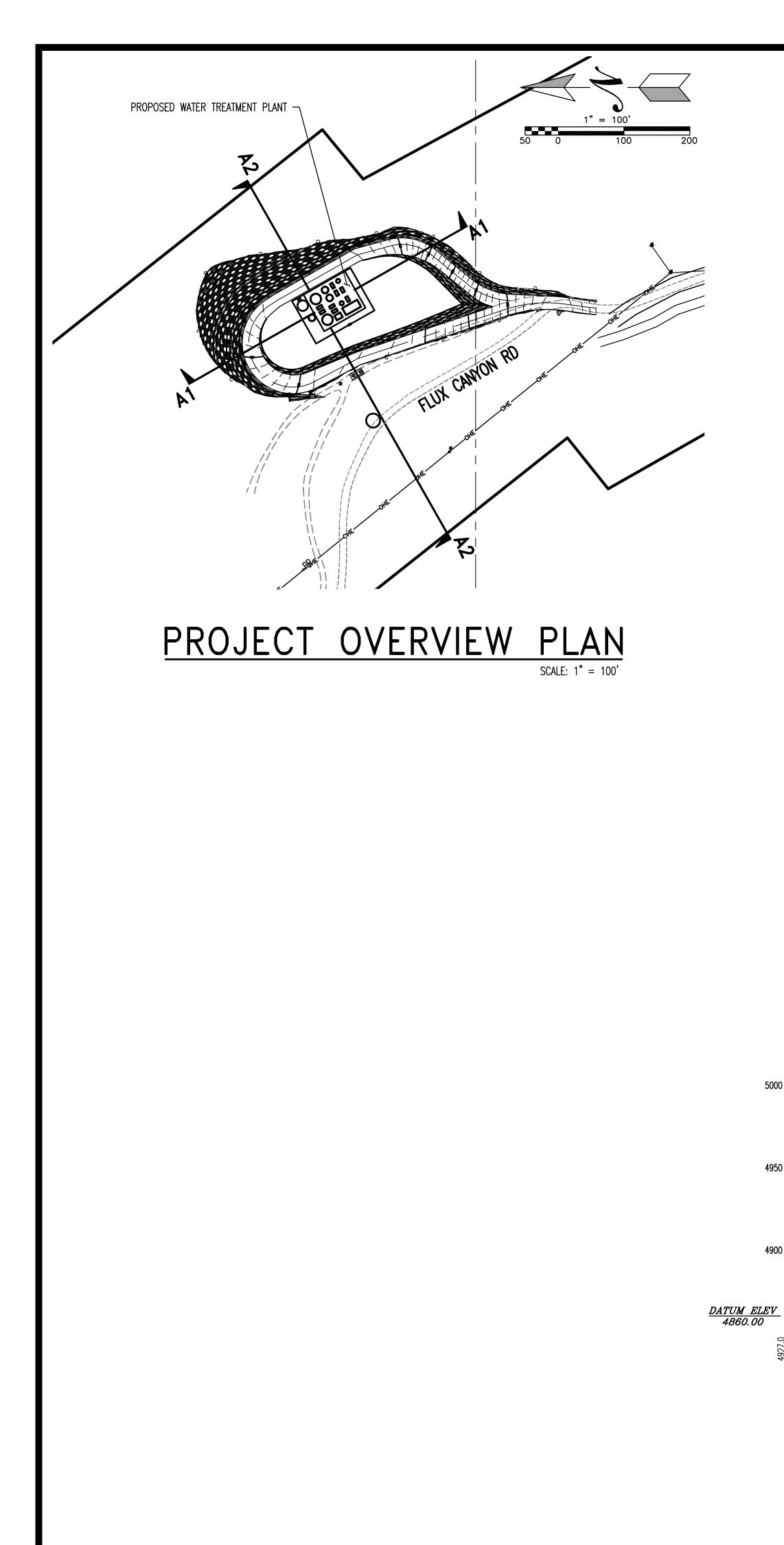
LEGEND

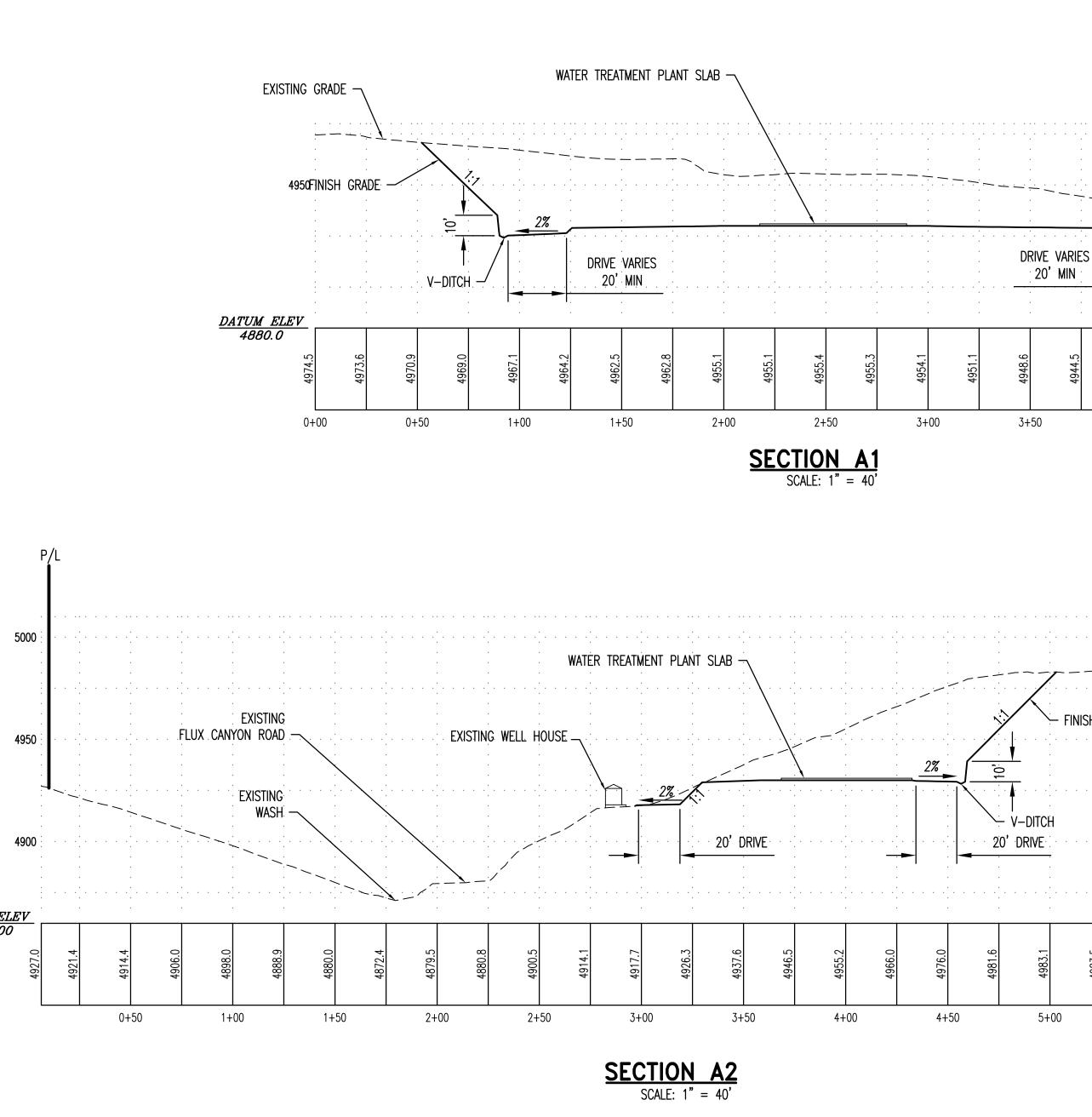
BENCH MARK PROPERTY LINE SECTION LINE UNPAVED ROAD INDEX CONTOUR INTERMEDIATE CONTOUR FENCE POWER/UTILITY POLE OVERHEAD POWER LINE UNDERGROUND ELECTRIC MINE INFLUENCED WATER PROCESS PIPING SEEP WATER MAIN – 4" HDPE Well water main — 3" HDPE FRESH WATER MAIN – 3" HDPE CLEANOUT FLOW METER WATER VALVE CONCRETE VAULT DRAINAGE PIPE CULVERT RIP-RAP GRADE LOW POINT HIGH POINT STORM WATER FLOW DIRECTION SPOT ELEVATION SLOPE AND DIRECTION ARROW — GRADING LIMIT – DAYLIGHT LINE (FILL AREA) DETAIL NUMBER/SHEET NUMBER

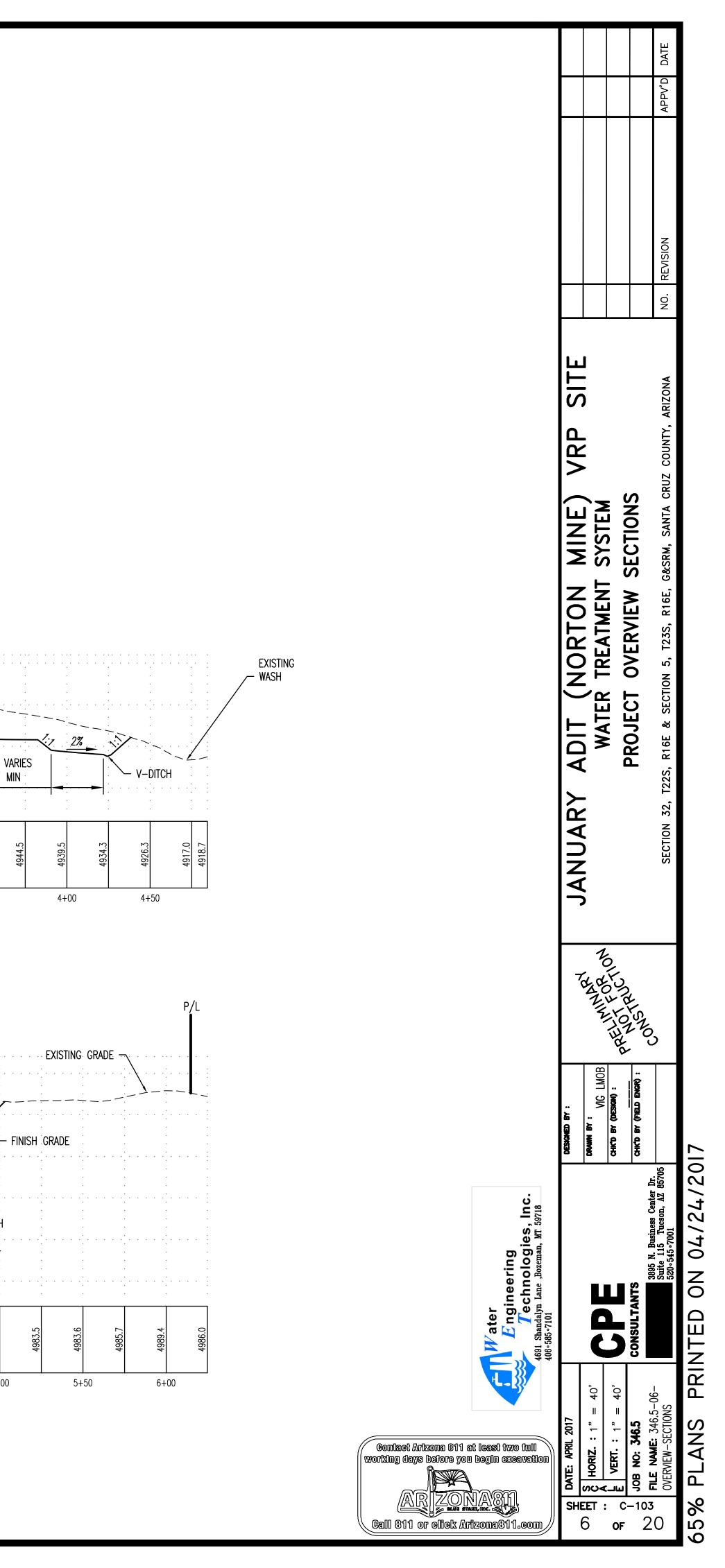

× (5000.2)

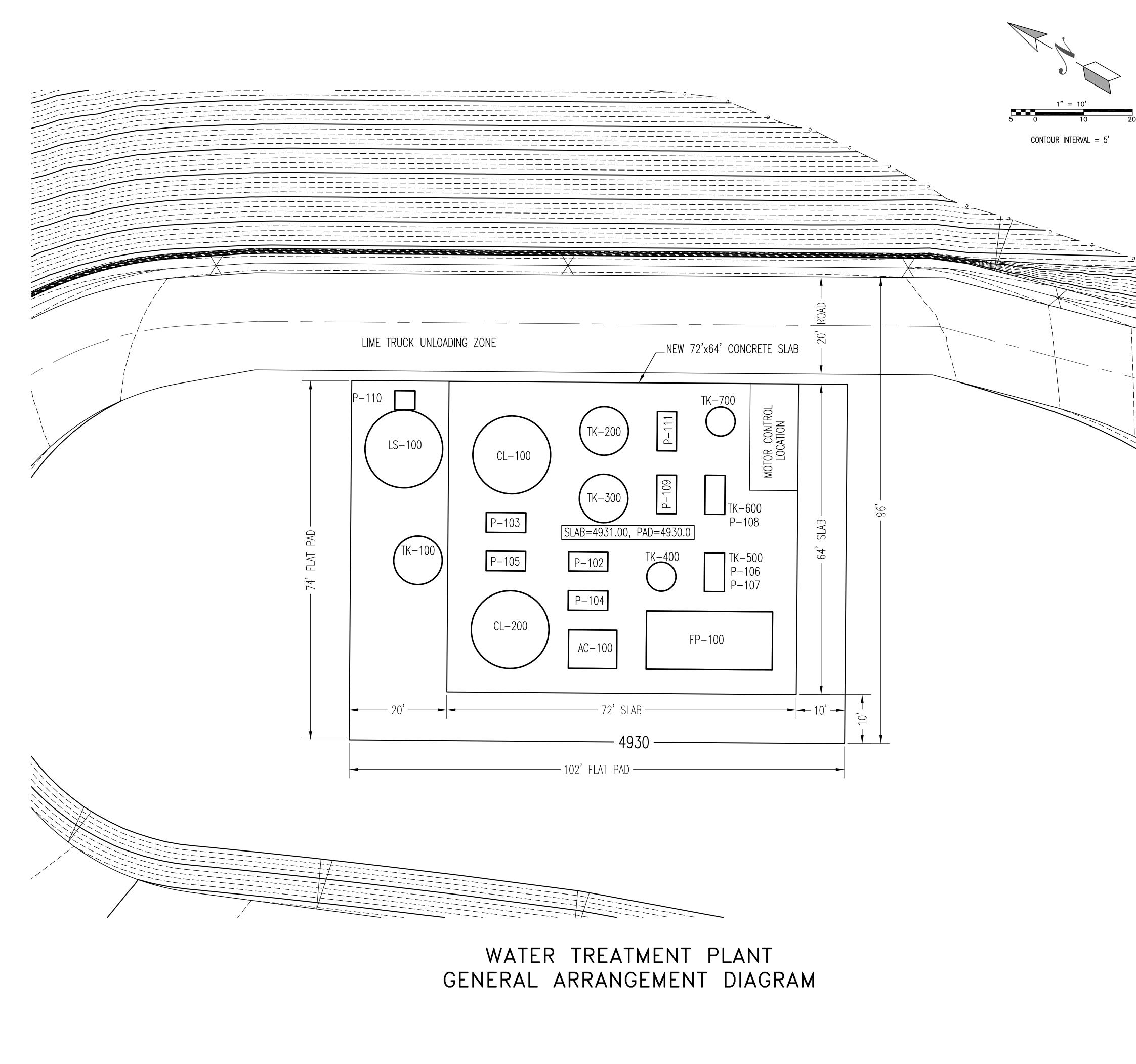

SITE ——— MIW ———— MIW ——— VRP MINE) SYSTEM LEGEND ADIT (NORTON WATER TREATMENT ABBREVIATIONS AND

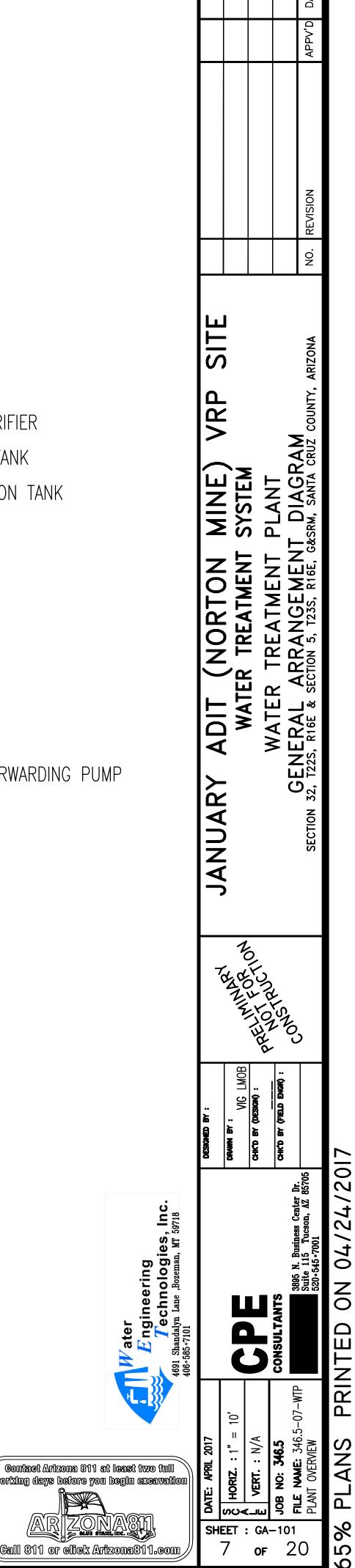
≻

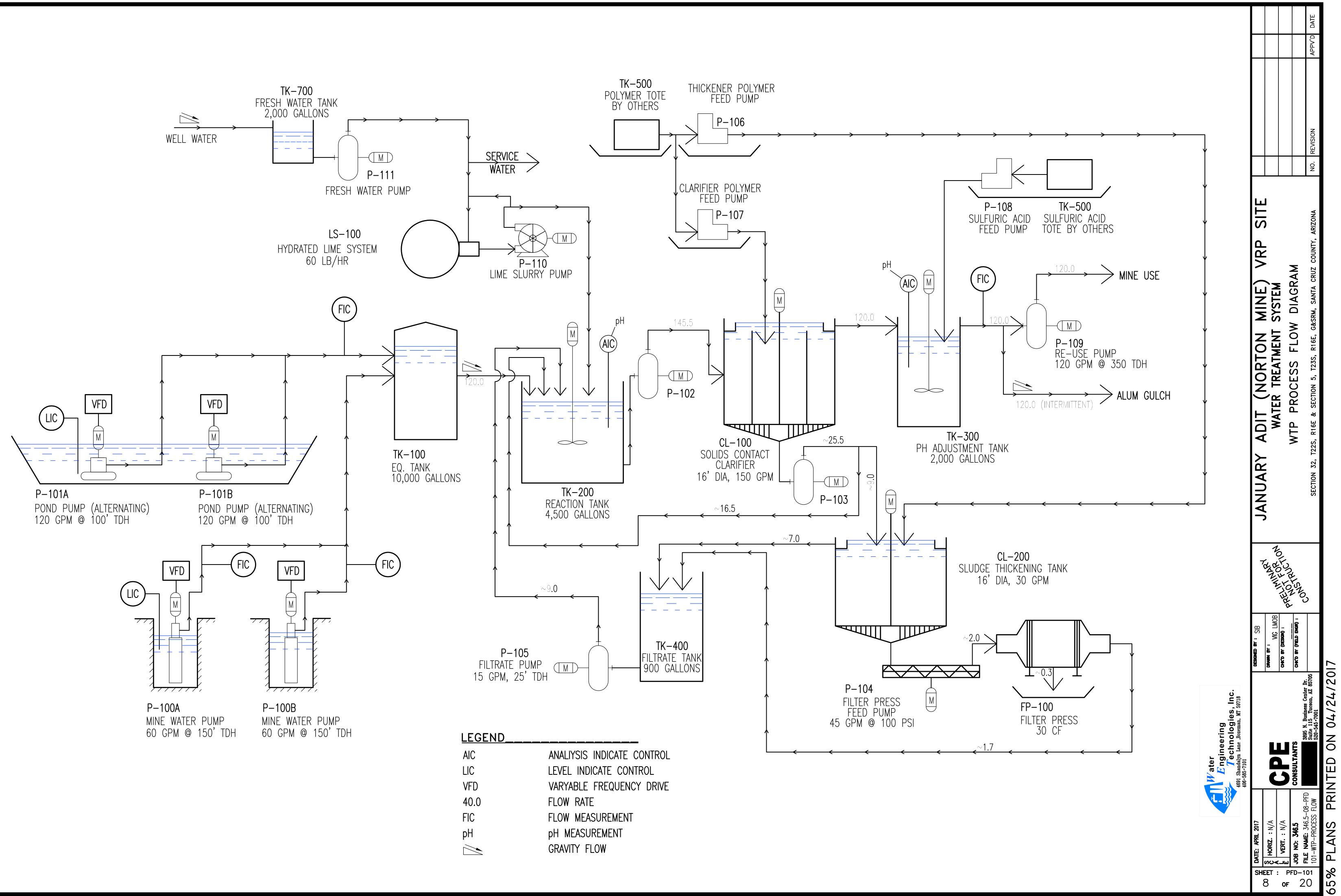

JANUAR MINKRY NOLOGION , Inc 59718 n. MT eering inolog ate <u>E</u>n Comtact Arizona 811 at least two full working days before you begin excavation ທິດ∢−າ SHEET : G-003 BLUB STAKE, OKC. 3 20 Call 811 or ellek Arizona 811.com OF

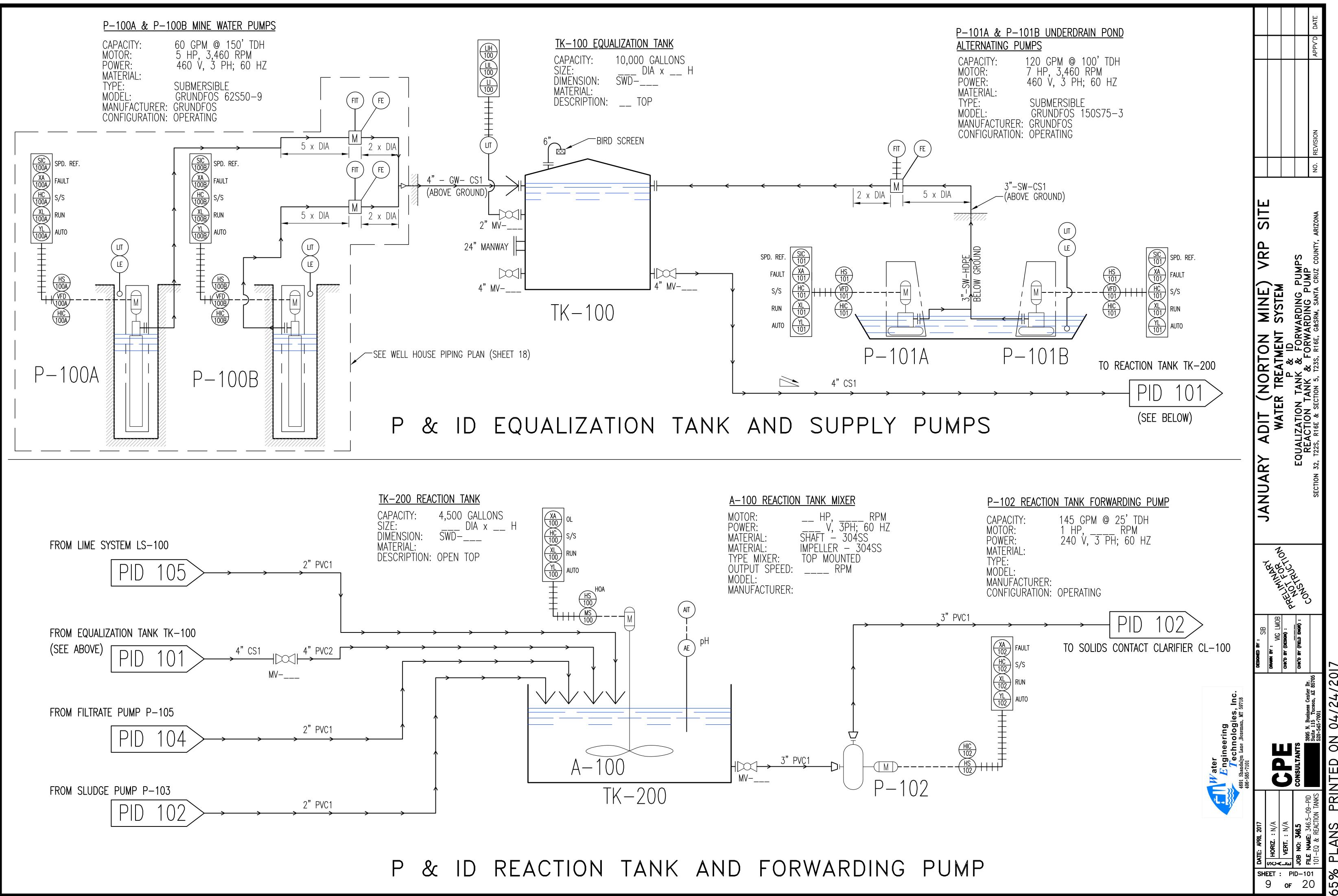

201 NO \square PRINTE ANS 65%



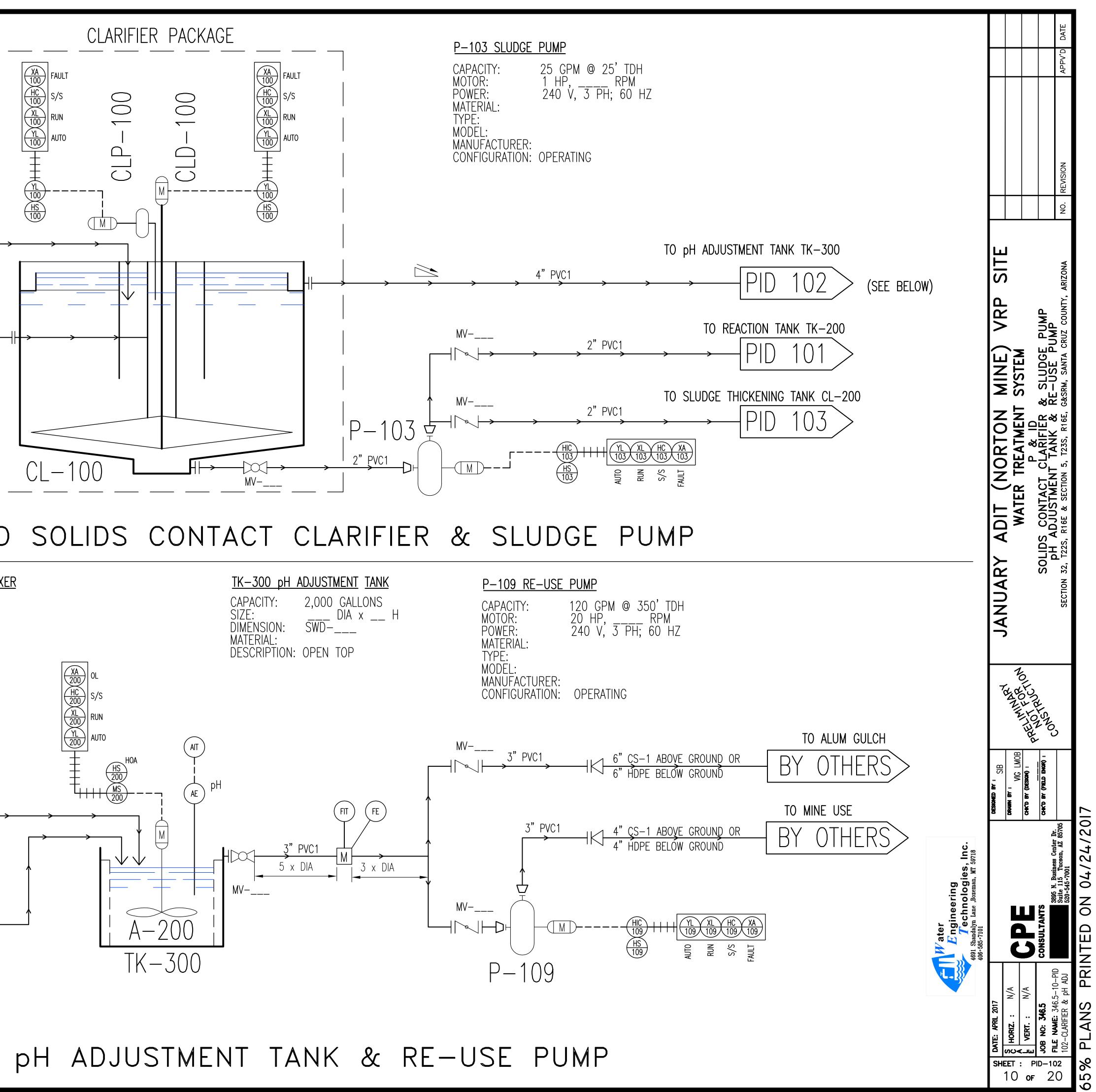


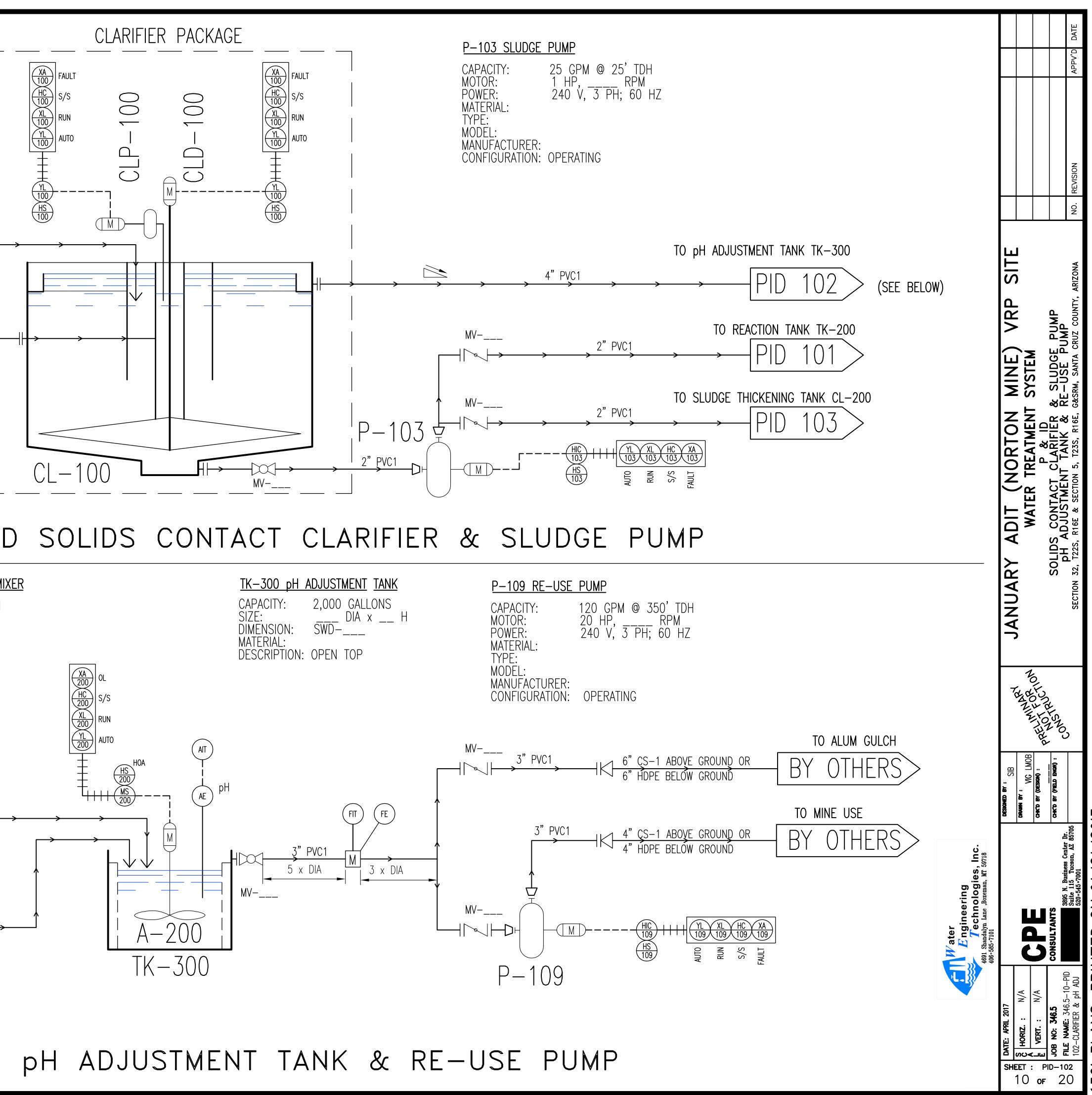

70 NO \square PRINTE ANS Γ

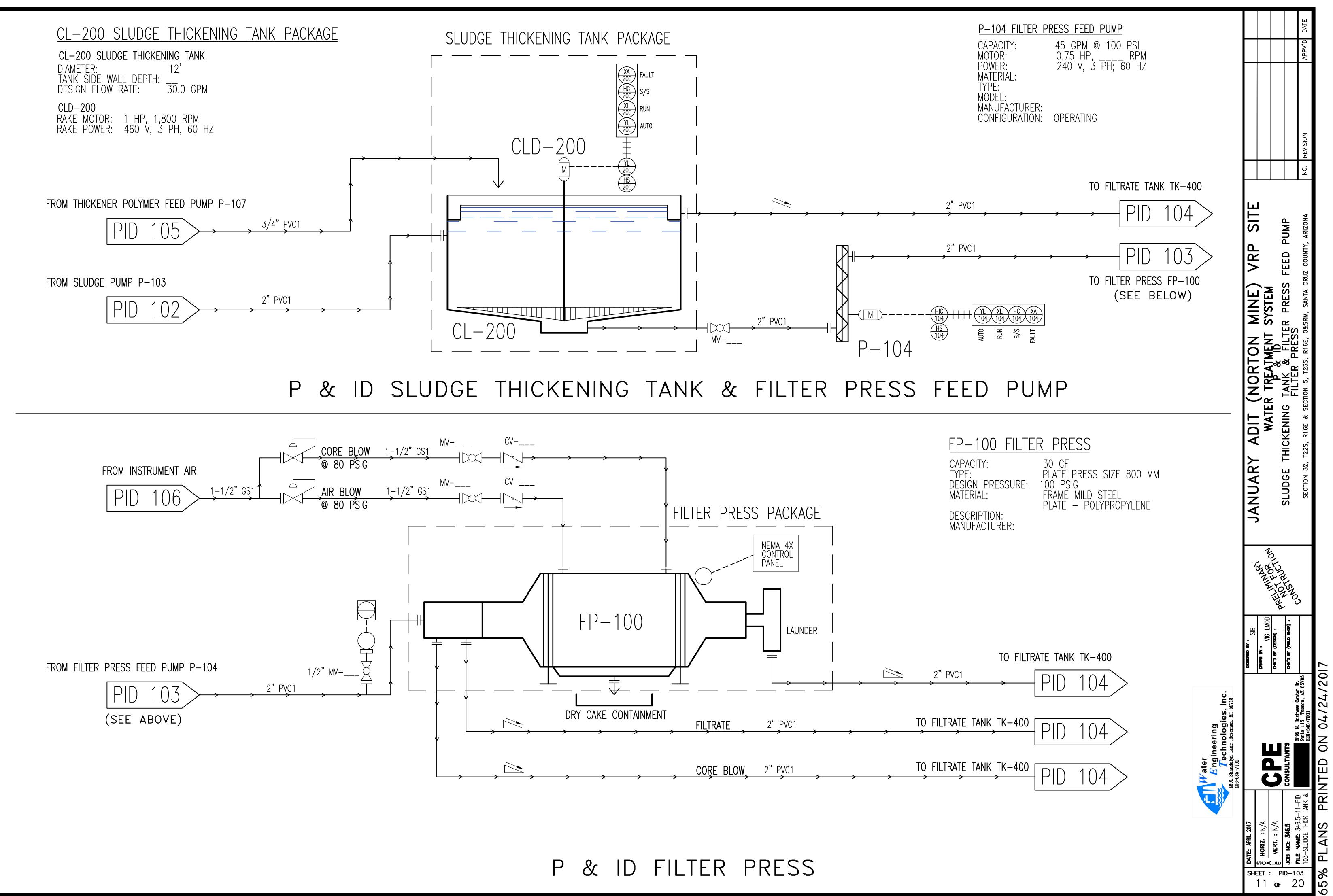



LEGEND

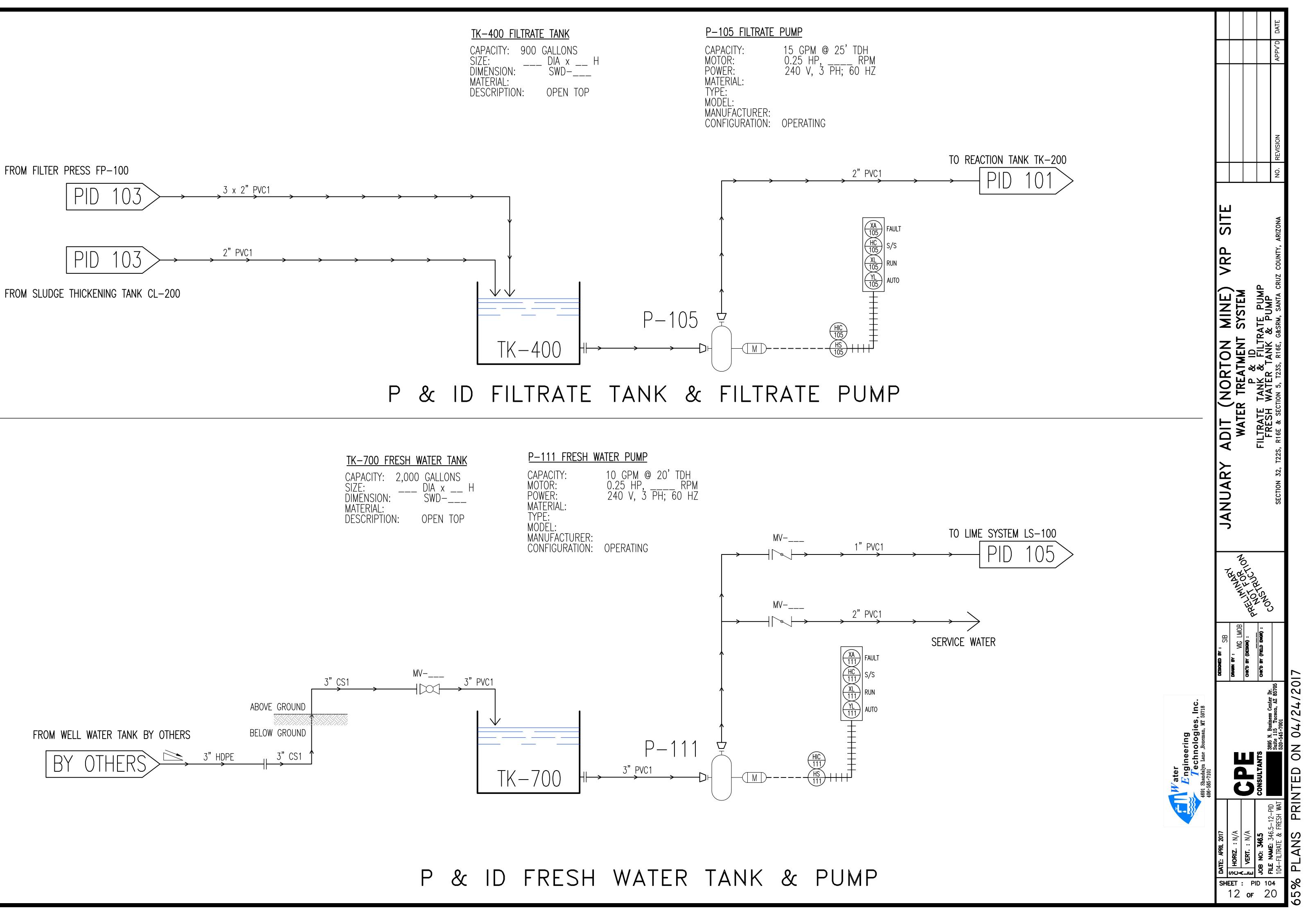
AC-100	AIR COMPRESSOR
FP-100	FILTER PRESS
CL-100	SOLIDS CONTACT CLARIFIER
CL-200	SLUDGE THICKENING TANK
LS-100	LIME SILO AND DILUTION TANK
TK-100	EQUALIZATION TANK
TK-200	REACTION TANK
TK-300	pH ADJUSTMENT TANK
TK-400	FILTRATE TANK
TK-500	POLYMER TOTES
TK-600	ACID TOTES
TK-700	FRESH WATER TANK
P-102	REACTION TANK & FORWARDING PUMP
P-103	SLUDGE PUMP
P-104	FILTER PRESS PUMP
P-105	FILTRATE PUMP
P-106	POLYMER FEED PUMP
P-107	POLYMER FEED PUMP
P-108	ACID FEED PUMP
P-109	RE-USE PUMP
P-110	LIME SLURRY PUMP
P-111	FRESH WATER PUMP


рН	pH MEASUREMEN
	GRAVITY FLOW

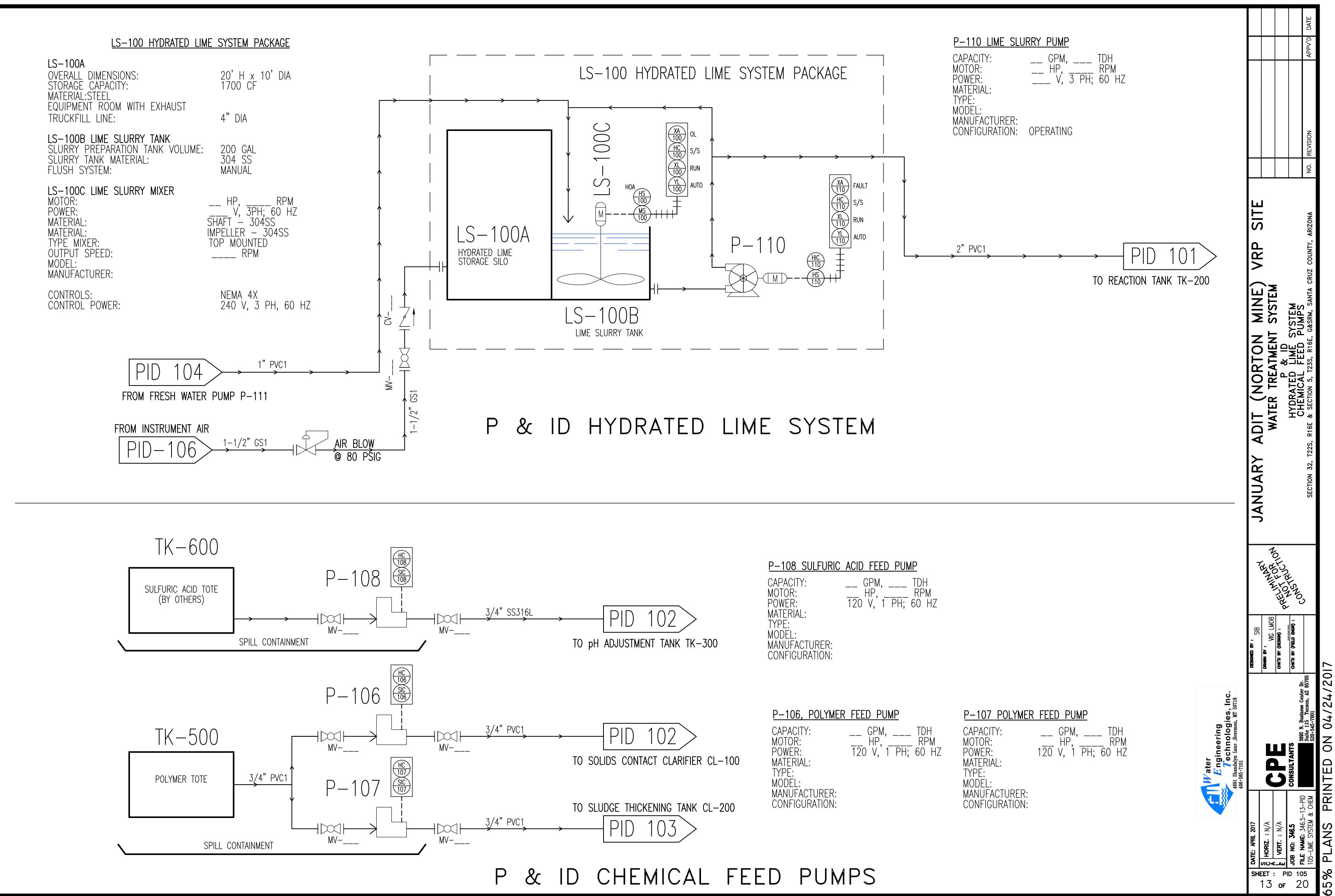

NO \square PRINTEI ANS


RINT വ

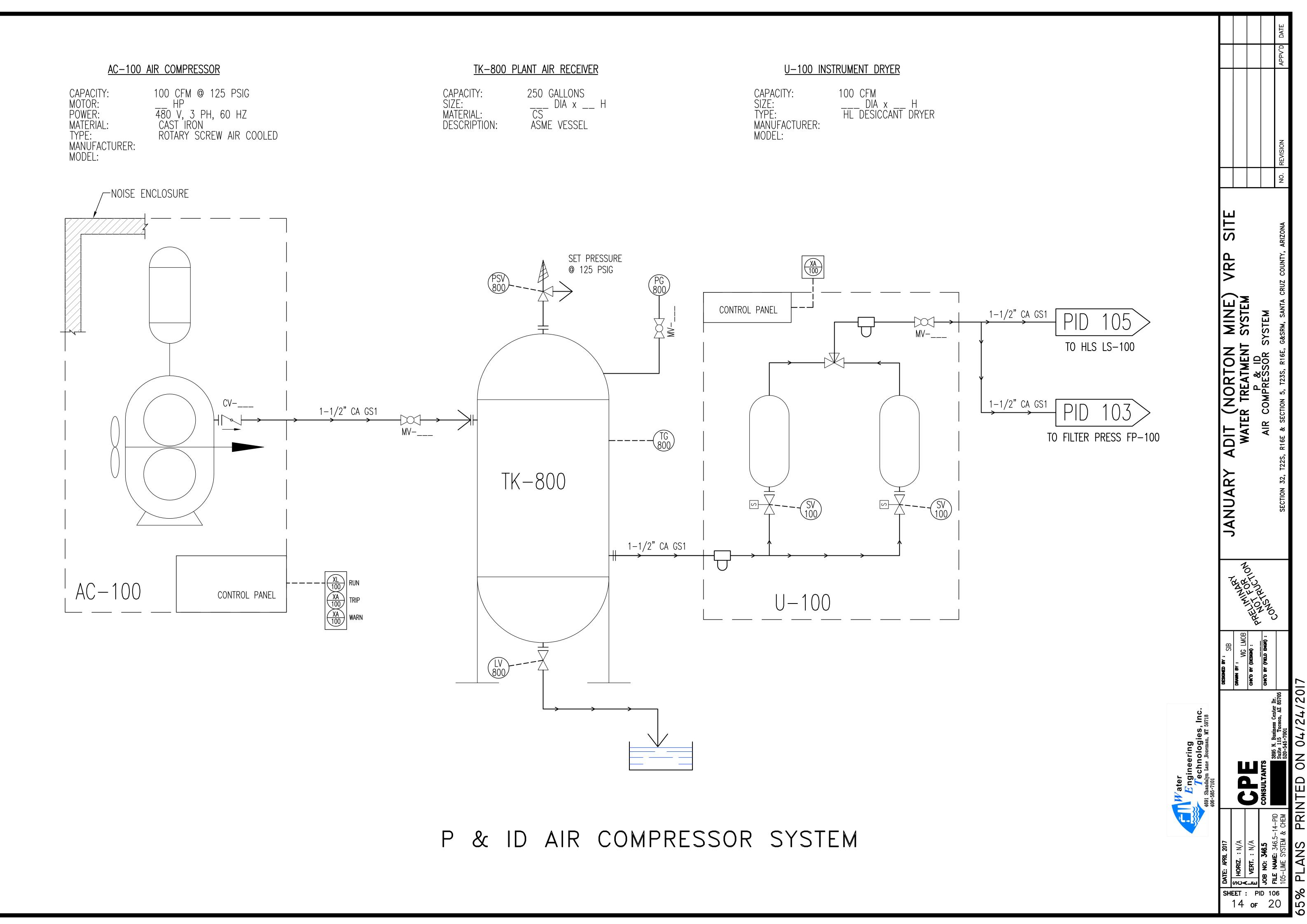
3/4" PVC1
3" PVC1
A-200 pH ADJUSTMENT TANK MOTOR:HP,R POWER:V, 3PH; 60 H MATERIAL: SHAFT - 304SS MATERIAL: IMPELLER - 304SS TYPE MIXER: OUTPUT SPEED: MODEL: MANUFACTURER:
3/4"SS316L
4" PVC1



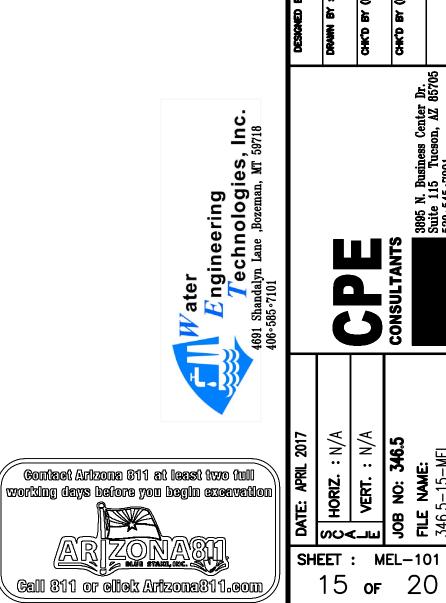
PRINTEI



PRINTE



	<u> </u>
	ABOVE GROUND
FROM WELL WATER TANK BY OTHERS	BELOW GROUND
BY OTHERS	3" HDPE 3" CS1


PRINTE

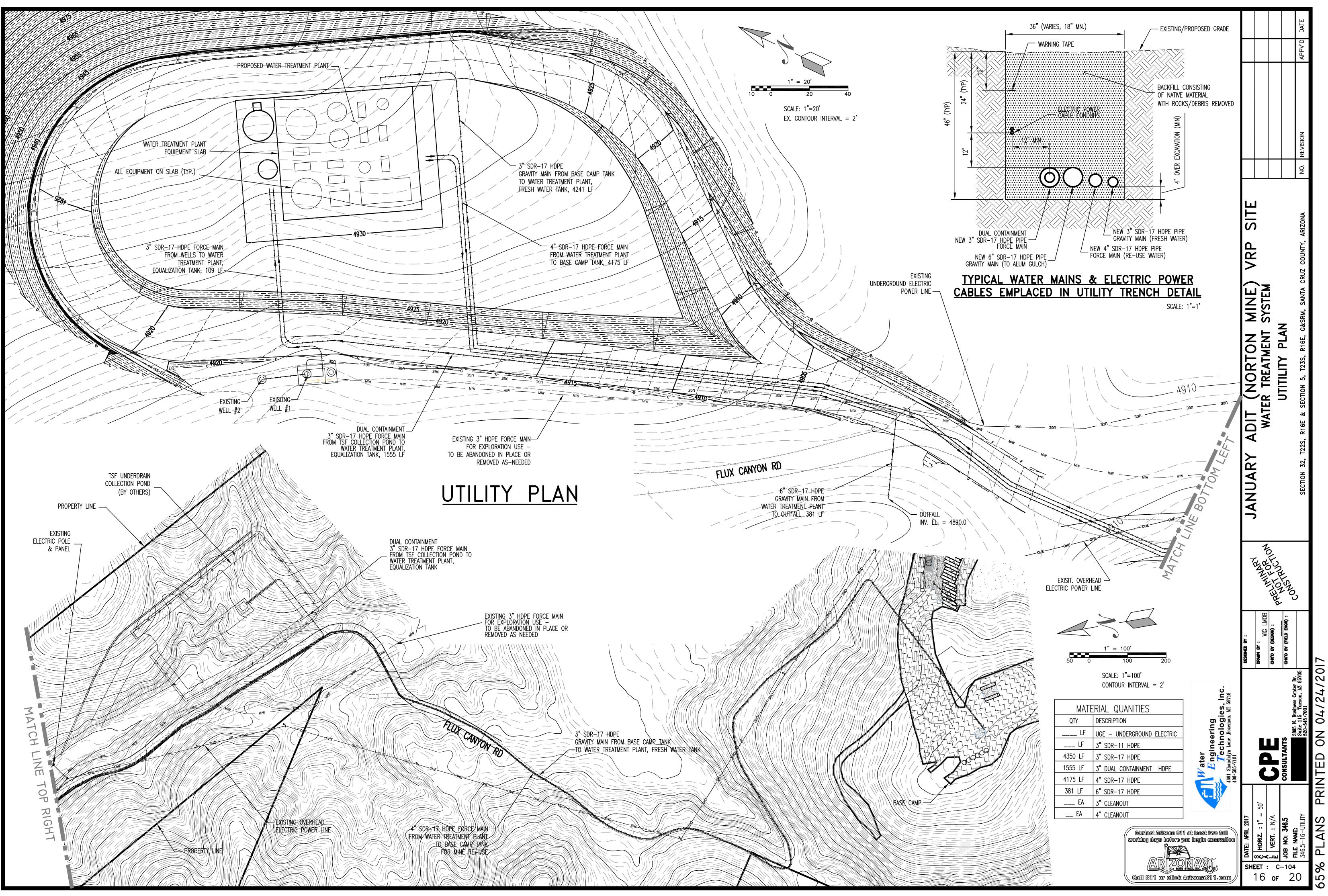
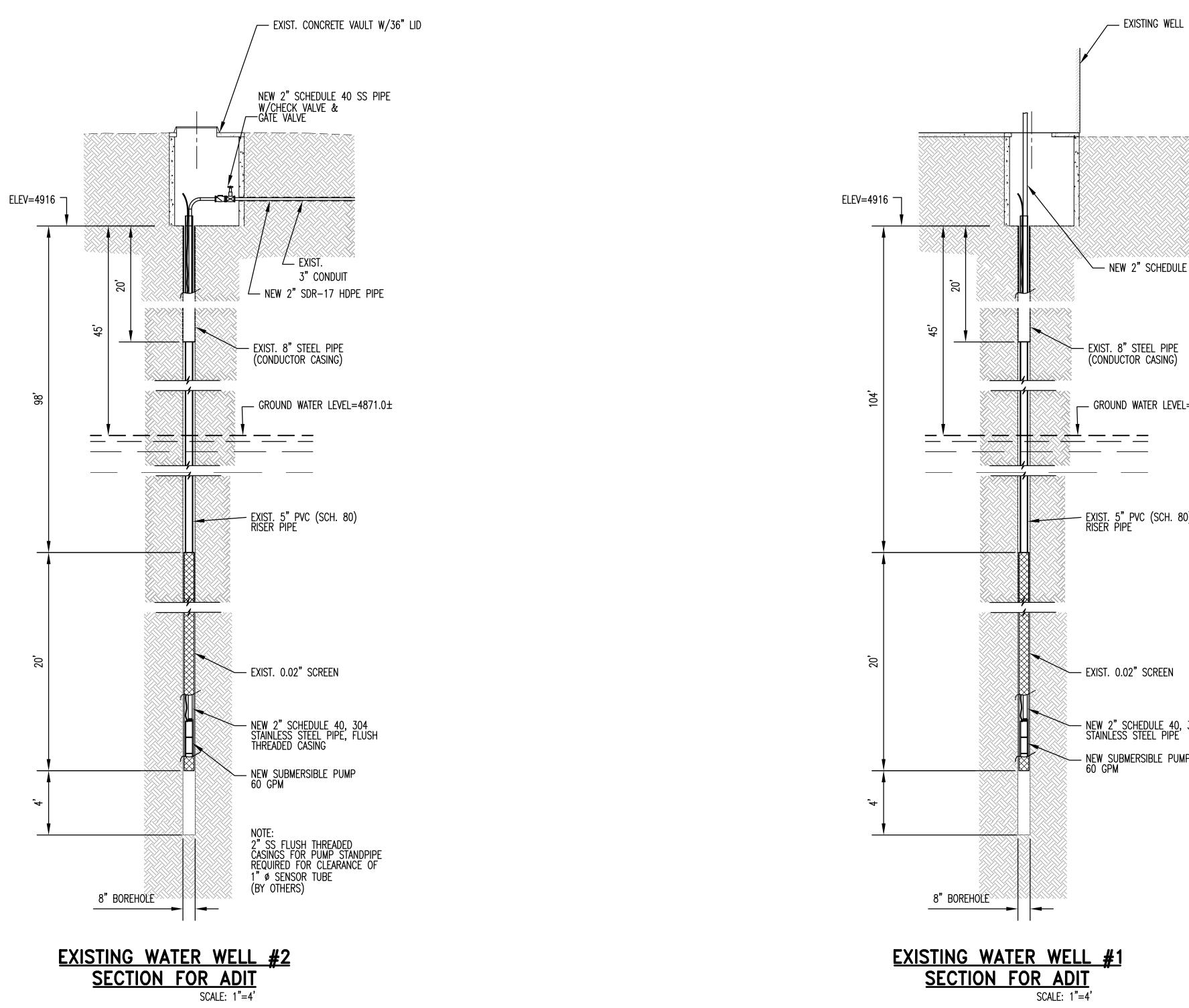
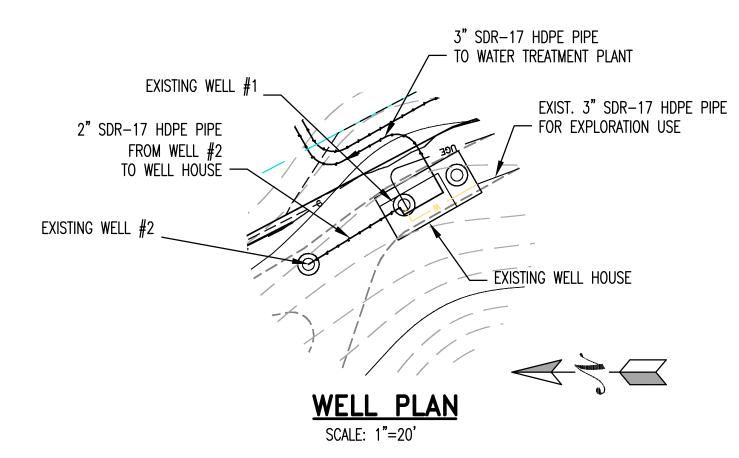
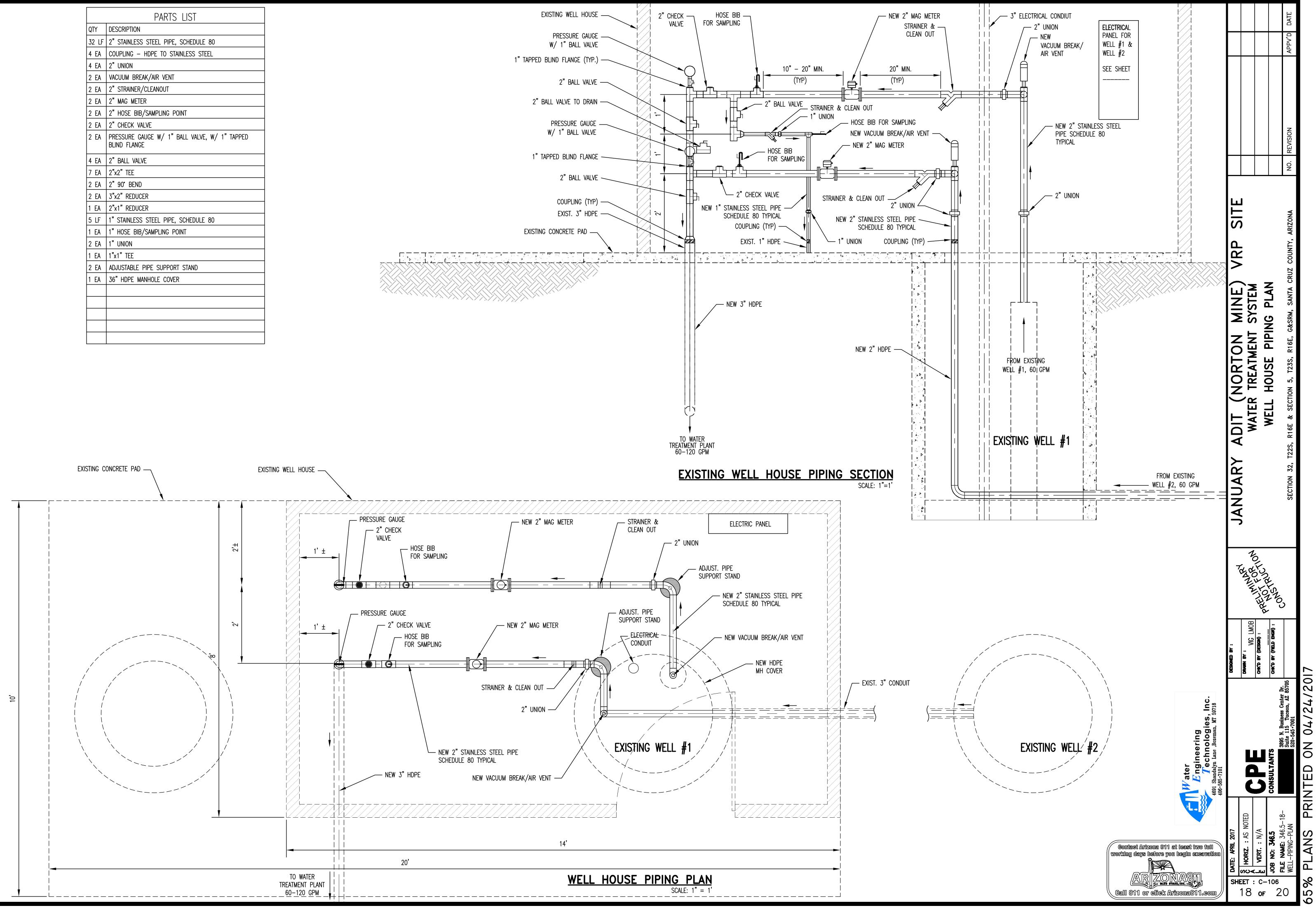


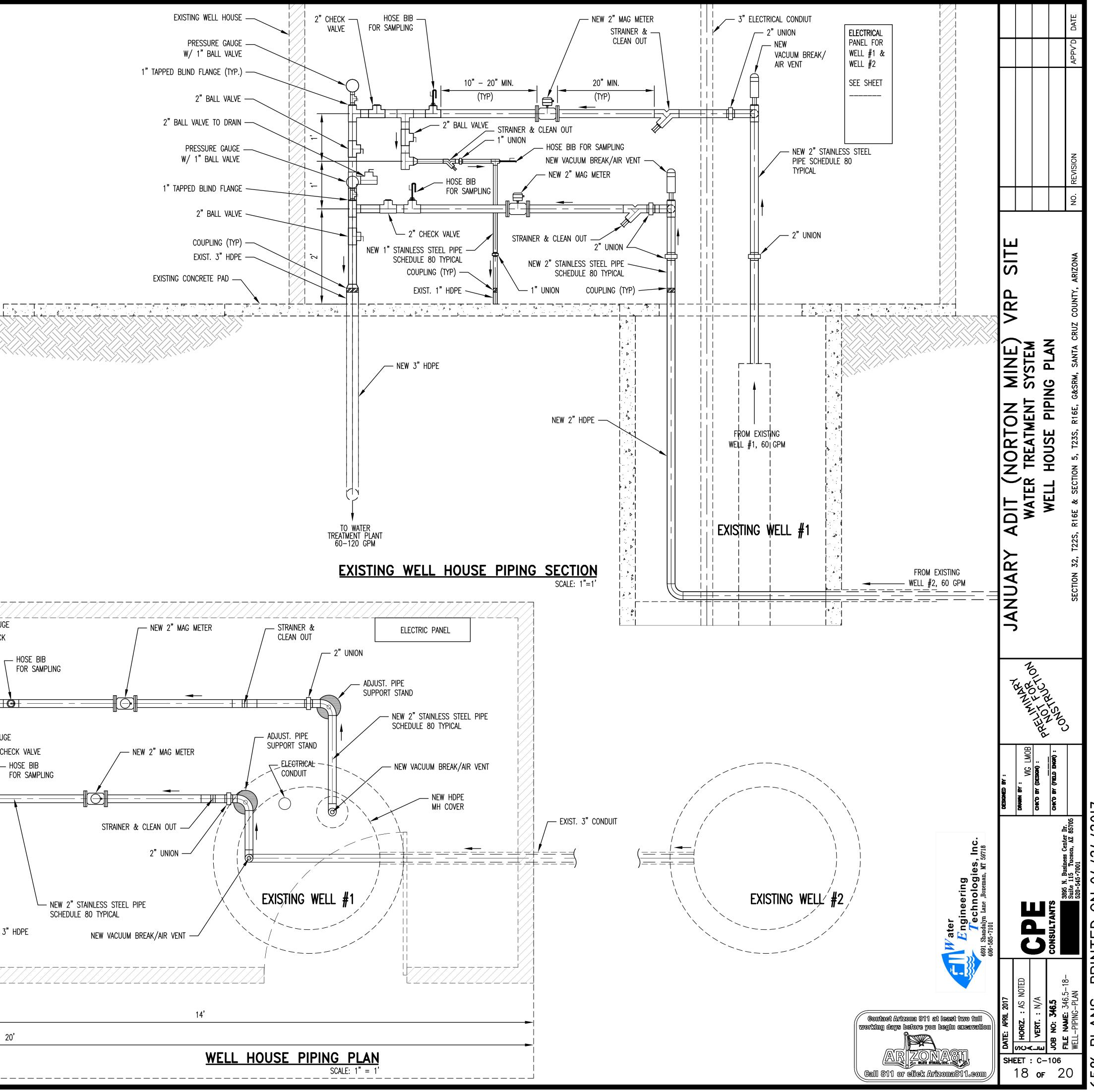
Image: second	A U-100	A AC-100 A TK-800	A P-107	A TK-500 A P-106	A P-108	A P-110 A TK-600	A LS-100	A LS-100	A LS-100 A LS-100	A P-111	А ТК-700	A P-105	A FP-100 A TK-400	A P-104	A CLD-20	A CL-200	A P-109	A A-200	A TK-300	A CLP-10	A CLD-10 A CLP-10	A CL-100	A P-102	A A-100	A TK-200	A P-101	A P-100A, P- A TK-100	REV NO. EQUIPMEN				
Experience Experience Register	INSTRUMENT DRYER	AIR RECEIVER TANK	THICKENER POLYMER FEED PUMP		SULFURIC ACID FEED PUMP									FILTER PRESS FEED PUMP		THICKENING TANK	RE-USE PUMP	pH ADJUSTMENT TANK MIXER			Excellence of the second second second second second second second second				NOT DEPCT A SYSTEM PROTOCOLOGICAL STATE AND A STATE AN			NO. EQUIPMENT DESCRIPTION				
Image Humber Pace Pace <	DESICCANT DRYER	ASME VESSEL	DIAPHRAM METERING PUMP PRE-PIPED AND PRE-WIRED	DIAPHRAM METERING PUMP	DIAPHRAM METERING PUMP									PRUGRESSIVE CAVITY		LIQUID/SOLIDS SEPARATION	HORIZONTAL CENTRIFUGAL	AGITATOR			NE WAR FLAAF HODIN HER HER PERCENT OF AN AN AND THE TAXABLE OF THE PERCENT OF AN AN AND THE PERCENT OF A TAXABLE OF A TAXA		HORIZONTAL CENTRIFUGAL	AGITATOR				EQUIPMENT TYPE				
Distributive Particity Particity Parity Particity Parity	100 CFM	250 GAL	0.5 GPH @ 50 PSIG		1.5 GPH @ 50 PSIG				2		2,000 GAL			45 GPINI @ 100 PSI		30 GPM/10,000 GAL	120 GPM @ 350 FT TDH	N/A		50527004 N			145 GPM @ 25 FT TDH	N/A			EACH	CAPACITY/MISC. INFO.				
Parter Pre-Turnet Dock/strip Dist frage Dist frage<	TBD	TBD	TBD		TBD									IRD		TBD	TBD	TBD		1	CALOUNDA N		TBD	TBD			527 AL 400 (1917) (1	1.2				
PRIME OPECHADIA DODELNTIF DUST, PARA PLAN	106	106	105		105	10000								103		103	102	102				102	101	101			S Nach Contraine	P&ID NO.				
STATUMEN MOGL/AL/ Bigs Disk TRP. Bigs	Α	A A	A	Α Δ	A	A A	A	<u> </u>	A A	A	A	A	A A	A	A	А	А	А	A	A	A	А	А	А	A	A .	A	P&ID REV.				
Non-construction Display Res. Display R	TBD	TBD	TBD		TBD	10202								IRD		TBD		TBD	Transmotic .		Santagradia and Baltis	TBD	TBD	TBD			We say a We Product starting	SPEC NUMBER	MECH			
DESCN TEMP. DATEBIAL OF CONSTRUCTION PUMP DIF. HEAD MOTOR BATM VTD VOIL/PHASE/NE DIMENSIONS RESCH.7 (p.id) AVMENT STR. N/A N/A N/A N/A TDD TECHNICAL NOTES N/A AVMENT STR. N/A N/A N/A N/A TDD TDD TDD AVMENT STR. N/A N/A N/A N/A TDD TDD TDD AVMENT STR. N/A N/A N/A N/A TDD TDD N/A AVMENT STR. N/A N/A N/A N/A TDD TDD N/A AVMENT STR.S N/A N/A N/A N/A STR TDD TDD N/A AVMENT STR.S N/A N/A N/A N/A STR TDD	TBD	TBD	TBD		TBD	20239	-81479-578							180				X6Q150/1.5 HP/LIGHTIN			501000.0005	FT/TBD	ECONOMIA AND A CONTRACT AND ADDRESS AND ADDRESS AND	14Q2/2 HP/LIGHTIN				47 (125)	ΙΔΝΙΩΔΙ Ε(
S DSSON TIME Internal of construction PLUMP DIFE. HEAD (10) MOTOR BATING (10) VED VOLT/PHASE/HZ DIMERSION WEIGHT AMU TIMT 304.55 100 57/460 V/S 450/200 TD TD AMU TIMT 304.55 100 77/460 V/S 450/200 TDD TD AMU BIMT 304.35 100 77/460 V/S 450/200 TDD TD AMU SIMT TBD N/A V/A N/A N/A N/A N/A AMU SIMT TBD N/A 7/2400 NO 236/3/00 TDD TD AMU SIMT 316.55 N/A 7/1200 NO 236/3/00 TDD TD TD AMU SIMT 316.55 N/A 7/1200 NO 456/3/00 TDD TD NO 456/3/00 TDD TD NO 456/3/00 TD NO 456/3/00 TDD NO 150/2 NO 150/2 NO 150/2	125	125	TBD		TBD		1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -			-				100		N/A	TBD	N/A		A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	2	N/A	TBD	N/A								
MATERIAL OF CONSTRUCTION PLMP DIF, HEAD (th) MOTOR BATING IMP/PMM V/FD VOIT/PHASE/AIZ DIMENSIONS WIGHT (thy) TECHNICAL NOTES 314 SS 130 57/1460 YFS 460/1/60 TD TD TD 314 SS 100 7/24.00 YFS 460/1/60 TD TD TD 304 SS 100 7/24.00 YFS 460/1/60 TD TD TD 700 N/A X/A N/A N/A TD TD TD 316 SS N/A Z/1200 NO 220/1/60 TD TD TD 304 SS N/A Z/1200 NO 220/1/60 TD TD TD 304 SS N/A J/A N/A N/A N/A TD TD TD 304 SS N/A J/A N/A N/A N/A TD TD TD TD 304 SS N/A J/A N/A N/A N/A N/A <	AMBIENT	AMBIENT	AMBIENT		AMBIENT									AIVIBIENT		AMBIENT	AMBIENT	AMBIENT			and developed and the second second		AMBIENT	AMBIENT				(F)	MENT I			
(ft) HP/RPM VFD VOLT/PHASE/HZ DIMENSIONS (lbs) TECHNICAL NOTES 150 5/1460 YES 460/3/60 TBD TBD 100 7/3460 YES 460/3/60 TBD TBD 101 N/A N/A N/A TBD TBD 17BD 1/TBD NO 240/3/60 TBD N/A INCLUDED IN CLARIPLE PACKAGE N/A N/A N/A N/A TBD INCLUDED IN CLARIPLE PACKAGE N/A N/A N/A N/A TBD INCLUDED IN CLARIPLE PACKAGE N/A 1/TBD NO 240/3/60 TBD N/A N/A N/A N/A N/A TBD	TBD	CS	PVC		PVC		6.00000 to 20020							304 55		304 SS	304 SS	316 SS			CONTRACT STREAM M		TBD	316 SS				MATERIAL OF CONSTRUCTION	TZI			
HP/RPM VFD VOLT/PHASE/HZ DIMENSIONS (Ibs) TECHNICAL NOTES 5/3450 YES 460/3/60 TBD TBD TBD TBD N/A N/A N/A TBD TBD TBD TBD 7/3450 YES 460/3/60 TBD TBD TBD TBD N/A N/A N/A TBD TBD TBD TBD TBD 1/7BD NO 220/3/50 38"IMPELLER DIA TBD TBD TBD 1/TBD NO 220/3/50 TBD TBD TBD TBD 1/TBD NO 240/3/60 TBD N/A INCLUDED IN CLARIFIER PACKAGE 1/TBD NO 240/3/60 TBD N/A INCLUDED IN CLARIFIER PACKAGE 1/TBD N/A N/A TBD TBD INCLUDED IN CLARIFIER PACKAGE 1/TBD N/A N/A TBD TBD INCLUDED IN CLARIFIER PACKAGE 1/TBD N/A N/A TBD T	N/A	N/A	TBD		TBD		19 A 00 B				1	1		IRD		N/A	TBD	N/A				N/A	TBD	N/A	CONTRACTOR TELEVISION		all all and the second second					
VFD VOLT/PHASE/HZ DIMENSIONS (lbs) TECHNICAL NOTES YES 460/3/60 TBD TBD YES 460/3/60 TBD TBD YES 460/3/60 TBD TBD N/A N/A TBD TBD N/A N/A TBD TBD N/A N/A TBD TBD NO 230/3/60 TBD TBD NO 460/3/60 TBD TBD N/A N/A	N/A	TBD	TBD	1990 - 746 57	TBD			-1			N/A			U.75/IBD		N/A	20/TBD	1.5/1725		1/TBD	1/1800	100/40 701 81	1/TBD	2/1200	interio alla		and the second sec					
VOLT/PHASE/HZ DIMENSIONS (Ibs) TECHNICAL NOTES 460/3/60 TBD TBD TBD N/A TBD TBD TBD 460/3/60 TBD TBD TBD N/A TBD TBD TBD N/A TBD TBD TBD 230/3/50 38" IMPELLER DIA TBD TBD 240/3/60 TBD TBD TBD N/A TBD TBD INCLUDED IN CLARIFIER PACKAGE 4460/3/60 TBD N/A INCLUDED IN CLARIFIER PACKAGE 240/3/60 TBD TBD INCLUDED IN THICKENER PACKAGE N/A TBD TBD INCL	N/A	N/A	NO	100 JUL 10	NO		2001	5.35					•	NU		NO	NO	NO	1000		1.000	N/A	NO	NO		~	a and a second s	VFD				
DIMENSIONS(Ibs)TECHNICAL NOTESTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDTBDSHAFT 2" x 68.5"38" IMPELLER DIATBDTBDTBDTBDTBDTBDTBDTBDTBDTBDN/AINCLUDED IN CLARIFIER PACKAGETBDN/AINCLUDED IN CLARIFIER PACKAGETBDN/AINCLUDED IN CLARIFIER PACKAGETBD <t< td=""><td>N/A</td><td>N/A</td><td>120/1/60</td><td>(12) • 12(10)</td><td>120/1/60</td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td>240/3/60</td><td></td><td>N/A</td><td>240/3/60</td><td>230/3/60</td><td></td><td>10 200</td><td>10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -</td><td></td><td>240/3/60</td><td>230/3/60</td><td></td><td></td><td>100</td><td>VOLT/PHASE/HZ</td><td></td><td></td><td></td><td></td></t<>	N/A	N/A	120/1/60	(12) • 12(10)	120/1/60					2				240/3/60		N/A	240/3/60	230/3/60		10 200	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		240/3/60	230/3/60			100	VOLT/PHASE/HZ				
(Ibs)TECHNICAL NOTESTBD	TBD	TBD	TBD		TBD		0.000							IRD		TBD	TBD		TBD		1. (1. (1. (1. (1. (1. (1. (1. (1. (1. (TBD	AND A REAL OF THE ADDRESS AND ADDRESS AND	TBD	1 1	2 1 1 10 10 10 10 10 10 10 10 10 10 10 10	DIMENSIONS				
INCLUDED IN CLARIFIER PACKAGE INCLUDED IN CLARIFIER PACKAGE INCLUDED IN THICKENER PACKAGE INCLUDED IN THICKENER PACKAGE INCLUDED IN LIME SYSTEM INCLUDED IN LIME SYSTEM INCLUDED IN LIME SYSTEM INCLUDED IN LIME SYSTEM	TBD	TBD	TBD		TBD							Decoloring and and		IRD		TBD	TBD	TBD	10.000	1000 B 2010 B	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1	TBD	TBD	TBD								
					> 92% SULFURIC ACID		INCLUDED IN LIME SYSTEM		INCLUDED IN LIME SYSTEM						INCLUDED IN THICKENER PACKAGE					INCLUDED IN CLARIFIER PACKAGE								TECHNICAL NOTES				
	 SECTIO	N 32,	T22S,	R16E	ه د ا		AN ION	5, IC∕			ار ۳	QUIPMEI s, rige, g	Z %	T L srm,	LIST (, san	TA CF	suz c	COUNT	۲ ک	RIZO	ONA			Öz		EVISIO	z		API	PC'D	DATE	

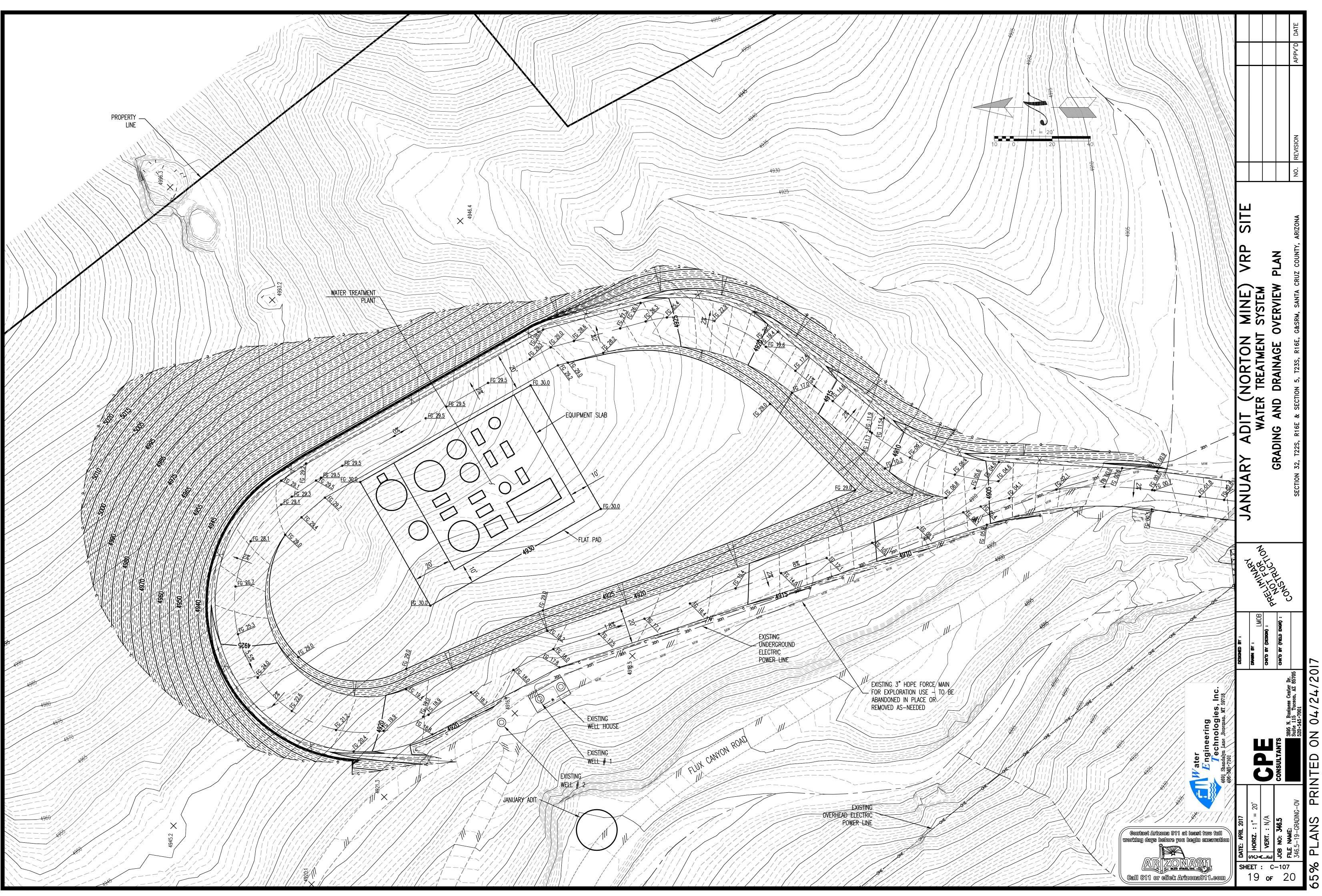




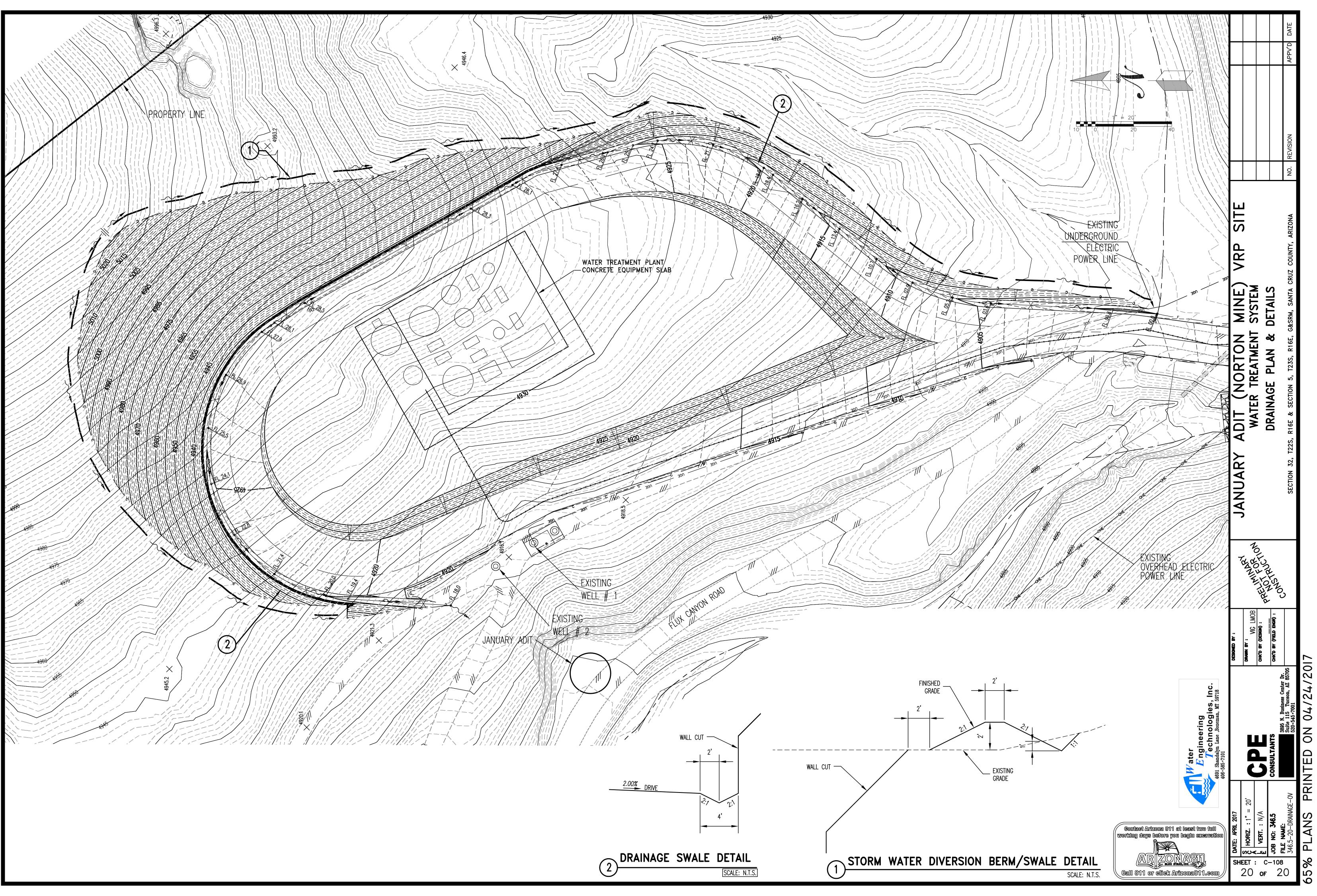
N/


NO PRINTEI %




					DATE	
					APPV'D	
					_	
					REVISION	
					NO.	
		1.1				
		SITE			ARIZONA	
ELL HOUSE						
		VRP		പ്	SANTA CRUZ COUNTY,	
Z VZ		Э	ĒN	ETAII	NTA CRL	
		MINE)	SYST	P D	srm, sal	
		z	K	PUN	6E, G&S	
		RTO	WATER TREATMENT	AND	T23S, R16E, G&SRM,	
ULE 40 SS PIPE		NOF NOF	TRE/	ELL		
		こ	TER	R	& SECTION 5,	
E)		ADIT	M	WATER WELL AND PUMP DETAILS	R16E	
VEL=4871.0±				>	, T22S,	
		JARY			SECTION 32,	
		JANUA			SEC	
80)		<u>ل</u>				
			10			
		Ta				
				UNALON HA	j.	
			VIG LMOB	chico By (Field Engr) :		
0, 304 E UMP						117
	ن _				3895 N. Business Center Dr. Suite 115 Tucson, AZ 85705 520-545-7001	4/24/2017
	ies, In . MT 59718				Business Ce 5 Tucson, 57001	4/21
	ering nolog				3895 N. Suite 11: 520-545-	0 NO
	Mater Engineering Technologies, Inc. 406-585 °7101		Ц О	CONSULTANTS		
	Eng 4691 Shandalyr			CONST		PRINTED
					ETAILS	PRI
	(Rombao) Antrono (011 of Loogi day 6-11	RL 2017	: AS NUIED	346.5	FILE NAME: 346.5–17–WELL–DETAILS	NS
		•	HORIZ. VERT.		71LE NAM	PLANS
	ARIZONASI		ו ר> ט ד: ד:			
	Gall 811 or elick Arizona 811. com		-		20	65%

	PARTS LIST
QTY	DESCRIPTION
32 LF	2" STAINLESS STEEL PIPE, SCHEDULE 80
4 EA	COUPLING – HDPE TO STAINLESS STEEL
4 EA	2" UNION
2 EA	VACUUM BREAK/AIR VENT
2 EA	2" STRAINER/CLEANOUT
2 EA	2" MAG METER
2 EA	2" HOSE BIB/SAMPLING POINT
2 EA	2" CHECK VALVE
2 EA	PRESSURE GAUGE W/ 1" BALL VALVE, W/ 1" TAPPED BLIND FLANGE
4 EA	2" BALL VALVE
7 EA	2"x2" TEE
2 EA	2"90 BEND
2 EA	3"x2" REDUCER
1 EA	2"x1" REDUCER
5 LF	1" STAINLESS STEEL PIPE, SCHEDULE 80
1 EA	1" HOSE BIB/SAMPLING POINT
2 EA	1" UNION
1 EA	1"x1" TEE
2 EA	ADJUSTABLE PIPE SUPPORT STAND
1 EA	36" HDPE MANHOLE COVER



RINT

24/ 04 NO PRINTED PLANS

NO PRINTED ANS Γ

APPENDIX B

EQUIPMENT DATA SHEETS

Water Engineering Technologies, Inc.

EQUIPMEN	T DATA SHEET		
DATE PROJECT		Arizona Minerals Inc Water T	reatment Plant
Equipment	Туре:	Agitator	
Item:		Reaction Tank Mixer	
Tag No.		A-100	-
M		1112.	
Manufacture Model		Lightin 14Q2	
Size		2 HP	
Mounting		Overhead, center	
RPM		1200	rpm
Design BHP		2	hp
Coupling Ty			-
Reaction Fo			
	Vertical (Direction)	1100	
	Bending Moment	15000	
Drive:	Torsional	3150	
Drive.	Reducer Model Number		
	Reducer Ratio	14.06	
	AGMA Service Rating	14.00	-
	V-Belt Sheaves		-
	Drive		
	Driven		-
	Electric Motor:		
	Manufacturer		
	HP RPM	1200	_hp
	Volts	230	
	Cycle	60	
	Phase	3	
	Temperature Rise (°C over 40 °C ambient)		
	Insulation Class		
	Enclosure	TEFC	
	Frame Size	184TC	<u>.</u>
	FLA		
Impeller:	Quantity	1	
	Diameter	38	
	Туре	A510E	
	Material	316 SS	-
	Lining		-
	Speed	84	rpm
Shaft:			
	Material	316 SS	
	Diameter		in
	Length Lining	68.5	_in
	Static Runout of Shaft		in/ft
Shaft/Impell	er will operate at % of the System Critical Frequency		
Seal Type			_
Lining:	List Rubber Specification Used		_
Weight:			
weigilt.	Shipping	464	lb
	Heaviest Item for Installation	464	
	Heaviest Item for Maintenance	464	
		-	-

DATE PROJECT		Arizona Minerals Inc Water T	reatment Plant
Equipment	а Туре:	Agitator	
Item:		pH Adjustment Tank Mixer	
Tag No.		A-200	
Manufacture Model	er	Lightin X6Q150	
Size		1.5 HP	
Mounting		Overhead, center	
RPM		1725	
Design BHF		1.5	hp
Coupling Ty			
Reaction Fo	Vertical (Direction)	510	lb
	Bending Moment	8700	
	Torsional		in-lb
Drive:			
	Reducer Model Number		
	Reducer Ratio AGMA Service Rating	6	
	V-Belt Sheaves		
	Drive		
	Driven		
	Electric Motor:		
	Manufacturer HP	1.5	bo
	RPM	1725	
	Volts	230	
	Cycle	60	-
	Phase	3	
	Temperature Rise (°C over 40 °C ambient) Insulation Class		°C
	Enclosure	TFEC	
	Frame Size		
	FLA		
Impeller:	Quantity	1	
	Diameter	19	in
	Туре	A310	
	Material	316 SS	
	Lining		
Shaft:	Speed	280	rpm
onan.	Material	316 SS	
	Diameter		in
	Length	56	in
	Lining Static Runout of Shaft		in/ft
Shaft/Impel	ler will operate at % of the System Critical Frequency		
Seal Type			
Lining:	List Rubber Specification Used		
Weight:			
vv cigi it.	Shipping	216	lb
	Heaviest Item for Installation	216	
	Heaviest Item for Maintenance	216	lb

DATE	10-Apr-17
PROJECT:	Arizona Minerals Inc Water Treatment Plant
EQUIPMENT TYPE	Solids Contact Clarifier
Item:	Mine water clarifier
Tag No.	CL-100
FUNCTIONAL DESCRIPTION	Liquid/solids separator to remove suspended solids from
	water stream
PROCESS DESIGN REQUIREMENTS	
Design flow, gpm @ mgl/ TSS	135gpm @ 1,200 mg/l
Pressure	ATM
Water temperature, °F	40-85
GENERAL	
Pumped Liquid	Water
Specific Gravity (SG)	1
рН	10.5
PROCESS TANKS	
Diameter, feet-inches	14-0
Tank side wall height, feet-inches	16-0
Tank side wall water depth, feet-inches	15-0
Design flow rate	135 gpm
Location of use	Inside
EQUIPMENT ASSEMBLY	
Bridge structures	Beam, mild steel
Bridge walkway type	Full-span, 42" wide
Rake arm type	Beam, 304LSS
Rake arm quantity	2
Tank type	Anchor channel, steel bottom, false bottom, 304SS
Tank bottom slope	0:12
Shell thickness, inches	0.25
Floor thickness, inches	0.25

DRIVE ASSEMBLY

Shipping wieght, pounds

Feedwell diameter, feet

Inlet pipe diameter, inches

Impeller diameter,feet

Number of launders

Center Shaft diameter, inches

Design style

Feedwell type

TBD

3

1

TBD

TBD

2, 304SS

Cylindrical

Shop assembled

Continuous Torque Rake tip speed Rake motor size, h.p. Motors, RPM/VAC/ph/Hz Impeller motor size,h.p. Impeller speed, RPM	2000 ft-lbs 12 fpm <u>1</u> <u>1800/460/3/60</u> 1 1-11
INSTRUMENTATION	
Control Panel	NEMA 4X, 304SS
SURFACE PREPARATION AND COATIN	GS

Non-submerged coating, 1st, 2ndEpoxy, UrethaneDrive, 1st, 2ndEpoxy, Urethane

DATE	10-Apr-17
PROJECT:	Arizona Minerals Inc Water Treatment Plant
EQUIPMENT TYPE	Thickening Tank
Item:	Thickening Tank
Tag No.	CL-200
FUNCTIONAL DESCRIPTION	Liquid/solids separator to thicken suspended solids in clarifier sludge
	Sludge
PROCESS DESIGN REQUIREMENTS	
Design flow, gpm @ mgl/ TSS	10 gpm @ 20,000 mg/l
Pressure	ATM
Water temperature, °F	40-85
GENERAL	
Pumped Liquid Specific Gravity (SG)	Water
pH	10.5
PROCESS TANKS	
Diameter, feet-inches	12-0
Tank side wall height, feet-inches	10-0
Tank side wall water depth, feet-inches	9-0
Design flow rate Location of use	10 gpm Inside
Location of use	Inside
EQUIPMENT ASSEMBLY	
Bridge structures	Half span
Bridge walkway type	Beam design
Rake arm type	Low-drag beam
Rake arm quantity	2 Analysis along a start better false better 20400
Tank type Tank bottom slope	Anchor channel, steel bottom, false bottom, 304SS 0:12
Shell thickness, inches	0.25
Floor thickness, inches	0.25
Shipping wieght, pounds	TBD
Design style	Shop assembled
Center Shaft diameter, inches	4"
DRIVE ASSEMBLY	
Continuous Torque	TBD
Rake tip speed	TBD
Rake motor size, h.p.	TBD
Motors, RPM/VAC/ph/Hz	TBD

INSTRUMENTATION

Control Panel

NEMA 4X, 304SS

SURFACE PREPARATION AND COATINGS

Non-submerged coating, 1st, 2nd Drive, 1st, 2nd Epoxy, Urethane Epoxy, Urethane

DATE	10-Apr-17
PROJECT:	Arizona Minerals Inc Water Treatment Plant

EQUIPMENT TYPE	Hydrated Lime System
Item:	Lime System
Tag No.	LS-100

Storage Silo	
Material of Construction	Steel
Diameter x Overall Height	12' x 32'
Manway	
Size	24"
Location	Roof
Cone Bottom Angle	
Discharge Nozzle Size	
Bin Activator (Option)	
Quantity	1
Manufacturer	TBD
Size	1700 cf
Model Number	
Air Consumption	
Electrical Requirement	
Air Connection	
Size	
Туре	
Fill Pipe	
Diameter	4"
Wall Thickness	sch 40
Material of Construction	carbon steel
Bin Vent Filter	
Manufacturer	
Manufacturer Size	
Size	
Size Model Number	
Size Model Number Area of Media	
Size Model Number Area of Media Media Material	
Size Model Number Area of Media Media Material Nominal Rating	 micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device	 micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe)	 micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder	 micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity Motor HP	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity Motor HP SCR Drive Manufacturer	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity Motor HP SCR Drive Manufacturer	
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity Motor HP SCR Drive Manufacturer	micron
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity Motor HP SCR Drive Manufacturer Slurry Tank Capacity Diameter	
Size Model Number Area of Media Media Material Nominal Rating Cleaning Device Controls (Describe) Electrical Enclosure Feeder Manufacturer/Model Maximum Capacity Minimum Capacity Motor HP SCR Drive Manufacturer Slurry Tank Capacity	

DATE	10-Apr-17
PROJECT:	Arizona Minerals Inc Water Treatment Plant

EQUIPMENT TYPE	Hydrated Lime System	-	
Item:	Lime System		
Tag No.	LS-100	_	

Agitator Manufacturer/Model Motor RPM Motor HP	480V/3PH/60HZ
Instrumentation Level Probes Flowmeters Programmable Controller	
Number of Pieces to Assemble	
Largest Component for: Shipping Erection Maintenance	lb lb lb
Largest Piece for Shipping Number of Boxes Shipped Total Shipping Volume Total Shipping Weight Heaviest Item Handled for Erection Heaviest Item Handled for Maintenance	ft x ft x ft

DATE

PROJECT:

10-Apr-17 Arizona Minerals Inc Water Treatment Pla

EQUIPMENT TYPE	Submersible Pump
Item:	Mine Water Pump
Tag No.	P-100A, P-100B

OPERATING DATA

Pumped Liquid	Water
Liquid Temperature, °F	50
Specific Gravity (SG)	1
рН	5.8
Flow Rate, gpm	60
Total Dynamic Head, feet	150

MATERIALS

Pump	304 Stainless Steel
Impeller	304 Stainless Steel
Motor	

2

INSTALLATION

Pump outlet, " NPT

ELECTRICAL DATA

Rated Power, HP	5
Frequency, Hz	60
Phase	3
Voltage, V	460
Rated Speed, RPM	3460

OTHERS

VFD

P-100A yes

DATE

Tag No.

PROJECT:

10-Apr-17 Arizona Minerals Inc Water Treatment Pla

EQUIPMENT TYPE	Horizontal Centrifugal Pump
Item:	Underdrain Pond Pump

P-101

OPERATING DATA

Pumped Liquid	TSF Underdrain Water and Stormwater
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.00
pH	5.8 - 6.5
Flow Rate, gpm	120
Total Dynamic Head, feet	100

MATERIALS

Pump Impeller Motor	304 Stainless Steel 304 Stainless Steel
INSTALLATION	Outside
Pump outlet, " NPT	TBD
ELECTRICAL DATA	
Rated Power, HP	7
Frequency, Hz	60
Phase	3
Voltage, V	460
Rated Speed, RPM	3460

OTHERS

VFD

Yes

DATE <u>10-Apr-17</u> PROJECT: <u>Arizona Minerals Inc Water Treatm</u>ent Pla

EQUIPMENT TYPE	Horizontal Centrifugal Pump
Item:	Reaction Tank Forwarding Pump
Tag No.	P-102

OPERATING DATA

Pumped Liquid	Water
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.0
рН	10.5
Flow Rate, gpm	145.5
Total Dynamic Head, feet	25

MATERIALS

Pump Impeller Motor	304 SS 304 SS
INSTALLATION	Inside
Pump outlet, " NPT	TBD
ELECTRICAL DATA	
Rated Power, HP	1
Frequency, Hz	60
Phase	3
Voltage, V	240
Rated Speed, RPM	TBD

DATE

PROJECT:

10-Apr-17 Arizona Minerals Inc Water Treatment Pla

EQUIPMENT TYPE	Horizontal Centrifugal Pump
Item:	Sludge Pump
Tag No.	P-103

OPERATING DATA

Pumped Liquid	Clarifier sludge
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.02
рН	10.5
Flow Rate, gpm	26
Total Dynamic Head, feet	25

MATERIALS

Pump Impeller Motor	TBD TBD
INSTALLATION	Inside
Pump outlet, " NPT	TBD
ELECTRICAL DATA	
Rated Power, HP	1
Frequency, Hz	<u>60</u> 3
Phase	3
Voltage, V	240
Rated Speed, RPM	TBD

DATE

PROJECT:

10-Apr-17 Arizona Minerals Inc Water Treatment Pla

EQUIPMENT TYPE	Progressive Cavity Pump		
Item:	Filter Press Feed Pump		
Tag No.	P-104		

OPERATING DATA

Pumped Liquid	Water
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.1
рН	10.5
Flow Rate, gpm	45
Total Dynamic Head, feet	45

MATERIALS

Pump Impeller Motor	304 SS 304 SS
INSTALLATION	Inside
Pump outlet, " NPT	TBD
ELECTRICAL DATA	
Rated Power, HP	0.75
Frequency, Hz	60
Phase	3
Voltage, V	240
Rated Speed, RPM	TBD

DATE

PROJECT:

10-Apr-17 Arizona Minerals Inc Water Treatment Pla

EQUIPMENT TYPE	Horizontal Centrifugal Pump
Item:	Filtrate Pump
Tag No.	P-105

OPERATING DATA

Pumped Liquid	Water
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.0
рН	10.5
Flow Rate, gpm	15
Total Dynamic Head, feet	25

MATERIALS

Pump Impeller Motor	304 SS 304 SS
INSTALLATION	Inside
Pump outlet, " NPT	2
ELECTRICAL DATA	
Rated Power, HP Frequency, Hz Phase	0.25 60 3

240

TBD

OTHERS

Voltage, V

Rated Speed, RPM

EQUIPMENT TYPE

Item: Tag No.

OPERATING REQUIREMENTS

Utility Requirements

Voltage, V Phase Frequency, Hz

110			
1			
60			

Arizaon Minerals Inc Water Treatment Plan

10-Apr-17

P-108

Chemical Feed Pump

Sulfuric acid feed pump

Environment:

Indoor/outdoor Corrosive

General Requirements

Pump
Flow rate, gph
Motor h.p./rpm
Speed control
Inlet/Outlet diameter, inches
Maturation tank
Valves

Notes

Indoor No

1 x 100%, each
TBD
TBD
local/PLC
TBD
N/A
TBD

DATE

PROJECT:

10-Apr-17 Arizona Minerals Inc Water Treatment Pla

EQUIPMENT TYPE	Horizontal Centrifugal Pump	
Item:	Re-use Pump	
Tag No.	P-109	

OPERATING DATA

Pumped Liquid	Water
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.0
рН	8.5
Flow Rate, gpm	120
Total Dynamic Head, feet	350

MATERIALS

304 SS 304 SS
Inside
TBD
20 60 3 240 TBD

DATE

10-Apr-17 Arizona Minerals Inc Water Treatment Pla PROJECT:

EQUIPMENT TYPE	Horizontal Centrifugal Pump	
Item:	Fresh Water Pump	
Tag No.	P-111	

OPERATING DATA

Pumped Liquid	Water
Liquid Temperature, °F	40-85
Specific Gravity (SG)	1.0
рН	7
Flow Rate, gpm	10
Total Dynamic Head, feet	20

MATERIALS

Pump Impeller Motor	304 SS 304 SS
INSTALLATION	Inside
Pump outlet, " NPT	2
ELECTRICAL DATA	
Rated Power, HP Frequency, Hz Phase	0.25 60 3

240

TBD

OTHERS

Voltage, V

Rated Speed, RPM

EQUIPMENT TYPE

Item: Tag No.

FUNCTIONAL DESCRIPTION

GENERAL REQUIREMENTS

Location, Inside/outside Tank life, years Standard design guidelines

FLUID PARAMETERS

Fluid Description Specific Gravity Fluid Temperature Range, °F pH Solids Content Particle Size

TANK PARAMETERS

Diameter, feet-inches Height, feet-inches Nominal Volume, gallons Working Volume, gallons Material of Construction Bottom Option Minimum Thickness: Shell Bottom Baffles

Foundation to be Provided Exterior Paint

FLANGE OPENINGS

Inlet diameter, inches Inlet diameter, inches Probe diameter, inches Outlet diameter, inches Outlet diameter, inches Drain diameter, inches Overflow diameter, inches 10-Apr-17 Arizona Minerals Inc Water Treatment Plan

Carbon Steel Storage Tank

Equalization Tank TK-100

Mixing and equalization of mine water and Underdrain Pond water

Outside

20 AWWA, NSF

Water	
1	
40-90	
5.8-6.5	
N/A	
N/A	

9-0
20-0
10,000
10,000
carbon steel, bolted or welded
Flat bottom

None	
By Owner	
Epoxy coated	

4

 TBD

 4

 4

 4

 4

 4

EQUIPMENT TYPE

Item: Tag No.

GENERAL REQUIREMENTS

Location, Inside/outside Tank life, years

FLUID PARAMETERS

Fluid Description Specific Gravity Fluid Temperature Range, °F pH Solids Content Particle Size

TANK PARAMETERS

Diameter, feet-inches Height, feet-inches Nominal Volume, gallons Working Volume, gallons Material of Construction Corrosion Allowance Minimum Thickness: Shell Bottom Roof

Bottom Upcomers Baffles Foundation to be Provided Exterior Paint

FLANGE OPENINGS

Inlet diameter, inches Inlet diameter, inches Manhole diameter, inches Probe diameter, inches Outlet diameter, inches Drain diameter, inches Overflow diameter, inches Vent diameter, inches 10-Apr-17 Arizona Minerals Inc Water Treatment Plan

Reaction Tank

Reaction Tank TK-200

Inside		
20		

Water			
1			
40-85			
10.5			

12-0
6-0
4,500
4,500
High Density Polyethylene

Open top
Flat
N/A
Three
By others
NA

N/A			
N/A			
N/A			
4			
4			
4			

EQUIPMENT TYPE

Item: Tag No.

GENERAL REQUIREMENTS

Location, Inside/outside Tank life, years

FLUID PARAMETERS

Fluid Description Specific Gravity Fluid Temperature Range, °F pH Solids Content Particle Size

TANK PARAMETERS

Diameter, feet-inches Height, feet-inches Nominal Volume, gallons Working Volume, gallons Material of Construction Corrosion Allowance Minimum Thickness: Shell Bottom Roof

Bottom Upcomers Baffles Foundation to be Provided Exterior Paint

FLANGE OPENINGS

Inlet diameter, inches Inlet diameter, inches Manhole diameter, inches Probe diameter, inches Outlet diameter, inches Drain diameter, inches Overflow diameter, inches Vent diameter, inches 10-Apr-17 Arizona Minerals Inc Water Treatment Plan

pH Adjustment Tank

pH Adjustment Tank TK-300

Inside		
20		

Water			
1			
40-85			
8.5			

8-0	
5-7	
2,000	
2,000	
High Density Polyethyl	ene

Open top
Flat
N/A
None
By others
NA

N/A			
N/A			
N/A			
2			
2			
2			

EQUIPMENT TYPE

Item: Tag No.

GENERAL REQUIREMENTS

Location, Inside/outside Tank life, years

FLUID PARAMETERS

Fluid Description	
Specific Gravity	
Fluid Temperature Range,	°F
рН	
Solids Content	
Particle Size	

TANK PARAMETERS

Diameter, feet-inches Height, feet-inches Nominal Volume, gallons Working Volume, gallons Material of Construction Corrosion Allowance Minimum Thickness: Shell Bottom Roof

Bottom Upcomers Baffles Foundation to be Provided Exterior Paint

FLANGE OPENINGS

Inlet diameter, inches Inlet diameter, inches Manhole diameter, inches Probe diameter, inches Outlet diameter, inches Drain diameter, inches Overflow diameter, inches Vent diameter, inches 10-Apr-17 Arizona Minerals Inc Water Treatment Plan

Filtrate Tank

Filtrate Tank TK-400

Inside		
20		

Water	
1	
40-85	
10.5	

5-4
6-0
900
900
High Density Polyethylene

Open top
Flat
N/A
None
By others
NA

N/A
N/A
N/A
2
2
2
 2

EQUIPMENT TYPE

Item: Tag No.

GENERAL REQUIREMENTS

Location, Inside/outside Tank life, years

FLUID PARAMETERS

Fluid Description Specific Gravity Fluid Temperature Range, °F pH Solids Content Particle Size

TANK PARAMETERS

Diameter, feet-inches Height, feet-inches Nominal Volume, gallons Working Volume, gallons Material of Construction Corrosion Allowance Minimum Thickness: Shell Bottom Roof

Bottom Upcomers Baffles Foundation to be Provided Exterior Paint

FLANGE OPENINGS

Inlet diameter, inches Inlet diameter, inches Manhole diameter, inches Probe diameter, inches Outlet diameter, inches Drain diameter, inches Overflow diameter, inches Vent diameter, inches 10-Apr-17 Arizona Minerals Inc Water Treatment Plan

Water Tank

Fresh Water Tank TK-700

Inside	
20	

Water		
1		
40-85		
7		

8-0
5-7
2,000
2,000
High Density Polyethylene

Open top
Flat
N/A
None
By others
NA

N/A			
N/A			
N/A			
2			
2			
2			

ATTACHMENT D

DEPARTMENT OF THE ARMY LOS ANGELES DISTRICT, U.S. ARMY CORPS OF ENGINEERS 3636 N. CENTRAL AVE, SUITE 900 PHOENIX, AZ 85012-1939

October 13, 2016

Tom Klimas WestLand Resources, Inc. 1750 South Woodlands Village Blvd. Flagstaff, Arizona 86001

SUBJECT: Approved Jurisdictional Determination Regarding Geographic Jurisdiction

Dear Mr. Klimas:

I am responding to your request (File No. SPL-2016-00752-MWL) dated June 10, 2016, for an approved Department of the Army jurisdictional determination (JD) for the January Adit Passive Treatment System project site (Sections 4 and 5, Township 23 South, Range 16 East) located southeast of the Town of Patagonia, Santa Cruz County, Arizona.

Based on available information, I have determined waters of the United States do not occur on the project site. The basis for our determination can be found in the enclosed Approved Jurisdictional Determination (JD) form(s).

This letter includes an approved jurisdictional determination for the January Adit Passive Treatment System project site. If you wish to submit new information regarding this jurisdictional determination, please do so within 60 days. We will consider any new information so submitted and respond within 60 days by either revising the prior determination, if appropriate, or reissuing the prior determination. If you object to this or any revised or reissued jurisdictional determination, you may request an administrative appeal under Corps regulations at 33 CFR Part 331. Enclosed you will find a Notification of Appeal Process (NAP) fact sheet and Request for Appeal (RFA) form. If you wish to appeal this decision, you must submit a completed RFA form within 60 days of the date on the NAP to the Corps South Pacific Division Office at the following address:

Tom Cavanaugh Administrative Appeal Review Officer U.S. Army Corps of Engineers South Pacific Division, CESPD-PDS-O, 2042B 1455 Market Street San Francisco, California 94103-1399

In order for an RFA to be accepted by the Corps, the Corps must determine that it is complete, that it meets the criteria for appeal under 33 CFR Part 331.5 (see below), and that it has been received by the Division Office by December 12, 2016.

This determination has been conducted to identify the extent of the Corps' Clean Water Act jurisdiction on the particular project site identified in your request, and is valid for five years from the date of this letter, unless new information warrants revision of the determination before the expiration date. This determination may not be valid for the wetland conservation provisions of the Food Security Act of 1985. If you or your tenant are USDA program participants, or anticipate participation in USDA programs, you should request a certified wetland determination from the local office of the Natural Resources Conservation Service prior to starting work.

Thank you for participating in the regulatory program. If you have any questions, please contact me at 602-230-6953 or via e-mail at Michael.W.Langley@usace.army.mil. Please help me to evaluate and improve the regulatory experience for others by completing the customer survey form at http://corpsmapu.usace.army.mil/cm_apex/f?p=regulatory_survey.

Sincerely,

Sallie Diebolt

Sallie Diebolt Chief, Arizona Branch Regulatory Division

Enclosure(s)

ATTACHMENT E

Attachment E

VRP	Active Water Treatment System and Lined Tailing and Potentially Ac	d (PAG) N	laterial S	Storage ar	nd Placer	nent												
ASAF	RCO January Adit (Norton Mine) and Trench Camp - VRP Site Code #5	05143-02																
		1																
Task	Task Description	Jan 2017	Feb 2017	Mar 2017	Apr 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Sep 2017	Oct 2017	Nov 2017	Dec 2017	Jan 2018	Feb 2018	Mar 2018	Apr 2018	May 2018
1	Project Management																	
2	ASARCO Tailing Geotechnical and Geophysical Studies																	
3	Active Water Treatment Treatability Studies and Design																	
4	ASARCO Tailing and PAG Waste Rock Storage Liner Engineering and Design																	
5	VRP Work Plan Submittal																	
6	Work Plan Review and Public Notice and Comment Period																	
7	AZPDES Water Treatment Plant Design Review and Permitting																	
8	Construct Active Water Treatment Plant and Commission																	
9	APP Lined Tailing Design Review and Permitting																	
10	Install Liner, Re-Handle and Place Historic Tailings and PAG Material on Liner																	

ATTACHMENT F

NOTICE OF 45-DAY PUBLIC COMMENT PERIOD ASARCO JANUARY ADIT (NORTON MINE) VOLUNTARY REMEDIATOIN PROGRAM (VRP) SITE REMEDIAL ACTION WORK PLAN

The Arizona Department of Environmental Quality (ADEQ) has received a work plan for remedial actions to be conducted at the ASARCO January Adit (Norton Mine) VRP Site (VRP Site Code 505143-02). The Work Plan was submitted in accordance with Arizona Revised Statutes (A.R.S.) §49-175 and §176. The Work Plan will address mine influenced water discharges from the January Mine Adit and seepage from historic tailing piles at the Trench Camp, Norton, and January Mine properties. This will be achieved through the following elements that are described in the Work Plan:

• An active water treatment plant (WTP) will be constructed to treat discharges from the January Mine workings and solutions captured in the underdrain collection pond from the historic tailings, waste rock, and precipitation that falls within the lined facility.

The work plan is available for review online at: <u>http://www.azdeq.gov/notices</u>, at the Patagonia Public Library, 346 Duquesne Ave., Patagonia (520) 394-2010 and at the ADEQ Records Center, 1110 W. Washington St., Phoenix, (602) 771-4380, or (800) 234-5677, ext. 6022345677. Please call for hours of operation and to schedule an appointment.

PARTIES WISHING TO SUBMIT WRITTEN COMMENTS regarding the Work Plan for the ASARCO January Adit (Norton Mine) VRP Site may do so to Arizona Mining Inc., attn: Johnny Pappas at 3845 North Business Center Drive, Suite 115, Tucson, AZ 85705. Comments may also be submitted to ADEQ, attn: John Patricki, VRP, 1110 W. Washington St., Phoenix, AZ 85007, or jp10@azdeq.gov and reference this listing. Comments must be postmarked to Arizona Minerals and/or ADEQ no later than June 19, 2017.

Dated this 5 and 12 day of May, 2017

Johnny Pappas, Arizona Mining Inc.

ADEQ will take reasonable measures to provide access to department services to individuals with limited ability to speak, write, or understand English and/or to those with disabilities. Requests for language interpretation services or for disability accommodations must be made at least 48 hours in advance by contacting: 7-1-1 for TDD; (602) 771-2215 for Disability Accessibility; or Ian Bingham, Title VI Nondiscrimination Coordinator at (602) 771-4322 or idb@azdeq.gov. **Disclaimer: Any ADEQ translation or communication in a language other than English is unofficial.**

ADEQ tomará medidas razonables para proveer acceso a los servicios del departamento para personas con capacidad limitada para hablar, escribir o entender Inglés y / o para las personas con discapacidad. Las solicitudes de servicios de interpretación del lenguaje o de alojamiento de discapacidad deben hacerse por lo menos 48 horas de antelación poniéndose en contacto con Ian Bingham, Title VI Nondiscrimination Coordinator al (602) 771-4322 o idb@azdeq.gov. **Cualquier traducción o comunicado de ADEQ en un idioma diferente al inglés no es oficial**