

Freeport-McMoRan Bagdad Inc. Bagdad Operations P.O. Box 245 Bagdad, AZ 86321

Hope Johnston Senior Environmental Scientist Tel (928) 633-3422 E-mail: hjohnsto@fmi.com

#### SENT VIA ELECTRONIC MAIL TO AIRPERMITS@AZDEQ.GOV

July 12, 2023

Mr. Daniel Czecholinski
Director, Air Quality Division
Arizona Department of Environmental Quality
1110 West Washington Street
Phoenix, Arizona 85007

RE:

Significant Permit Revision Application
Updates to Alternate Operating Scenario 1

Freeport-McMoRan Bagdad Inc.
Class II Air Quality Permit #77414

Dear Mr. Czecholinski:

Freeport-McMoRan Bagdad Inc. (FMBI) operates a copper and molybdenum ore mining and processing facility in Bagdad, Arizona as authorized by Class II Air Quality Permit #77414, issued by the Arizona Department of Environmental Quality (ADEQ) on November 20, 2019. In accordance with Arizona Administrative Code (A.A.C.) R18-2-320, FMBI is submitting this significant permit revision (SPR) application to update the design of Alternate Operating Scenario 1 (Two Concentrator Operations).

If you have any questions concerning this application or need additional details, please feel free to contact me using the phone number or email address noted below.

Sincerely,

Hope Johnston

Senior Environmental Scientist

Phone: (928) 633-3422 hjohnsto@fmi.com

## Freeport-McMoRan Bagdad Inc.

Significant Permit Revision Application
Updates to Alternate Operating Scenario 1
Class II Air Quality Permit #77414
Bagdad, Arizona



## Prepared for:

Freeport-McMoRan Bagdad Inc. P.O. Box 245 Bagdad, Arizona 86321 Contact: 928.633.3422

#### Prepared by:

Stantec Consulting Services Inc. 3133 West Frye Road, Suite 300 Chandler, Arizona 85226 Contact: 480.622.4519

#### Submitted to:

Arizona Department of Environmental Quality 1110 West Washington Street Phoenix, Arizona 85007

July 12, 2023

## **SIGN-OFF SHEET**

The conclusions in the Report titled **Significant Permit Revision Application**; **Updates to Alternate Operating Scenario 1** are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the scope of work was conducted and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from **Freeport-McMoRan Bagdad Inc.** (the "Client") and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided by the Client to applicable authorities having jurisdiction and to other third parties in connection with the project, Stantec disclaims any legal duty based upon warranty, reliance or any other theory to any third party, and will not be liable to such third party for any damages or losses of any kind that may result.

| Prepared by: _ | Andi S            |  |
|----------------|-------------------|--|
| Amber Summers  | (signature)<br>s  |  |
|                |                   |  |
|                | Kother Hound      |  |
| Reviewed by: _ | ()<br>(signature) |  |
| Kathy Houed    | ,                 |  |

# **TABLE OF CONTENTS**

| 1  | INTRO          | DUCTION                                                                      | 1-1    |
|----|----------------|------------------------------------------------------------------------------|--------|
| 2  | PROC           | ESS DESCRIPTION                                                              | 2-1    |
|    | 2.1            | DESCRIPTION OF THE PROPOSED UPDATES                                          | 2-1    |
|    |                | 2.1.1 Current Operations                                                     |        |
|    |                | 2.1.2 Proposed Operations                                                    |        |
|    | 2.2            | EQUIPMENT SUBJECT TO PERMITTING                                              | 2-3    |
| 3  | DESC           | RIPTION OF ALTERNATE OPERATING SCENARIOS                                     | 3-1    |
| 4  | IDENT          | IFICATION AND DESCRIPTION OF POLLUTION CONTROLS                              | 4-1    |
|    | 4.1            | IDENTIFICATION, DESCRIPTION, AND LOCATION                                    | 4-1    |
|    | 4.2            | RATED AND OPERATING EFFICIENCIES                                             | 4-1    |
|    | 4.3            | REFERENCE TO APPLICABLE TEST METHODS                                         | 4-1    |
| 5  | EMISS          | IONS CALCULATIONS                                                            | 5-1    |
|    | 5.1            | EMISSIONS FROM EACH PROCESS                                                  | 5-1    |
|    | 5.2            | FACILITY-WIDE EMISSIONS                                                      | 5-1    |
|    | 5.3            | EMISSION FACTOR DOCUMENTATION                                                | 5-2    |
|    | 5.4            | ELECTRONIC COPY OF EMISSION CALCULATIONS                                     | 5-2    |
| 6  | PROP           | OSED VOLUNTARY LIMITATIONS                                                   | 6-1    |
| 7  | APPLI<br>APPLI | CABLE REQUIREMENTS AND PROPOSED EXEMPTIONS FROM OTHERWISE CABLE REQUIREMENTS | 7-1    |
|    | 7.1            | APPLICABLE REQUIREMENTS                                                      |        |
|    | 7.2            | PROPOSED EXEMPTION FROM OTHERWISE APPLICABLE REQUIREMENTS                    |        |
| 8  | INSIG          | NIFICANT AND TRIVIAL ACTIVITY INFORMATION                                    | 8-1    |
|    | 8.1            | INSIGNIFICANT ACTIVITIES                                                     | 8-1    |
|    | 8.2            | TRIVIAL ACTIVITIES                                                           | 8-1    |
| 9  | COMP           | LIANCE SCHEDULE                                                              | 9-1    |
| 10 | MINO           | R NSR APPLICABILITY DETERMINATION                                            | . 10-1 |
|    | 10.1           | GENERAL INFORMATION                                                          | . 10-1 |
|    | 10.2           | APPLICABILITY DETERMINATION                                                  | . 10-1 |
|    | 10.3           | CALCULATION METHODOLOGY                                                      | . 10-2 |
| 11 | IDENT          | IFICATION OF CONFIDENTIAL INFORMATION                                        | . 11-1 |

| APPEN | NDIX A | STANDARD CLASS II PERMIT APPLICATION FORM                                         | . A-1        |
|-------|--------|-----------------------------------------------------------------------------------|--------------|
| APPEN | NDIX B | EQUIPMENT LIST                                                                    | . B-1        |
| APPEN | NDIX C | EMISSION SOURCE FORM                                                              | . C-1        |
| APPEN | NDIX D | PROCESS FLOW DIAGRAMS OF THE DESIGN OF AOS1 IN CLASS II AIR QUALITY PERMIT #77414 | . D-1        |
| APPEN | NDIX E | PROCESS FLOW DIAGRAMS OF THE PROPOSED UPDATED DESIGN OF AOS1                      | E-1          |
| APPEN | NDIX F | CALCULATION METHODOLOGY                                                           | F-1          |
| F.1   | INTRO  | DUCTION                                                                           | F-2          |
| F.2   |        | ESSES CONTROLLED BY DUST COLLECTORS WITH OUTLET GRAIN NG EMISSION FACTORS         | F <b>-</b> 2 |
|       | F.2.1  | Process Rates                                                                     | F-2          |
|       | F.2.2  | Emission Factors                                                                  | F-2          |
|       | F.2.3  | Control Efficiencies                                                              | F-3          |
| F.3   | PROCE  | ESSES CONTROLLED BY SCRUBBERS WITH LB/HR EMISSION FACTORS                         | F-3          |
|       | F.3.1  | Process Rates                                                                     | F-3          |
|       | F.3.2  | Emission Factors                                                                  | F-3          |
|       | F.3.3  | Control Efficiencies                                                              | F-4          |
| F.4   | DRILLI | NG                                                                                | F-4          |
|       | F.4.1  | Process Rates                                                                     | F-4          |
|       | F.4.2  | Emission Factors                                                                  | F-4          |
|       | F.4.3  | Control Efficiencies                                                              | F-5          |
| F.5   | BLAST  | ING                                                                               | F-5          |
|       | F.5.1  | Process Rates                                                                     | F-5          |
|       | F.5.2  | Emission Factors                                                                  | F-5          |
|       | F.5.3  | Control Efficiencies                                                              | F-6          |
| F.6   | HAUL - | TRUCK AND OTHER VEHICLE TRAVEL ON UNPAVED ROADS                                   | F-6          |
|       | F.6.1  | Process Rates                                                                     | F-6          |
|       | F.6.2  | Emission Factors                                                                  | F-7          |
|       | F.6.3  | Control Efficiencies                                                              | F-7          |
| F.7   | DOZEF  | R OPERATIONS                                                                      | F-7          |
|       | F.7.1  | Process Rates                                                                     | F-7          |
|       | F.7.2  | Emission Factors                                                                  | F-8          |
|       | F.7.3  | Control Efficiencies                                                              | F-8          |
| F.8   | ROAD   | GRADER OPERATIONS                                                                 | F-8          |
|       | F.8.1  | Process Rates                                                                     | F-8          |
|       | F82    | Emission Factors                                                                  | F-9          |

**LIST OF APPENDICES** 

## List of Appendices

July 2023

|        | F.8.3   | Control Efficiencies                              | F-9         |
|--------|---------|---------------------------------------------------|-------------|
| F.9    | MATER   | RIAL TRANSFER POINTS                              | F-9         |
|        | F.9.1   | Process Rates                                     | F-9         |
|        | F.9.2   | Emission Factors                                  | F-9         |
|        | F.9.3   | Control Efficiencies                              | F-11        |
| F.10   | WIND E  | EROSION OF CONTINUOUSLY ACTIVE STOCKPILES         | F-11        |
|        | F.10.1  | Process Rates                                     | F-11        |
|        | F.10.2  | Emission Factors                                  | F-11        |
|        | F.10.3  | Control Efficiencies                              | F-12        |
| F.11   | LIME S  | LAKING                                            | F-12        |
|        | F.11.1  | Process Rates                                     | F-12        |
|        | F.11.2  | Emission Factors                                  | F-12        |
|        | F.11.3  | Control Efficiencies                              | F-12        |
| F.12   | SYCAN   | MORE BULK AND MOLYBDENUM FLOTATION EQUIPMENT      | F-12        |
|        | F.12.1  | Process Rates                                     | F-12        |
|        | F.12.2  | Emission Factors                                  | F-13        |
|        | F.12.3  | Control Efficiencies                              | F-13        |
| F.13   | XANTH   | IATE AND TEST REAGENT MIXING AND STORAGE TANKS    | F-13        |
|        | F.13.1  | Process Rates                                     | F-13        |
|        | F.13.2  | Emission Factors                                  | F-13        |
|        | F.13.3  | Control Efficiencies                              | F-14        |
| F.14   | DIESEI  | _ EMERGENCY GENERATORS                            | F-14        |
|        | F.14.1  | Process Rates                                     | F-14        |
|        | F.14.2  | Emission Factors                                  | F-14        |
|        | F.14.3  | Control Efficiencies                              | F-15        |
| F.15   | SYCAN   | MORE PROPANE EMERGENCY GENERATORS                 | F-15        |
|        | F.15.1  | Process Rates                                     | F-15        |
|        | F.15.2  | Emission Factors                                  | F-15        |
|        | F.15.3  | Control Efficiencies                              | F-16        |
| APPEN  | NDIX G  | EMISSION INVENTORY TABLES FOR POTENTIAL           | EMISSION    |
|        |         | CALCULATIONS                                      |             |
| ΔPDEN  | NDIX H  | SUGGESTED DRAFT PERMIT LANGUAGE                   | <b>⊔</b> _1 |
| AI FEI | וו אוםי | COCCECTED DIAL IT ENGUAGE                         | 11-1        |
| APPEN  | NDIX I  | APPLICATION ADMINISTRATIVE COMPLETENESS CHECKLIST | ГI-1        |

## **LIST OF TABLES**

| Table 2.1 | Equipment Subject to Air Quality Permitting2-5                                                                                                           |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 4.1 | Summary of Air Pollution Control Methods and Equipment for the Updated Design of AOS14-2                                                                 |
| Table 5.1 | Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #774145-3                                                                     |
| Table 5.2 | Potential Emissions from the Proposed Updated Design of AOS15-10                                                                                         |
| Table 5.3 | Summary of the Changes in Hourly Facility-Wide Potential Emissions5-22                                                                                   |
| Table 5.4 | Summary of the Changes in Annual Facility-Wide Potential Emissions5-24                                                                                   |
| Table 6.1 | Voluntary Limitations for the Proposed Updated Design of AOS16-2                                                                                         |
| Table 7.1 | Applicable Regulatory Requirements of A.A.C. R18-2-306.01 and Methods for Demonstrating Compliance                                                       |
| Table 7.2 | Applicable Regulatory Requirements of A.A.C. R18-2-702.B.3 and Methods for Demonstrating Compliance                                                      |
| Table 7.3 | Applicable Regulatory Requirements of A.A.C. R18-2-721 and Methods for Demonstrating Compliance                                                          |
| Table 7.4 | Applicable Regulatory Requirements of A.A.C. R18-2-730 and Methods for Demonstrating Compliance                                                          |
| Table 7.5 | Applicable Regulatory Requirements of A.A.C. R18-2-901.46 and 40 CFR 60 Subpart LL and Methods for Demonstrating Compliance                              |
| Table 7.6 | Applicable Regulatory Requirements of A.A.C. R18-2-901.84 and 40 CFR 60 Subpart IIII (Emergency Engines) and Methods for Demonstrating Compliance7-9     |
| Table 7.7 | Applicable Regulatory Requirements of A.A.C. R18-2-901.85 and 40 CFR 60 Subpart JJJJ (Emergency Engines) and Methods for Demonstrating Compliance7-12    |
| Table 7.8 | Applicable Regulatory Requirements of A.A.C. R18-2-1101.B.81 and 40 CFR 63 Subpart ZZZZ (New Emergency Engines) and Methods for Demonstrating Compliance |
| Table 8.1 | Proposed Insignificant Activities                                                                                                                        |
| Table 8.2 | Proposed Trivial Activities                                                                                                                              |

## List of Tables

July 2023

| Table 10.1 | Change in PTE and Comparison to the Permitting Exemption Thresholds - Particulate Emissions                                         | 10-3 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 10.2 | Change in PTE and Comparison to the Permitting Exemption Thresholds - Gaseous Emissions                                             | 10-8 |
| Table F.1  | Process Rate and Emission Factor Information for Processes Controlled by Dust Collectors with Outlet Grain Loading Emission Factors | F-17 |
| Table F.2  | Process Rate and Emission Factor Information for Processes Controlled by Scrubbers with lb/hr Emission Factors                      | F-22 |
| Table F.3  | Process Rate Information for Drilling and Blasting                                                                                  | F-23 |
| Table F.4  | Emission Factors for Drilling                                                                                                       | F-24 |
| Table F.5  | Emission Factors for Blasting - Design of AOS1 in Class II Air Quality Permit #77414                                                | F-25 |
| Table F.6  | Emission Factors for Blasting - Proposed Updated Design of AOS1                                                                     | F-26 |
| Table F.7  | Vehicle Travel on Unpaved Roads - Design of AOS1 in Class II Air Quality Permit #77414                                              | F-27 |
| Table F.8  | Vehicle Travel on Unpaved Roads - Proposed Updated Design of AOS1                                                                   | F-29 |
| Table F.9  | Emission Factors for Vehicle Travel on Unpaved Roads - Design of AOS1 in Class II Air Quality Permit #77414                         | F-31 |
| Table F.10 | Emission Factors for Vehicle Travel on Unpaved Roads - Proposed Updated Design of AOS1                                              | F-32 |
| Table F.11 | Process Rate Information for the Dozers and Graders - Design of AOS1 in Class II Air Quality Permit #77414                          | F-33 |
| Table F.12 | Process Rate Information for the Dozers and Graders - Proposed Updated Design of AOS1                                               | F-34 |
| Table F.13 | Emission Factors for Dozer Operations                                                                                               | F-35 |
| Table F.14 | Emission Factors for Grader Operations                                                                                              | F-36 |
| Table F.15 | Process Rate Information for Material Transfer Points and Lime Slaking Operations                                                   | F-37 |
| Table F.16 | Emission Factor Information for Material Transfer Points and Lime Slaking Operations                                                | F-42 |

#### List of Tables

July 2023

| Table F.17 | Emission Factors for the Material Transfer Points Associated with Mined Material, Concentrates, and Flocculant | F-46  |
|------------|----------------------------------------------------------------------------------------------------------------|-------|
| Table F.18 | Emission Factors for the Material Transfer Points Associated with Lime                                         | F-47  |
| Table F.19 | Emission Factors for the Material Transfer Points Associated with Ammonium Nitrate Prill                       | F-48  |
| Table F.20 | Process Rate and Emission Factor Information for Continuously Active Stockpiles                                | F-49  |
| Table F.21 | Emission Factors for the Sycamore Lime Slaker                                                                  | F-54  |
| Table F.22 | Process Rate and Emission Factor Information for the Sycamore Bulk and Molybdenum Flotation Equipment          | F-55  |
| Table F.23 | Process Rate and Emission Factor Information for the Xanthate and Test Reagent Mixing and Storage Tanks        | F-56  |
| Table F.24 | Process Rate and Emission Factor Information for Engines                                                       | F-57  |
| Table F.25 | Emission Factors for Tier 2 Diesel Engines (kW > 560)                                                          | F-58  |
| Table F.26 | Emission Factors for Tier 3 Diesel Engines (450 ≤ kW ≤ 560)                                                    | F-59  |
| Table F.27 | Emission Factors for the Engines Associated with the Sycamore Propane Emergency Generators                     | F-60  |
| Table F.28 | Metal HAP Content of the Process Material                                                                      | F-61  |
| Table F.29 | Control Methods and Corresponding Control Efficiencies for All Emission Units                                  | F-62  |
| Table G.1  | Emission Inventory Inputs – Potential Emission Calculations                                                    | . G-2 |
| Table G.2  | Particulate Matter Emission Factors – Potential Emission Calculations                                          | G-15  |
| Table G.3  | Particulate Matter Control Efficiencies – Potential Emission Calculations                                      | G-19  |
| Table G.4  | Annual Particulate Matter Emissions – Potential Emission Calculations                                          | G-20  |
| Table G.5  | Hourly Particulate Matter Emissions – Potential Emission Calculations                                          | G-26  |
| Table G.6  | Gaseous Emission Factors – Potential Emission Calculations                                                     | G-32  |
| Table G.7  | Annual Gaseous Emissions – Potential Emission Calculations                                                     | G-33  |
| Table G.8  | Hourly Gaseous Emissions – Potential Emission Calculations                                                     | G-34  |
| Table G.9  | HAP Emission Factors – Potential Emission Calculations                                                         | G-35  |
| Table G.10 | Annual HAP Emissions – Potential Emission Calculations                                                         | G-50  |

## List of Tables

July 2023

# **LIST OF FIGURES**

| Figure D.1 | #77414)                                                                              | D-2           |
|------------|--------------------------------------------------------------------------------------|---------------|
| Figure D.2 | Additional Milling Operations - Part 1 (AOS1 – Design in Permit #77414)              | D-3           |
| Figure D.3 | Additional Milling Operations - Part 2 (AOS1 – Design in Permit #77414)              | D-4           |
| Figure D.4 | Additional Bulk Flotation Operations (AOS1 – Design in Permit #77414)                | D-5           |
| Figure D.5 | Pollution Control Devices (AOS1 – Design in Permit #77414)                           | D-6           |
| Figure E.1 | Primary Crushing and Overland Conveying Operations (AOS1 – Proposed Updated Design)  | .E <b>-</b> 2 |
| Figure E.2 | Sycamore Milling Operations 1 (AOS1 – Proposed Updated Design)                       | .E-3          |
| Figure E.3 | Sycamore Milling Operations 2 (AOS1 – Proposed Updated Design)                       | .E-4          |
| Figure E.4 | Sycamore Flotation Operations (AOS1 – Proposed Updated Design)                       | .E-5          |
| Figure E.5 | Sycamore Concentrate Handling Operations (AOS1 – Proposed Updated Design)            | .E-6          |
| Figure E.6 | Pollution Control Devices (AOS1 – Proposed Updated Design)                           | .E-7          |
| Figure E.7 | Sycamore Prill Handling and Lime Slaking Operations (AOS1 – Proposed Updated Design) | .E-8          |
| Figure E.8 | Sycamore Reagent Delivery and Handling Operations (AOS1 – Proposed Updated Design)   | .E <b>-</b> 9 |
| Figure E.9 | Sycamore Emergency ICE (AOS1 – Proposed Updated Design)                              | Ξ-10          |

## **EXECUTIVE SUMMARY**

Freeport-McMoRan Bagdad Inc. (FMBI) operates a copper and molybdenum ore mining and processing facility in Bagdad, Arizona as authorized by Class II Air Quality Permit #77414, issued by the Arizona Department of Environmental Quality (ADEQ) on November 20, 2019. In accordance with Arizona Administrative Code (A.A.C.) R18-2-320, FMBI is submitting this significant permit revision (SPR) application to update the design of Alternate Operating Scenario 1 (Two Concentrator Operations).

Key elements of the SPR application are presented below along with a table identifying all components of the application. ADEQ's application administrative completeness checklist is presented in Appendix I.

#### **Summary of the Proposed Updates**

The FMBI facility is a large industrial complex located in Yavapai County in north central Arizona and is comprised of mining, ore processing, and multiple support operations. The six major operations at the FMBI facility include: (a) open-pit mining and hauling of ore and overburden; (b) size reduction of the ore using primary crushing and overland conveying followed by grinding/milling and secondary crushing; (c) concentration of the ore using bulk and molybdenum froth flotation; (d) processing and bagging/loading of the copper and molybdenum concentrate; (e) heap leaching of ore to generate a copper-rich pregnant leach solution followed by solution extraction and electrowinning to produce high purity copper cathodes; and (f) pressure leaching of copper and molybdenum concentrate to produce additional copper-rich pregnant leach solution and molybdenum trioxide, respectively.

The grinding/milling, secondary crushing, and flotation operations described in (b) and (c) above are commonly referred to as the Bagdad Concentrator and are currently fed by a single primary crusher (PC2) and overland conveying system. The Bagdad Concentrator produces the copper and molybdenum concentrates described in (d) above. For air quality permitting purposes, these existing operations are known as the Primary Operating Scenario.<sup>1</sup>

According to Condition I.D.1 of Attachment "B" of Class II Air Quality Permit #77414, FMBI is also authorized to operate Alternate Operating Scenario 1 (AOS1) called the Two Concentrator Operations. This operating scenario includes modified primary crushing and overland conveying operations, additional milling operations, and additional bulk flotation operations. The additional milling and bulk flotation operations are referred to as the Sycamore Concentrator. The AOS1 operations were authorized in a prior permit, but FMBI has not constructed nor operated under AOS1 due to unfavorable economic conditions.

<sup>&</sup>lt;sup>1</sup> The Primary Operating Scenario also includes an additional primary crusher (PC1) and overland conveying system, but they are not currently operating.

July 2023

With the current economic conditions, FMBI is now planning to move forward with the Two Concentrator Operations under AOS1. However, because of advancement and modernization of technology and engineering, the design of AOS1 in Class II Air Quality Permit #77414 needs to be updated.

The proposed updated design of AOS1 includes the following major differences from the design of AOS1 in Class II Air Quality Permit #77414:

#### PC1 and Overland Conveying

- A FMBI will purchase a new PC1 instead of reconstructing/refurbishing the old PC1.
- The overland conveyor transfer apron feeder will be removed.
- All ore processed by PC1 will be transferred to the Sycamore Concentrator.
- Equipment names will be updated.
- Dust collector exhaust flow rates will be updated.

#### PC2 and Overland Conveying

- The overland conveyor transfer apron feeder will be removed.
- Free-Standing Stacker 6 will be retained.
- All ore processed by PC2 will be transferred to the Bagdad Concentrator.
- Fogging systems will be used instead of dust collectors to control emissions from non-fugitive transfer points during overland conveying.

#### • Sycamore Milling Operations

- Autogenous mills (wet processes) will be used instead of secondary crushers.
- An additional ball mill and regrind mill will be used.
- Screening and material handling operations will have a different configuration.
- Equipment names will be updated.
- Dust collector exhaust flow rates will be updated.

#### Sycamore Flotation Operations

- Both bulk and molybdenum flotation operation will be included (i.e., the copper/molybdenum concentrate from the Sycamore Concentrator will no longer combine with the copper/molybdenum concentrate from the Bagdad Concentrator). This will require addition of the Sycamore Concentrate Handling Operations and Sycamore Lime and Other Reagent Operations as described below.
- Cleaner flotation will be added.
- Thickeners for bulk concentrate, copper concentrate, and molybdenum concentrate will be added.
- Equipment names will be updated.

#### • Sycamore Concentrate Handling Operations

- Filtering and loadout for the copper concentrate from the Sycamore Concentrator will be added.
- Filtering, drying (controlled by a scrubber), and packaging of the molybdenum concentrate from the Sycamore Concentrator will be added.

#### Sycamore Lime and Other Reagent Operations

Because of the additional Sycamore flotation operations, reagent systems for lime, flocculant, xanthate, test reagent, and sodium hydrosulfide (NaHS) will be added.

#### • Sycamore Prill Handling Operations

Because of the updated blasting rates described below, an additional prill bin will be added.

#### • Sycamore Emergency Internal Combustion Engines

Two diesel emergency generators (engines rated at 609 horsepower [hp] and 762 hp) and two propane emergency generators (engines rated at 84.7 hp each) will be added to provide backup power to the grinding/flotation line, byproduct separation and handling area, concentrator wastewater treatment plant, and the primary crusher area wastewater treatment plant.

#### Maximum Mining Rates

- To achieve the production targets associated with the updated design of AOS1, updates are needed to maximum mining rates and associated operations, such as blasting rates and mobile equipment usage (including haul trucks).
- The updates will affect emissions from drilling, blasting, haul truck and other vehicle travel, dozer and grader operations, and loading/unloading of mined material.

The upgrades will provide FMBI operational flexibility and allow PC1 and the accompanying Sycamore Concentrator to operate independently of the Bagdad Concentrator.

#### **Changes in Emissions**

The regulated air pollutants emitted by the emission units associated with AOS1 include the following: particulate matter (PM), particulate matter less than or equal to 10 microns in aerodynamic diameter (PM $_{10}$ ), and particulate matter less than or equal to 2.5 microns in aerodynamic diameter (PM $_{2.5}$ ); carbon monoxide (CO); nitrogen oxides (NO $_{\rm X}$ ); sulfur dioxide (SO $_{\rm 2}$ ); volatile organic compounds (VOCs); hydrogen sulfide (H $_{\rm 2}$ S); hazardous air pollutants (HAPs); and greenhouse gases (GHGs or CO $_{\rm 2}$ e), including carbon dioxide (CO $_{\rm 2}$ ), methane (CH $_{\rm 4}$ ), and nitrous oxide (N $_{\rm 2}$ O). CO $_{\rm 2}$ e emissions are

<sup>&</sup>lt;sup>2</sup> While GHGs are not included under the definition of "regulated air pollutant" at A.A.C. R18-2-101.122, they are considered a "regulated NSR pollutant" under the Prevention of Significant Deterioration (PSD) program at 40 CFR 52.21(b)(50) and therefore included here for informational purposes.

July 2023

calculated by summing the individual greenhouse gas emissions multiplied by their global warming potential (GWP). The GWP of CO<sub>2</sub> is 1, the GWP of CH<sub>4</sub> is 25, and the GWP of N<sub>2</sub>O is 298.

FMBI's annual facility-wide potential emissions (including potential to emit [PTE]) prior to and following the proposed updates are presented in Table ES.1. Table ES.1 is broken down into the Primary Operating Scenario (current operations) and Alternate Operating Scenario 1 (AOS1 – two concentrator operations) according to: (a) annual facility-wide potential emissions as presented in the last submittal to ADEQ (i.e., Minor Permit Revision (MPR) #96299); (b) change in annual potential emissions due to the proposed updates; and (c) the resulting annual facility-wide potential emission totals following the proposed updates.

The FMBI facility is a synthetic minor source of regulated air pollutants for permitting purposes under A.A.C. Title 18, Chapter 2, Articles 3 and 4. As shown in Table ES.1, FMBI will remain a non-Title V, minor PSD, and minor HAP source in accordance with the A.A.C. following the proposed updates.

#### **Permit Condition Changes**

Due to the updates to the design of AOS1, FMBI requests that the following changes be made to Class II Air Quality Permit #77414.

#### Attachment "A"

o None.

#### Attachment "B"

- Add reference to Condition II.D.1.c(1) in Condition I.B.3.c.
- Add reference to the PC1 Rock Breaker (2110-RKB-0021) in Condition II.A.4.b.
- Update the voluntary emission limitation in Condition II.C.2.f.
- o Update the name of the pollution control devices in Condition II.C.3.a.
- Update the references to Condition II.C.3.a in Conditions II.C.3.c and II.C.3.d.
- Revise Condition II.D.1 to correspond to the proposed updated design of AOS1.
- o Update the references to the Sycamore flotation equipment in Conditions III.A.1.
- Add reference to the Sycamore Lime Silo (AOS1), Sycamore Lime Slaker (AOS1), and Prill Bin 6 (AOS1) in Condition III.A.5.d.

#### Attachment "C"

 Replace the equipment under AOS1: Two Concentrator Operations in Attachment "C" with the equipment corresponding to the proposed updated design of AOS1.

#### • Attachment "D"

- o Revise the entry for Dust Collector C51 (AOS1) under Section A.
- Replace the entire Section F with the processes corresponding to the proposed updated design of AOS1.

#### **Executive Summary**

July 2023

Suggested draft permit language for the proposed changes to Class II Air Quality Permit #77414 is presented in Appendix H.

#### Information Required as Part of a Significant Permit Revision Application

According to A.A.C. R18-2-304.B, applicants applying for a significant permit revision must "complete the applicable standard application form provided by the Director and supply all information required by the form's filing instructions." It is assumed that "all information required by the form's filing instructions" refers to Section 3.2 (Standard Class II Permit Application Components) of ADEQ's Application Packet for a Class II Permit. An application for a significant permit revision must also include the information required by A.A.C. R18-2-304.F. As clarified by A.A.C. R18-2-304.F.1, an application for a permit revision only need supply information related to the proposed change. Identification of the information presented in this application, including the Standard Permit Application Form and the application components from ADEQ's Application Packet for a Class II Permit are listed in Table ES.2. The section or appendix where the information can be located in this document is also presented in Table ES.2.

 Table ES.1
 Summary of the Changes in Annual Facility-Wide Potential Emissions

| Potential                                                   |                            | Annual Facility-Wide Potential Emissions (tpy) |                  |                   |        |        |                 |       |      |        |                           |               |
|-------------------------------------------------------------|----------------------------|------------------------------------------------|------------------|-------------------|--------|--------|-----------------|-------|------|--------|---------------------------|---------------|
| Emission Description                                        | Emission<br>Classification | РМ                                             | PM <sub>10</sub> | PM <sub>2.5</sub> | со     | NOx    | SO <sub>2</sub> | voc   | H₂S  | CO₂e   | Greatest<br>Single<br>HAP | Total<br>HAPs |
| Primary Operating                                           | Scenario                   |                                                |                  |                   |        |        |                 |       |      |        |                           |               |
|                                                             | Non-Fugitive               | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274 | 5.55                      | 6.84          |
| Potential<br>Emissions                                      | Fugitive                   | 6,169.77                                       | 1,913.29         | 248.56            | 914.49 | 40.50  | 0.28            | 16.42 | 9.43 | 8,593  |                           | 4.08          |
| Following MPR<br>#96299                                     | Total                      | 6,287.19                                       | 1,998.86         | 313.59            | 980.34 | 102.51 | 1.65            | 46.54 | 9.43 | 45,867 | 5.55                      | 10.92         |
|                                                             | PTE                        | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274 | 5.55                      | 10.92         |
|                                                             | Non-Fugitive               |                                                |                  |                   |        |        |                 |       |      |        |                           |               |
| Change in Potential                                         | Fugitive                   |                                                |                  |                   |        |        |                 |       |      |        |                           |               |
| Emissions Due to<br>the Proposed<br>Updates                 | Total                      |                                                |                  |                   |        |        |                 |       |      |        |                           |               |
| оришно                                                      | PTE                        |                                                |                  |                   |        |        |                 |       |      |        |                           |               |
|                                                             | Non-Fugitive               | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274 | 5.55                      | 6.84          |
| Potential<br>Emissions<br>Following the<br>Proposed Updates | Fugitive                   | 6,169.77                                       | 1,913.29         | 248.56            | 914.49 | 40.50  | 0.28            | 16.42 | 9.43 | 8,593  |                           | 4.08          |
|                                                             | Total                      | 6,287.19                                       | 1,998.86         | 313.59            | 980.34 | 102.51 | 1.65            | 46.54 | 9.43 | 45,867 | 5.55                      | 10.92         |
|                                                             | PTE                        | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274 | 5.55                      | 10.92         |

 Table ES.1
 Summary of the Changes in Annual Facility-Wide Potential Emissions

| Detential                                   |                            | Annual Facility-Wide Potential Emissions (tpy) |                  |                   |          |        |                 |       |       |                   |                           |               |  |
|---------------------------------------------|----------------------------|------------------------------------------------|------------------|-------------------|----------|--------|-----------------|-------|-------|-------------------|---------------------------|---------------|--|
| Potential<br>Emission<br>Description        | Emission<br>Classification | PM                                             | PM <sub>10</sub> | PM <sub>2.5</sub> | со       | NOx    | SO <sub>2</sub> | voc   | H₂S   | CO <sub>2</sub> e | Greatest<br>Single<br>HAP | Total<br>HAPs |  |
| Alternate Operating                         | g Scenario 1               |                                                |                  |                   |          |        |                 |       |       |                   |                           |               |  |
|                                             | Non-Fugitive               | 107.83                                         | 91.06            | 82.00             | 65.85    | 62.01  | 1.38            | 30.12 |       | 37,274            | 5.55                      | 6.84          |  |
| Potential<br>Emissions                      | Fugitive                   | 6,152.44                                       | 1,905.09         | 247.32            | 914.49   | 40.50  | 0.28            | 16.42 | 9.43  | 8,593             |                           | 4.08          |  |
| Following MPR<br>#96299                     | Total                      | 6,260.27                                       | 1,996.15         | 329.32            | 980.34   | 102.51 | 1.65            | 46.54 | 9.43  | 45,867            | 5.55                      | 10.92         |  |
|                                             | PTE                        | 107.83                                         | 91.06            | 82.00             | 65.85    | 62.01  | 1.38            | 30.12 |       | 37,274            | 5.55                      | 10.92         |  |
|                                             | Non-Fugitive               | -2.57                                          | -4.77            | -6.29             | 10.35    | 3.38   | 0.009           | 9.65  | 0.17  | 454               | 1.31                      | 2.04          |  |
| Change in Potential                         | Fugitive                   | 14,655.64                                      | 4,141.05         | 432.70            | 745.14   | 33.00  | 0.23            | 1.18  | 2.18  | 7,002             |                           | 1.64          |  |
| Emissions Due to<br>the Proposed<br>Updates | Total                      | 14,653.08                                      | 4,136.28         | 426.41            | 755.49   | 36.38  | 0.23            | 10.83 | 2.35  | 7,457             | 1.31                      | 3.68          |  |
| -1                                          | PTE                        | -2.57                                          | -4.77            | -6.29             | 10.35    | 3.38   | 0.009           | 9.65  | 0.17  | 454               | 1.31                      | 3.68          |  |
|                                             | Non-Fugitive               | 105.26                                         | 86.29            | 75.71             | 76.20    | 65.40  | 1.39            | 39.77 | 0.17  | 37,728            | 6.87                      | 8.88          |  |
| Potential<br>Emissions                      | Fugitive                   | 20,808.08                                      | 6,046.14         | 680.02            | 1,659.63 | 73.50  | 0.50            | 17.60 | 11.61 | 15,595            |                           | 5.72          |  |
| Following the Proposed Updates              | Total                      | 20,913.35                                      | 6,132.43         | 755.73            | 1,735.83 | 138.90 | 1.89            | 57.37 | 11.78 | 53,323            | 6.87                      | 14.60         |  |
|                                             | PTE                        | 105.26                                         | 86.29            | 75.71             | 76.20    | 65.40  | 1.39            | 39.77 | 0.17  | 37,728            | 6.87                      | 14.60         |  |

 Table ES.2
 Information Included in the Application

| Required Application Component                                                                            | Location in the Application          |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------|
| Standard Class II Permit Application Form Including a Certification from the Responsible Official         | Appendix A                           |
| Description of the Proposed Updates                                                                       | Section 2                            |
| Process Flow Diagrams                                                                                     | Appendices D and E                   |
| Description of Alternate Operating Scenarios                                                              | Section 3                            |
| Identification and Description of Pollution Controls                                                      | Section 4                            |
| Emissions Calculations Including the Calculation Methodology and an<br>Electronic Copy                    | Section 5 and Appendices C, F, and G |
| Minor NSR Applicability Determination                                                                     | Section 10                           |
| Applicable Requirements and Explanation of Any Proposed Exemptions from Otherwise Applicable Requirements | Section 7                            |
| Proposed Voluntary Limitations                                                                            | Section 6                            |
| Equipment List                                                                                            | Appendix B                           |
| Emission Source Form                                                                                      | Appendix C                           |
| Listing of Insignificant and Trivial Activities                                                           | Section 8                            |
| Identification of Confidential Information                                                                | Section 11                           |
| Compliance Schedule (only if not currently in compliance)                                                 | Section 9                            |
| Suggested Draft Permit Language                                                                           | Appendix H                           |

## **ABBREVIATIONS**

A.A.C. Arizona Administrative Code

acfm Actual Cubic Feet Per Minute

ADEQ Arizona Department of Environmental Quality

AOS Alternate Operating Scenario

AP-42 Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and

Area Sources, Fifth Edition

A.R.S. Arizona Revised Statutes

CFR Code of Federal Regulations

CH<sub>4</sub> Methane

CO Carbon Monoxide

CO<sub>2</sub> Carbon Dioxide

CO2e Greenhouse Gases Expressed as Carbon Dioxide Equivalent Calculated

by Summing the Individual Greenhouse Gas Emissions Multiplied by Their

Global Warming Potential

dscf Dry Standard Cubic Foot

dscfm Dry Standard Cubic Foot per Minute

EPA Environmental Protection Agency

FMBI Freeport-McMoRan Bagdad Inc.

ft<sup>3</sup> Cubic Feet

g Gram

GHG Greenhouse Gas

gr Grain

GWP Global Warming Potential

H<sub>2</sub>S Hydrogen Sulfide

HAP Hazardous Air Pollutant

hp Horsepower

hr Hour

ICE Internal Combustion Engine

kg Kilogram kW Kilowatts

## **ABBREVIATIONS (cont'd)**

L Liter

lb Pound min Minute

mph miles per hour

MPR Minor Permit Revision

N<sub>2</sub>O Nitrous Oxide

NaHS Sodium Hydrosulfide

NESHAP National Emission Standards for Hazardous Air Pollutants

NO<sub>X</sub> Nitrogen Oxides

NSPS New Source Performance Standards

NSR New Source Review

PM Particulate Matter

PM<sub>10</sub> Particulate Matter Less Than or Equal to 10 Microns in Aerodynamic Diameter

PM<sub>2.5</sub> Particulate Matter Less Than or Equal to 2.5 Microns in Aerodynamic Diameter

ppm Parts per Million

PSD Prevention of Significant Deterioration

PTE Potential to Emit

SCC Source Classification Code

SO<sub>2</sub> Sulfur Dioxide

SPR Significant Permit Revision

tph Tons per Hour

tpy Tons per Year

VOC Volatile Organic Compounds

Yr Year

## 1 INTRODUCTION

Freeport-McMoRan Bagdad Inc. (FMBI) operates a copper and molybdenum ore mining and processing facility in Bagdad, Arizona as authorized by Class II Air Quality Permit #77414, issued by the Arizona Department of Environmental Quality (ADEQ) on November 20, 2019. In accordance with Arizona Administrative Code (A.A.C.) R18-2-320, FMBI is submitting this significant permit revision (SPR) application to update the design of Alternate Operating Scenario 1 (Two Concentrator Operations).

The following sections and appendices present the information required to be submitted with an SPR application. ADEQ's Standard Class II Permit Application Form and the Emission Source Form are presented in Appendix A and Appendix C, respectively. ADEQ's Application Administrative Completeness Checklist is provided in Appendix I.

## 2 PROCESS DESCRIPTION

## 2.1 DESCRIPTION OF THE PROPOSED UPDATES

### 2.1.1 Current Operations

The FMBI facility is a large industrial complex located in Yavapai County in north central Arizona and is comprised of mining, ore processing, and multiple support operations. The six major existing operations at the FMBI facility include: (a) open-pit mining and hauling of ore and overburden; (b) size reduction of the ore using primary crushing and overland conveying followed by grinding/milling and secondary crushing; (c) concentration of the ore using bulk and molybdenum froth flotation; (d) processing and bagging/loading of the copper and molybdenum concentrate; (e) heap leaching of ore to generate a copper-rich pregnant leach solution followed by solution extraction and electrowinning to produce high purity copper cathodes; and (f) pressure leaching of copper and molybdenum concentrate to produce additional copper-rich pregnant leach solution and molybdenum trioxide, respectively.

The grinding/milling, secondary crushing, and flotation operations described in (b) and (c) above are commonly referred to as the Bagdad Concentrator and are currently fed by a single primary crusher (PC2) and overland conveying system. The Bagdad Concentrator produces the copper and molybdenum concentrates described in (d) above. For air quality permitting purposes, these existing operations are known as the Primary Operating Scenario.<sup>1</sup>

According to Condition I.D.1 of Attachment "B" of Class II Air Quality Permit #77414, FMBI is also authorized to operate Alternate Operating Scenario 1 (AOS1) called the Two Concentrator Operations. The design of AOS1 in Class II Air Quality Permit #77414 is presented in Figures D.1 through D.5 of Appendix D. This operating scenario includes modified primary crushing and overland conveying operations, additional milling operations, and additional bulk flotation operations. The AOS1 operations were authorized in a prior permit, but FMBI has not constructed nor operated under AOS1 due to unfavorable economic conditions.

The modified primary crushing and overland conveying operations in AOS1 involve relocating and reconstructing/refurbishing PC1 and making improvements to the overland conveying systems associated with both crushers. The overland conveying system from PC1 was designed with all new equipment that would feed new Coarse Ore Stockpile 6. Four new dust collectors were designed to control emissions from PC1 and the non-fugitive transfer points associated with the overland conveyors. No changes were planned for PC2 (controlled by Dust Collector C51), but its overland conveying system was modified to add an apron feeder, remove Free-Standing Stacker 6, and add three new dust collectors to control emissions from non-fugitive transfer points.

The design of AOS1 in Class II Air Quality Permit #77414 also includes additional milling and bulk flotation operations, referred to as the Sycamore Concentrator. The milling operations involve a secondary crusher, high pressure grinding roll, a ball mill, a regrind mill, and all associated screening and material handling operations. Seven new dust collectors were designed to control emissions from

<sup>&</sup>lt;sup>1</sup> The Primary Operating Scenario also includes an additional primary crusher (PC1) and overland conveying system, but they are not currently operating.

July 2023

the milling operations. The additional bulk flotation operations were designed to use rougher and scavenger cells to separate the combined copper/molybdenum concentrate from tailings. The combined copper/molybdenum concentrate from the Sycamore Concentrator was designed to join the combined copper/molybdenum concentrate from the Bagdad Concentrator at the molybdenum flotation operations and follow the existing process flow through bagging/loading.

### 2.1.2 Proposed Operations

With the current economic conditions, FMBI is now planning to move forward with the Two Concentrator Operations under AOS1. However, because of advancement and modernization of technology and engineering, the design of AOS1 in Class II Air Quality Permit #77414 needs to be updated.

The proposed updated design of AOS1 is presented in Figures E.1 through E.9 of Appendix E and includes the following major differences from the design of AOS1 in Class II Air Quality Permit #77414:

#### PC1 and Overland Conveying

- o FMBI will purchase a new PC1 instead of reconstructing/refurbishing the old PC1.
- The overland conveyor transfer apron feeder will be removed.
- All ore processed by PC1 will be transferred to the Sycamore Concentrator.
- Equipment names will be updated.
- Dust collector exhaust flow rates will be updated.

#### PC2 and Overland Conveying

- The overland conveyor transfer apron feeder will be removed.
- Free-Standing Stacker 6 will be retained.
- All ore processed by PC2 will be transferred to the Bagdad Concentrator.
- Fogging systems will be used instead of dust collectors to control emissions from nonfugitive transfer points during overland conveying.

#### Sycamore Milling Operations

- o Autogenous mills (wet processes) will be used instead of secondary crushers.
- o An additional ball mill and regrind mill will be used.
- Screening and material handling operations will have a different configuration.
- Equipment names will be updated.
- Dust collector exhaust flow rates will be updated.

#### Sycamore Flotation Operations

 Both bulk and molybdenum flotation operations will be included (i.e., the copper/ molybdenum concentrate from the Sycamore Concentrator will no longer combine with the copper/molybdenum concentrate from the Bagdad Concentrator). This will require addition July 2023

of the Sycamore Concentrate Handling Operations and Sycamore Lime and Other Reagent Operations as described below.

- Cleaner flotation will be added.
- Thickeners for bulk concentrate, copper concentrate, and molybdenum concentrate will be added.
- o Equipment names will be updated.

#### Sycamore Concentrate Handling Operations

- Filtering and loadout for the copper concentrate from the Sycamore Concentrator will be added.
- Filtering, drying (controlled by a scrubber), and packaging of the molybdenum concentrate from the Sycamore Concentrator will be added.

#### Sycamore Lime and Other Reagent Operations

 Because of the additional Sycamore flotation operations, reagent systems for lime, flocculant, xanthate, test reagent, and sodium hydrosulfide (NaHS) will be added.

#### • Sycamore Prill Handling Operations

o Because of the updated blasting rates described below, an additional prill bin will be added.

#### Sycamore Emergency Internal Combustion Engines

Two diesel emergency generators (engines rated at 609 horsepower [hp] and 762 hp) and two propane emergency generators (engines rated at 84.7 hp each) will be added to provide backup power to the grinding/flotation line, byproduct separation and handling area, concentrator wastewater treatment plant, and the primary crusher area wastewater treatment plant.

#### Maximum Mining Rates

- To achieve the production targets associated with the updated design of AOS1, updates are needed to maximum mining rates and associated operations, such as blasting rates and mobile equipment usage (including haul trucks).
- The updates will affect emissions from drilling, blasting, haul truck and other vehicle travel, dozer and grader operations, and loading/unloading of mined material.

FMBI proposes to update the design of AOS1 according to the description above. The upgrades will provide FMBI operational flexibility and allow PC1 and the accompanying Sycamore Concentrator to operate independently of the Bagdad Concentrator.

## 2.2 EQUIPMENT SUBJECT TO PERMITTING

The equipment associated with the updated design of AOS1 that is subject to air quality permitting and proposed to be added to Class II Air Quality Permit #77414 is presented in Table 2.1. Table 2.1 also

#### **Process Description**

July 2023

includes reference to the equipment's associated Source Classification Code (SCC) and applicable state (A.A.C.) and federal air quality requirements, including New Source Performance Standards (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAP). Further detailed information about the equipment (i.e., make, model, serial number, and date of manufacture) and applicable requirements are presented in Appendix B and Section 7, respectively.

Table 2.1 Equipment Subject to Air Quality Permitting

| Equipment                                                                          |                                |             | Applicable Requirements Reference        |                                                          |        |  |  |  |  |
|------------------------------------------------------------------------------------|--------------------------------|-------------|------------------------------------------|----------------------------------------------------------|--------|--|--|--|--|
| ID Number                                                                          | Equipment Description          | SCC         | State                                    | NSPS                                                     | NESHAP |  |  |  |  |
| AOS1: Two Concentrator Operations                                                  |                                |             |                                          |                                                          |        |  |  |  |  |
| Primary Crushing and Overland Conveying Operations (to Bagdad Concentrator) (AOS1) |                                |             |                                          |                                                          |        |  |  |  |  |
| RB                                                                                 | Rock Breaker (AOS1)            | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                                                        |        |  |  |  |  |
| PC2                                                                                | Primary Crusher 2 (AOS1)       | 3-03-024-01 | A.A.C. R18-2-901.46                      | 40 Code of Federal<br>Regulations (CFR) 60<br>Subpart LL |        |  |  |  |  |
| C51                                                                                | Dust Collector C51 (AOS1)      |             | A.A.C. R18-2-306.01 a,b                  | c                                                        |        |  |  |  |  |
| PC2SB                                                                              | PC2 Surge Bin (AOS1)           | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                                                        |        |  |  |  |  |
| PC2AF                                                                              | PC2 Apron Feeder (AOS1)        | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                                                        |        |  |  |  |  |
| PC2DC                                                                              | PC2 Dribble Conveyor (AOS1)    | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                                                        |        |  |  |  |  |
| OC3A                                                                               | Overland Conveyor 3A (AOS1)    | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                                                        |        |  |  |  |  |
| OC3                                                                                | Overland Conveyor 3 (AOS1)     | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 |                                                          |        |  |  |  |  |
| OC4                                                                                | Overland Conveyor 4 (AOS1)     | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 |                                                          |        |  |  |  |  |
| RST5                                                                               | Radial Stacker 5 (AOS1)        | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 |                                                          |        |  |  |  |  |
| FSS6                                                                               | Free-Standing Stacker 6 (AOS1) | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                                                        |        |  |  |  |  |

Table 2.1 Equipment Subject to Air Quality Permitting

|                                                                                      |                                        |             | Applic                                   | ble Requirements Reference |        |  |  |  |
|--------------------------------------------------------------------------------------|----------------------------------------|-------------|------------------------------------------|----------------------------|--------|--|--|--|
| Equipment<br>ID Number                                                               | Equipment Description                  | scc         | State                                    | NSPS                       | NESHAP |  |  |  |
| Primary Crushing and Overland Conveying Operations (to Sycamore Concentrator) (AOS1) |                                        |             |                                          |                            |        |  |  |  |
| 2110-RKB-<br>0021                                                                    | PC1 Rock Breaker (AOS1)                | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2110-CRG-<br>0021                                                                    | Primary Crusher 1 (AOS1)               | 3-03-024-01 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL       |        |  |  |  |
| 2140-DCD-<br>0021                                                                    | PC1 Dust Collector 1 (AOS1)            |             | A.A.C. R18-2-306.01 a,b                  | c                          |        |  |  |  |
| 2110-BIN-<br>0021                                                                    | PC1 Surge Pocket (AOS1)                | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2110-FDA-<br>0021                                                                    | PC1 Discharge Apron Feeder (AOS1)      | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2140-CVB-<br>0021                                                                    | PC1 Discharge Conveyor (AOS1)          | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2140-CVB-<br>0022                                                                    | PC1 Cross Country Conveyor 1<br>(AOS1) | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2140-DCD-<br>0022                                                                    | PC1 CCC1 Dust Collector 2 (AOS1)       |             | A.A.C. R18-2-306.01 a,b                  |                            |        |  |  |  |
| 2140-CVB-<br>0023                                                                    | PC1 Cross Country Conveyor 2<br>(AOS1) | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2140-DCD-<br>0023                                                                    | PC1 CCC2 Dust Collector 3 (AOS1)       |             | A.A.C. R18-2-306.01 a,b                  |                            |        |  |  |  |
| 2140-CVB-<br>0024                                                                    | PC1 Cross Country Conveyor 3<br>(AOS1) | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                          |        |  |  |  |
| 2140-DCD-<br>0024                                                                    | PC1 CCC3 Dust Collector 4 (AOS1)       |             | A.A.C. R18-2-306.01 a,b                  |                            |        |  |  |  |

Table 2.1 Equipment Subject to Air Quality Permitting

| Equipment<br>ID Number |                                                          |             | Applic                                   | cable Requirements Refe | rence  |
|------------------------|----------------------------------------------------------|-------------|------------------------------------------|-------------------------|--------|
|                        | Equipment Description                                    | SCC         | State                                    | NSPS                    | NESHAP |
| Sycamore Millin        | g Operations (AOS1)                                      |             | ,                                        |                         |        |
| 2210-FDA-<br>0101      | Coarse Ore Reclaim Feeder 1 (AOS1)                       | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2210-FDA-<br>0102      | Coarse Ore Reclaim Feeder 2<br>(AOS1)                    | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2210-FDA-<br>0103      | Coarse Ore Reclaim Feeder 3 (AOS1)                       | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2210-CVB-<br>0101      | Coarse Ore Reclaim Conveyor 1 (AOS1)                     | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL    |        |
| 2210-DCD-<br>0101      | Coarse Ore Reclaim Conveyor 1<br>Dust Collector 5 (AOS1) |             | A.A.C. R18-2-306.01 <sup>a</sup>         | c                       |        |
| 2210-FDA-<br>0201      | Coarse Ore Reclaim Feeder 4 (AOS1)                       | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2210-FDA-<br>0202      | Coarse Ore Reclaim Feeder 5 (AOS1)                       | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2210-FDA-<br>0203      | Coarse Ore Reclaim Feeder 6<br>(AOS1)                    | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2210-CVB-<br>0201      | Coarse Ore Reclaim Conveyor 2<br>(AOS1)                  | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL    |        |
| 2210-DCD-<br>0201      | Coarse Ore Reclaim Conveyor 2<br>Dust Collector 6 (AOS1) |             | A.A.C. R18-2-306.01 <sup>a</sup>         | c                       |        |
| 2310-MLA-<br>0101      | AG Mill 1 (AOS1)                                         | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2310-SCN-<br>0101      | AG Mill 1 Discharge Screen 1<br>(AOS1)                   | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL    |        |

Table 2.1 Equipment Subject to Air Quality Permitting

| -                 | <u></u>                                     |             | <u> </u>                                 |                              |        |  |
|-------------------|---------------------------------------------|-------------|------------------------------------------|------------------------------|--------|--|
| Equipment         | Favrings and December 2                     | 800         | Applic                                   | Applicable Requirements Refe |        |  |
| ID Number         | Equipment Description                       | scc         | State                                    | NSPS                         | NESHAP |  |
| 2310-SCN-<br>0102 | AG Mill 1 Discharge Screen 2<br>(AOS1)      | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2310-SCN-<br>0103 | AG Mill Rotatable Discharge Screen 1 (AOS1) | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2340-MLB-<br>0111 | Ball Mill 1 (AOS1)                          | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                            |        |  |
| 2310-MLA-<br>0201 | AG Mill 2 (AOS1)                            | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                            |        |  |
| 2310-SCN-<br>0201 | AG Mill 2 Discharge Screen 1<br>(AOS1)      | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2310-SCN-<br>0202 | AG Mill 2 Discharge Screen 2<br>(AOS1)      | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2310-SCN-<br>0203 | AG Mill Rotatable Discharge Screen 2 (AOS1) | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2340-MLB-<br>0211 | Ball Mill 2 (AOS1)                          | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                            |        |  |
| 2330-CVB-<br>0121 | Pebble Conveyor (AOS1)                      | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2330-CVB-<br>0122 | HPGR Feed Bin Feed Conveyor (AOS1)          | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2330-DVT-<br>0123 | HPGR Feed Diverter (AOS1)                   | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                            |        |  |
| 2330-BIN-<br>0130 | HPGR Feed Bin (AOS1)                        | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |
| 2330-FDB-<br>0132 | HPGR Belt Feeder (AOS1)                     | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL         |        |  |

Table 2.1 Equipment Subject to Air Quality Permitting

| Equipment<br>ID Number |                                                             |             | Applicable Requirements Reference |                      |        |
|------------------------|-------------------------------------------------------------|-------------|-----------------------------------|----------------------|--------|
|                        | Equipment Description                                       | scc         | State                             | NSPS                 | NESHAP |
| 2330-CVB-<br>0134      | HPGR Feed Conveyor (AOS1)                                   | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-CRH-<br>0140      | High Pressure Grinding Roll (AOS1)                          | 3-03-024-02 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-DCD-<br>0141      | HPGR Discharge Dust Collector 7 (AOS1)                      |             | A.A.C. R18-2-306.01 <sup>a</sup>  | c                    |        |
| 2330-CVB-<br>0141      | HPGR Discharge Conveyor 1<br>(AOS1)                         | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-CVB-<br>0142      | HPGR Discharge Conveyor 2<br>(AOS1)                         | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-DCD-<br>0142      | HPGR Discharge Conveyor<br>Transfer Dust Collector 8 (AOS1) |             | A.A.C. R18-2-306.01 <sup>a</sup>  | c                    |        |
| 2330-BIN-<br>0150      | HPGR Product Bin (AOS1)                                     | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-DCD-<br>0150      | HPGR Product Bin Dust Collector 9 (AOS1)                    |             | A.A.C. R18-2-306.01 <sup>a</sup>  | c                    |        |
| 2330-FDB-<br>0152      | HPGR Product Recycle Feeder (AOS1)                          | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-FDB-<br>0163      | HPGR Product Feeder 1 (AOS1)                                | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-FDB-<br>0263      | HPGR Product Feeder 2 (AOS1)                                | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-CVB-<br>0163      | HPGR Product Return Conveyor 1 (AOS1)                       | 3-03-024-04 | A.A.C. R18-2-901.46               | 40 CFR 60 Subpart LL |        |
| 2330-DCD-<br>0163      | HPGR Product Transfer Dust<br>Collector 10 (AOS1)           |             | A.A.C. R18-2-306.01 <sup>a</sup>  | c                    |        |

Table 2.1 Equipment Subject to Air Quality Permitting

| Equipment<br>ID Number |                                                            |             | Applic                                                       | erence               |        |
|------------------------|------------------------------------------------------------|-------------|--------------------------------------------------------------|----------------------|--------|
|                        | Equipment Description                                      | SCC         | State                                                        | NSPS                 | NESHAP |
| 2330-CVB-<br>0263      | HPGR Product Return Conveyor 2 (AOS1)                      | 3-03-024-04 | A.A.C. R18-2-901.46                                          | 40 CFR 60 Subpart LL |        |
| 2330-DCD-<br>0263      | HPGR Product Transfer Dust<br>Collector 11 (AOS1)          |             | A.A.C. R18-2-306.01 <sup>a</sup>                             | c                    |        |
| Sycamore Bulk          | and Molybdenum Flotation Operations                        | (AOS1)      |                                                              |                      |        |
| S-FLO-B                | Sycamore Bulk Flotation Equipment (AOS1)                   | 3-05-038-32 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721<br>A.A.C. R18-2-730 | d                    |        |
| 2420-MLV-<br>0303      | Sycamore Regrind Mill 1 (AOS1)                             | 3-03-024-03 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721                     | d                    |        |
| 2420-MLV-<br>0304      | Sycamore Regrind Mill 2 (AOS1)                             | 3-03-024-03 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721                     | d                    |        |
| S-FLO-M                | Sycamore Molybdenum Flotation<br>Equipment (AOS1)          | 3-05-038-32 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721<br>A.A.C. R18-2-730 | d                    |        |
| Sycamore Cond          | centrate Handling Operations (AOS1)                        |             |                                                              |                      |        |
| 2630-SCN-<br>0410      | Copper Filter Feed Tank Trash<br>Screen (AOS1)             | 3-03-024-04 | A.A.C. R18-2-901.46                                          | 40 CFR 60 Subpart LL |        |
| 2520-SCN-<br>0517      | Molybdenum Thickener Trash<br>Screen (AOS1)                | 3-03-024-04 | A.A.C. R18-2-901.46                                          | 40 CFR 60 Subpart LL |        |
| 2520-HPR-<br>0576      | Molybdenum Concentrate Filter<br>Discharge Hopper 1 (AOS1) | 3-03-024-04 | A.A.C. R18-2-901.46                                          | 40 CFR 60 Subpart LL |        |
| 2520-HPR-<br>0577      | Molybdenum Concentrate Filter<br>Discharge Hopper 2 (AOS1) | 3-03-024-04 | A.A.C. R18-2-901.46                                          | 40 CFR 60 Subpart LL |        |

Table 2.1 Equipment Subject to Air Quality Permitting

| -                                                | F                                                   |             | Г                                        |                         |        |
|--------------------------------------------------|-----------------------------------------------------|-------------|------------------------------------------|-------------------------|--------|
| Equipment<br>ID Number                           | Equipment Description                               | 800         | Applic                                   | cable Requirements Refe | erence |
|                                                  | Equipment Description                               | SCC         | State                                    | NSPS                    | NESHAP |
| 2520-CVS-<br>0576                                | Molybdenum Concentrate Dryer<br>Screw Feeder (AOS1) | 3-03-024-04 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2520-DRY-<br>0576                                | Molybdenum Concentrate Dryer (AOS1)                 | 3-03-024-11 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-721 | d                       |        |
| 2520-SCU-<br>0576                                | Molybdenum Dryer Wet Scrubber<br>System (AOS1)      |             | b                                        |                         |        |
| 2520-BIN-<br>0576                                | Dried Molybdenum Concentrate<br>Storage Bin (AOS1)  | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL    |        |
| 2520-SYS-<br>0576                                | Molybdenum Concentrate Bagging<br>System (AOS1)     | 3-03-024-04 | A.A.C. R18-2-901.46                      | 40 CFR 60 Subpart LL    |        |
| Sycamore Lime and Other Regent Operations (AOS1) |                                                     |             |                                          |                         |        |
| 2360-SLO-<br>0140                                | Sycamore Lime Silo (AOS1)                           | 3-05-016-26 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 | e                       | e      |
| 2360-BGH-<br>0141                                | Sycamore Lime Silo Baghouse<br>(AOS1)               | 3-05-016-26 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 | e                       | e      |
| 2360-FDR-<br>0140                                | Sycamore Lime Screw Feeder (AOS1)                   | 3-05-016-26 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 | e                       | e      |
| 2360-MLV-<br>0140                                | Sycamore Lime Slaker (AOS1)                         | 3-02-016-88 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 | e                       | e      |
| 2360-SCU-<br>0140                                | Sycamore Lime System Scrubber (AOS1)                | 3-02-016-88 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 | e                       | e      |
| 2720-BIN-<br>0720                                | Tailings Flocculant Bag Breaker Bin (AOS1)          | 3-01-810-03 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 |                         |        |
| 2720-FDR-<br>0720                                | Tailings Flocculant Screw Feeder (AOS1)             | 3-01-810-03 | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 |                         |        |

Table 2.1 Equipment Subject to Air Quality Permitting

| Equipment                                 |                                                  | Applicable Requirements Reference |                                          | Applicable Requirements Reference |        |  |
|-------------------------------------------|--------------------------------------------------|-----------------------------------|------------------------------------------|-----------------------------------|--------|--|
| ID Number                                 | Equipment Description                            | SCC                               | State                                    | NSPS                              | NESHAP |  |
| 2510-BIN-<br>0580                         | Concentrate Flocculant Bag<br>Breaker Bin (AOS1) | 3-01-810-03                       | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 |                                   |        |  |
| 2510-FDR-<br>0580                         | Concentrate Flocculant Screw<br>Feeder (AOS1)    | 3-01-810-03                       | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 |                                   |        |  |
| 2440-TNK-<br>0150                         | Xanthate Mix Tank (AOS1)                         | 4-07-146-97<br>4-07-146-98        | A.A.C. R18-2-730                         |                                   |        |  |
| 2440-TNK-<br>0152                         | Xanthate Holding Tank (AOS1)                     | 4-07-146-97<br>4-07-146-98        | A.A.C. R18-2-730                         |                                   |        |  |
| 2440-TNK-<br>0160                         | Test Reagent Mix Tank (AOS1)                     | 4-07-146-97<br>4-07-146-98        | A.A.C. R18-2-730                         |                                   |        |  |
| 2440-TNK-<br>0162                         | Test Reagent Holding Tank (AOS1)                 | 4-07-146-97<br>4-07-146-98        | A.A.C. R18-2-730                         |                                   |        |  |
| 2520-TNK-<br>0591                         | NaHS Storage Tank (AOS1)                         | 3-01-875-97<br>3-01-875-98        | A.A.C. R18-2-730                         |                                   |        |  |
| 2520-TNK-<br>0592                         | NaHS Distribution Tank (AOS1)                    | 3-01-875-97<br>3-01-875-98        | A.A.C. R18-2-730                         |                                   |        |  |
| 2520-SCU-<br>0591                         | Sycamore NaHS System Scrubber (AOS1)             | 3-01-875-97<br>3-01-875-98        | A.A.C. R18-2-730                         |                                   |        |  |
| Sycamore Prill Handling Operations (AOS1) |                                                  |                                   |                                          |                                   |        |  |
| PB6                                       | Prill Bin 6 (AOS1)                               | 3-01-027-09                       | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 |                                   |        |  |
| PBV06                                     | Prill Bin Vent 6 (no filter) (AOS1)              | 3-01-027-09                       | A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-730 |                                   |        |  |

**Table 2.1 Equipment Subject to Air Quality Permitting** 

| Equipment         | Familian and Bassarian                                     | 000         | Applicable Requirements Reference             |                                              |                                                                          |  |  |
|-------------------|------------------------------------------------------------|-------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|--|--|
| ID Number         | Equipment Description                                      | SCC         | State                                         | NSPS                                         | NESHAP                                                                   |  |  |
| Sycamore Emer     | Sycamore Emergency Internal Combustion Engine (ICE) (AOS1) |             |                                               |                                              |                                                                          |  |  |
| 2440-GEN-<br>0101 | Sycamore Diesel Emergency<br>Generator 1 (AOS1)            | 2-02-001-02 | A.A.C. R18-2-901.84<br>A.A.C. R18-2-1101.B.81 | 40 CFR 60 Subpart IIII<br>(emergency engine) | 40 CFR 63 Subpart<br>ZZZZ (new emergency<br>engine at an area<br>source) |  |  |
| 2500-GEN-<br>0501 | Sycamore Diesel Emergency<br>Generator 2 (AOS1)            | 2-02-001-02 | A.A.C. R18-2-901.84<br>A.A.C. R18-2-1101.B.81 | 40 CFR 60 Subpart IIII<br>(emergency engine) | 40 CFR 63 Subpart<br>ZZZZ (new emergency<br>engine at an area<br>source) |  |  |
| 3650-GEN-<br>0801 | Sycamore Propane Emergency<br>Generator 1 (AOS1)           | 2-02-010-01 | A.A.C. R18-2-901.85<br>A.A.C. R18-2-1101.B.81 | 40 CFR 60 Subpart JJJJ<br>(emergency engine) | 40 CFR 63 Subpart<br>ZZZZ (new emergency<br>engine at an area<br>source) |  |  |
| 3650-GEN-<br>0802 | Sycamore Propane Emergency<br>Generator 2 (AOS1)           | 2-02-010-01 | A.A.C. R18-2-901.85<br>A.A.C. R18-2-1101.B.81 | 40 CFR 60 Subpart JJJJ<br>(emergency engine) | 40 CFR 63 Subpart<br>ZZZZ (new emergency<br>engine at an area<br>source) |  |  |

<sup>&</sup>lt;sup>a</sup> For ease of reference, A.A.C. R18-2-306.01 for a voluntary emission limitation is listed as applicable to the pollution control device. However, the voluntary emission limitation is actually applicable to the processes controlled by the pollution control device and the pollution control device is used to demonstrate compliance with the voluntary emission limitation.

<sup>&</sup>lt;sup>b</sup> The pollution control device is not an affected facility subject to A.A.C. R18-2-702.B.3 and A.A.C. R18-2-721 (Standards of Performance for Existing Nonferrous Metals Industry Sources). Instead, it controls affected facilities subject to A.A.C. R18-2-702.B.3 and A.A.C. R18-2-721 and is used to ensure compliance with the requirements of A.A.C. R18-2-702.B.3 and A.A.C. R18-2-721.

<sup>&</sup>lt;sup>c</sup> The pollution control device is not an affected facility subject to A.A.C. R18-2-901.45 and 40 CFR 60 Subpart LL (Standards of Performance for Metallic Mineral Processing Plants). Instead, it controls affected facilities subject to A.A.C. R18-2-901.45 and 40 CFR 60 Subpart LL and is used to ensure compliance with the requirements of A.A.C. R18-2-901.45 and 40 CFR 60 Subpart LL.

<sup>&</sup>lt;sup>d</sup> The equipment is not subject to A.A.C. R18-2-901.45 and 40 CFR 60 Subpart LL (Standards of Performance for Metallic Mineral Processing Plants) because the equipment is not a crusher or screen located in the open-pit mine or a crusher, screen, bucket elevator, conveyor belt transfer point, thermal dryer, product packaging station, storage bin, enclosed storage area, truck loading station, truck unloading station, railcar loading station, and railcar unloading station located at the mill or concentrator.

<sup>&</sup>lt;sup>e</sup> The equipment is not subject to 40 CFR 60 Subpart HH (Standards of Performance for Lime Manufacturing Plants) or 40 CFR 63 Subpart AAAAA (National Emission Standards for Hazardous Air Pollutants for Lime Manufacturing Plants) because it is not a kiln and FMBI is not a major source of HAP emissions and does not manufacture lime products through calcination.

## 3 DESCRIPTION OF ALTERNATE OPERATING SCENARIOS

As described in Section 2.1.1, FMBI previously established the Two Concentrator Operations as an alternate operating scenario (i.e., AOS1). The design of AOS1 in Class II Air Quality Permit #77414 includes modified primary crushing and overland conveying operations, additional milling operations, and additional bulk flotation operations. FMBI proposes to update the design of AOS1 by modernizing the previously permitted primary crushing, overland conveying, milling, and bulk flotation operations as well as incorporating additional concentrate handling operations, lime and other reagent operations, prill handling operations, and emergency engines. These changes are described in detail in Section 2.1.2.

# 4 IDENTIFICATION AND DESCRIPTION OF POLLUTION CONTROLS

# 4.1 IDENTIFICATION, DESCRIPTION, AND LOCATION

Identification and description of the pollution control equipment associated with the updated design of AOS1 is presented in Table 4.1. The general location of the pollution control equipment within the process flow is shown in the process flow diagrams presented in Appendix E.

The Sycamore Lime Silo Baghouse, Sycamore Lime System Scrubber, and Sycamore NaHS System Scrubber are not considered pollution control devices because they are inherent to the process equipment and/or have a primary function that is not pollution control. However, they are included in Table 4.1 for reference purposes and because they have a secondary benefit of controlling emissions. Additionally, pollution prevention techniques such as unpaved road watering, water sprays, fogging systems, and building enclosures are also not considered pollution control devices. However, they are included in Table 4.1 for reference purposes and consistency.

There are no required compliance monitoring devices associated with the pollution control equipment identified in Table 4.1.

#### 4.2 RATED AND OPERATING EFFICIENCIES

The rated and operating efficiency of the identified air pollution control equipment/method is presented in Table 4.1. Operation of the air pollution control equipment is necessary to comply with applicable emission limitations and standards.

#### 4.3 REFERENCE TO APPLICABLE TEST METHODS

The requirements applicable to each process and/or piece of equipment associated with the updated design of AOS1 are identified in Table 2.1 and described in Section 7. The applicable test methods that can be used to determine compliance with the applicable emission standards include:

Opacity Standard: U.S. Environmental Protection Agency (EPA) Reference Method

9, EPA Reference Method 22, or Visible Emission Surveys;

• PM Emission Standard: EPA Reference Method 5 and (if necessary) EPA Reference

Method 202:

PM<sub>10</sub> Emission Standard: EPA Reference Method 201 or 201A and (if necessary) EPA

Reference Method 202 (alternately EPA Reference Method 5 can be used with the assumption that all particulate collected is PM<sub>10</sub>);

CO Emission Standard: EPA Reference Method 10;

NO<sub>X</sub> Emission Standard: EPA Reference Method 7E;

SO<sub>2</sub> Emission Standard EPA Reference Method 6 or 6C; and

VOC Emission Standard: EPA Reference Method 25A.

Table 4.1 Summary of Air Pollution Control Methods and Equipment for the Updated Design of AOS1

| Process<br>Number | Identification of Control<br>Method or Equipment                 | Emission Unit(s) Controlled               | Pollutants<br>Controlled                           | Voluntary Emission<br>Limitations | Exhaust Flow<br>Rate | Rated/<br>Operating<br>Efficiency    |  |  |  |
|-------------------|------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------------------------|----------------------|--------------------------------------|--|--|--|
| Affected E        | Affected Emissions Units - Proposed Updated Design of AOS1       |                                           |                                                    |                                   |                      |                                      |  |  |  |
| Mining Ope        | erations (AOS1)                                                  |                                           |                                                    |                                   |                      |                                      |  |  |  |
| 022-1<br>(AOS1)   | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | Haul Truck Travel Inside the Pit (AOS1)   | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                      | 90%                                  |  |  |  |
| 022-2<br>(AOS1)   | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | Haul Truck Travel Outside the Pit (AOS1)  | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                      | 90%                                  |  |  |  |
| 023-3<br>(AOS1)   | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | Other Vehicle Travel (AOS1)               | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                      | 90%                                  |  |  |  |
| 023-2<br>(AOS1)   | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | Road Grader Operation (AOS1)              | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                      | 90%                                  |  |  |  |
| 001-6<br>(AOS1)   | Water Spray/Wet<br>Suppression When<br>Necessary                 | Unloading Ore to Primary Crusher 1 (AOS1) | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                      | N/A (only used<br>when<br>necessary) |  |  |  |
| 001-7<br>(AOS1)   | Water Spray/Wet<br>Suppression When<br>Necessary                 | Unloading Ore to Primary Crusher 2 (AOS1) | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                      | N/A (only used<br>when<br>necessary) |  |  |  |

Table 4.1 Summary of Air Pollution Control Methods and Equipment for the Updated Design of AOS1

| Process<br>Number | Identification of Control<br>Method or Equipment | Emission Unit(s) Controlled                                    | Pollutants<br>Controlled                           | Voluntary Emission<br>Limitations | Exhaust Flow<br>Rate                                       | Rated/<br>Operating<br>Efficiency    |
|-------------------|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-----------------------------------|------------------------------------------------------------|--------------------------------------|
| Primary Ci        | rushing and Overland Conveyin                    | g Operations (to Bagdad Concentrator) (AOS1)                   |                                                    |                                   |                                                            |                                      |
|                   |                                                  | Primary Crusher 2 (AOS1)                                       |                                                    |                                   |                                                            |                                      |
|                   |                                                  | Primary Crusher 2 (AOS1) to PC2 Surge Bin (AOS1)               |                                                    |                                   |                                                            |                                      |
| 001-5             | Dust Collector C51 (AOS1)                        | PC2 Surge Bin (AOS1) to PC2 Apron Feeder (AOS1)                | PM, PM <sub>10</sub> ,                             |                                   | 15,000 dry<br>standard cubic<br>foot per minute<br>(dscfm) | 99.99%                               |
| (AOS1)            |                                                  | PC2 Apron Feeder (AOS1) to Overland Conveyor 3A (AOS1)         | PM <sub>2.5</sub> , HAPs                           |                                   |                                                            |                                      |
|                   |                                                  | PC2 Apron Feeder (AOS1) to PC2 Dribble<br>Conveyor (AOS1)      |                                                    |                                   |                                                            |                                      |
|                   |                                                  | PC2 Dribble Conveyor (AOS1) to Overland<br>Conveyor 3A (AOS1)  |                                                    |                                   |                                                            |                                      |
| 001-2<br>(AOS1)   | Dry Fogging System                               | Overland Conveyor 3A (AOS1) to Overland<br>Conveyor 3 (AOS1)   | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                                                            | 90%                                  |
| 001-8<br>(AOS1)   | Dry Fogging System                               | Overland Conveyor 3 (AOS1) to Overland<br>Conveyor 4 (AOS1)    | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                                                            | 90%                                  |
| 001-9<br>(AOS1)   | Dry Fogging System                               | Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)          | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                                                            | 90%                                  |
| 001-4<br>(AOS1)   | Water Spray/Wet<br>Suppression When<br>Necessary | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                                                            | N/A (only used<br>when<br>necessary) |
| 001-10<br>(AOS1)  | Water Spray/Wet<br>Suppression When<br>Necessary | Radial Stacker 5 (AOS1) to Free-Standing<br>Stacker 6 (AOS1)   | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                              |                                                            | N/A (only used<br>when<br>necessary) |

Table 4.1 Summary of Air Pollution Control Methods and Equipment for the Updated Design of AOS1

| Process<br>Number | Identification of Control<br>Method or Equipment | Emission Unit(s) Controlled                                                   | Pollutants<br>Controlled                           | Voluntary Emission<br>Limitations                        | Exhaust Flow<br>Rate | Rated/<br>Operating<br>Efficiency    |
|-------------------|--------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------|--------------------------------------|
| 001-3<br>(AOS1)   | Water Spray/Wet<br>Suppression When<br>Necessary | Free-Standing Stacker 6 (AOS1) to Coarse Ore<br>Stockpile 5 (AOS1)            | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                                                     |                      | N/A (only used<br>when<br>necessary) |
| Primary C         | rushing and Overland Conveying                   | g Operations (to Sycamore Concentrator) (AOS1)                                |                                                    |                                                          |                      |                                      |
|                   |                                                  | Primary Crusher 1 (AOS1)                                                      |                                                    |                                                          |                      |                                      |
| 001-12            | PC1 Dust Collector 1 (AOS1)                      | Primary Crusher 1 (AOS1) to PC1 Surge Pocket (AOS1)                           | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs |                                                          | 14,500 dscfm         | 99.99%                               |
| (AOS1)            | FOT Dust Collector 1 (AOS1)                      | PC1 Surge Pocket (AOS1) to PC1 Discharge<br>Apron Feeder (AOS1)               |                                                    |                                                          |                      |                                      |
|                   |                                                  | PC1 Discharge Apron Feeder (AOS1) to PC1 Discharge Conveyor (AOS1)            |                                                    |                                                          |                      |                                      |
| 001-13<br>(AOS1)  | PC1 CCC1 Dust Collector 2<br>(AOS1)              | PC1 Discharge Conveyor (AOS1) to PC1 Cross<br>Country Conveyor 1 (AOS1)       | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 16,700 dscfm         | 99.99%                               |
| 001-14<br>(AOS1)  | PC1 CCC2 Dust Collector 3<br>(AOS1)              | PC1 Cross Country Conveyor 1 (AOS1) to PC1<br>Cross Country Conveyor 2 (AOS1) | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 16,700 dscfm         | 99.99%                               |
| 001-15<br>(AOS1)  | PC1 CCC3 Dust Collector 4<br>(AOS1)              | PC1 Cross Country Conveyor 2 (AOS1) to PC1<br>Cross Country Conveyor 3 (AOS1) | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 16,700 dscfm         | 99.99%                               |
| 001-20<br>(AOS1)  | Water Spray/Wet<br>Suppression When<br>Necessary | PC1 Cross Country Conveyor 3 (AOS1) to Coarse<br>Ore Stockpile 6 (AOS1)       | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | None                                                     |                      | N/A (only used<br>when<br>necessary) |

Table 4.1 Summary of Air Pollution Control Methods and Equipment for the Updated Design of AOS1

| Process<br>Number | Identification of Control<br>Method or Equipment               | Emission Unit(s) Controlled                                                                                                   | Pollutants<br>Controlled                           | Voluntary Emission<br>Limitations                        | Exhaust Flow<br>Rate | Rated/<br>Operating<br>Efficiency |
|-------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------|-----------------------------------|
| Sycamore          | Milling Operations (AOS1)                                      |                                                                                                                               |                                                    |                                                          |                      |                                   |
|                   |                                                                | Coarse Ore Reclaim Feeder 1 (AOS1) to Coarse<br>Ore Reclaim Conveyor 1 (AOS1)                                                 |                                                    |                                                          |                      |                                   |
| 002-7             | Coarse Ore Reclaim<br>Conveyor 1 Dust Collector 5              | Coarse Ore Reclaim Feeder 2 (AOS1) to Coarse<br>Ore Reclaim Conveyor 1 (AOS1)                                                 | PM, PM <sub>10</sub> ,                             | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 22,000 dscfm         | 00.00%                            |
| (AOS1)            | (AOS1)                                                         | Coarse Ore Reclaim Feeder 3 (AOS1) to Coarse<br>Ore Reclaim Conveyor 1 (AOS1)                                                 | PM <sub>2.5</sub> , HAPs                           |                                                          |                      | 99.99%                            |
|                   |                                                                | HPGR Product Return Conveyor 1 (AOS1) to Coarse Ore Reclaim Conveyor 1 (AOS1)                                                 |                                                    |                                                          |                      |                                   |
|                   | Coarse Ore Reclaim<br>Conveyor 2 Dust Collector 6<br>(AOS1)    | Coarse Ore Reclaim Feeder 4 (AOS1) to Coarse<br>Ore Reclaim Conveyor 2 (AOS1)                                                 |                                                    | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 22,000 dscfm         | 99.99%                            |
| 002-8             |                                                                | Coarse Ore Reclaim Feeder 5 (AOS1) to Coarse<br>Ore Reclaim Conveyor 2 (AOS1)                                                 | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs |                                                          |                      |                                   |
| (AOS1)            |                                                                | Coarse Ore Reclaim Feeder 6 (AOS1) to Coarse<br>Ore Reclaim Conveyor 2 (AOS1)                                                 |                                                    |                                                          |                      |                                   |
|                   |                                                                | HPGR Product Return Conveyor 2 (AOS1) to Coarse Ore Reclaim Conveyor 2 (AOS1)                                                 |                                                    |                                                          |                      |                                   |
|                   |                                                                | HPGR Feed Conveyor (AOS1) to High Pressure<br>Grinding Roll (AOS1) and Operation of the High<br>Pressure Grinding Roll (AOS1) |                                                    |                                                          |                      |                                   |
| 002-9<br>(AOS1)   | HPGR Discharge Dust<br>Collector 7 (AOS1)                      | High Pressure Grinding Roll (AOS1) to HPGR Discharge Conveyor 1 (AOS1)                                                        | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 23,000 dscfm         | 99.99%                            |
|                   |                                                                | HPGR Product Recycle Feeder (AOS1) to HPGR<br>Feed Conveyor (AOS1)                                                            |                                                    |                                                          |                      |                                   |
| 002-10<br>(AOS1)  | HPGR Discharge Conveyor<br>Transfer Dust Collector 8<br>(AOS1) | HPGR Discharge Conveyor 1 (AOS1) to HPGR<br>Discharge Conveyor 2 (AOS1)                                                       | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 27,000 dscfm         | 99.99%                            |

Table 4.1 Summary of Air Pollution Control Methods and Equipment for the Updated Design of AOS1

| Process<br>Number | Identification of Control<br>Method or Equipment  | Emission Unit(s) Controlled                                                                                                                                        | Pollutants<br>Controlled                                                        | Voluntary Emission<br>Limitations                        | Exhaust Flow<br>Rate | Rated/<br>Operating<br>Efficiency |
|-------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|-----------------------------------|
| 002-11<br>(AOS1)  | HPGR Product Bin Dust<br>Collector 9 (AOS1)       | HPGR Discharge Conveyor 2 (AOS1) to HPGR<br>Product Bin (AOS1)                                                                                                     | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs                              | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 25,000 dscfm         | 99.99%                            |
| 002-12<br>(AOS1)  | HPGR Product Transfer Dust<br>Collector 10 (AOS1) | HPGR Product Feeder 1 (AOS1) to HPGR<br>Product Return Conveyor 1 (AOS1)                                                                                           | IPGR Product Feeder 1 (AOS1) to HPGR PM, PM <sub>10</sub> , PM ≤ 0.0023 gr/dscf |                                                          | 10,000 dscfm         | 99.99%                            |
| 002-13<br>(AOS1)  | HPGR Product Transfer Dust<br>Collector 11 (AOS1) | HPGR Product Feeder 2 (AOS1) to HPGR<br>Product Return Conveyor 2 (AOS1)                                                                                           | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs                              | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | 10,000 dscfm         | 99.99%                            |
| Sycamore          | Concentrate Handling Operation                    | ns (AOS1)                                                                                                                                                          |                                                                                 |                                                          |                      |                                   |
| 027-8<br>(AOS1)   | 3-Sided Enclosure                                 | Wind Erosion of Copper Concentrate Filter Drop Storage (AOS1) and Copper Concentrate Loadout Storage (AOS1)  PM, PM <sub>10</sub> , PM <sub>2.5</sub> , HAPs  None |                                                                                 |                                                          | 75%                  |                                   |
| 052-2<br>(AOS1)   | Molybdenum Dryer Wet<br>Scrubber System (AOS1)    | Molybdenum Concentrate Dryer (AOS1)                                                                                                                                | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs                              | None                                                     | 337 dscfm            | N/A                               |
| Sycamore          | Lime and Other Regent Operati                     | ons (AOS1)                                                                                                                                                         |                                                                                 |                                                          |                      |                                   |
| 007-6<br>(AOS1)   | Sycamore Lime Silo<br>Baghouse (AOS1)             | Transfer of Lime to the Sycamore Lime Silo (AOS1)                                                                                                                  | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs                              | None                                                     |                      | 99%                               |
| 007-7<br>(AOS1)   | Sycamore Lime System<br>Scrubber (AOS1)           | Sycamore Lime Slaker (AOS1)                                                                                                                                        | PM, PM <sub>10</sub> ,<br>PM <sub>2.5</sub> , HAPs                              | None                                                     |                      | N/A                               |
| 055-3             | Sycamore NaHS System                              | NaHS Storage Tank (AOS1)                                                                                                                                           | H <sub>2</sub> S                                                                | None                                                     |                      | N/A                               |
|                   | Scrubber (AOS1)                                   | NaHS Distribution Tank (AOS1)                                                                                                                                      | П2Э                                                                             | ivorie                                                   |                      | IV/A                              |

## 5 EMISSIONS CALCULATIONS

#### 5.1 EMISSIONS FROM EACH PROCESS

As described in Section 2.1, FMBI proposes to update the design of AOS1. Potential emissions from each emission unit associated with the design of existing AOS1 in Class II Air Quality Permit #77414 is presented in Table 5.1 in pounds per hour (lb/hr) and tons per year (tpy). Potential emissions from each emission unit associated with the proposed updated design of AOS1 is presented in Table 5.2.

The regulated air pollutants emitted by the emission units associated with AOS1 include the following: particulate matter (PM), particulate matter less than or equal to 10 microns in aerodynamic diameter (PM<sub>10</sub>), and particulate matter less than or equal to 2.5 microns in aerodynamic diameter (PM<sub>2.5</sub>); carbon monoxide (CO); nitrogen oxides (NO<sub>X</sub>); sulfur dioxide (SO<sub>2</sub>); volatile organic compounds (VOCs); hydrogen sulfide (H<sub>2</sub>S); hazardous air pollutants (HAPs); and greenhouse gases (GHGs or CO<sub>2</sub>e)<sup>1</sup>, including carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>), and nitrous oxide (N<sub>2</sub>O). CO<sub>2</sub>e emissions are calculated by summing the individual greenhouse gas emissions multiplied by their global warming potential (GWP). The GWP of CO<sub>2</sub> is 1, the GWP of CH<sub>4</sub> is 25, and the GWP of N<sub>2</sub>O is 298.

#### 5.2 FACILITY-WIDE EMISSIONS

The FMBI facility is currently a synthetic minor source of regulated air pollutants for permitting purposes under A.A.C. Title 18, Chapter 2, Articles 3 and 4. The primary activity of the FMBI facility is mining and ore processing operations, which is not a "categorical source", or a "Section 302(j) category" source as defined in A.A.C. R18-2-101.23 and A.A.C. R18-2-101.129, respectively. Therefore, only non-fugitive emissions are included in the determination of the facility-wide potential to emit (PTE) of regulated air pollutants (except HAPs) for purposes of determining "major source" status under A.A.C. R18-2, Articles 3 and 4. All HAP emissions are included in the determination of the facility-wide PTE regardless of their fugitive or non-fugitive classification.

The proposed updated design of AOS1 will not affect the source status of the FMBI facility. FMBI's facility-wide potential emissions (including PTE) prior to and following the proposed updates are presented in Tables 5.3 and 5.4. Tables 5.3 and 5.4 present hourly and annual potential emissions, respectively, and are broken down into the Primary Operating Scenario (current operations) and Alternate Operating Scenario 1 (AOS1 – two concentrator operations) according to: (a) facility-wide potential emissions as presented in the last submittal to ADEQ (i.e., Minor Permit Revision (MPR) #96299); (b) change in potential emissions due to the proposed updates; and (c) the resulting facility-wide potential emission totals following the proposed updates.

<sup>&</sup>lt;sup>1</sup> While GHGs are not included under the definition of "regulated air pollutant" at A.A.C. R18-2-101.122, they are considered a "regulated NSR pollutant" under the Prevention of Significant Deterioration (PSD) program at 40 CFR 52.21(b)(50) and therefore included here for informational purposes.

## 5.3 EMISSION FACTOR DOCUMENTATION

The methodology used to calculate potential emissions from the emission units addressed in Section 5.1 is presented in Appendix F.

# 5.4 ELECTRONIC COPY OF EMISSION CALCULATIONS

An electronic copy of the emission calculations will be provided via email with the SPR application. The Excel spreadsheets used to calculate emissions are reproduced in Appendix G.

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| Process         | Process/Emission Unit                   | Non-Fugitive                  | Regulated Air           | Potential I | Emissions |
|-----------------|-----------------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number          | Description                             | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
| Mining Op       | erations (AOS1)                         |                               |                         |             |           |
|                 |                                         |                               | PM                      | 260.00      | 58.50     |
|                 |                                         |                               | PM <sub>10</sub>        | 156.00      | 35.10     |
| 026-3<br>(AOS1) | Drilling (AOS1)                         | Fugitive                      | PM <sub>2.5</sub>       | 28.89       | 6.50      |
|                 |                                         |                               | Lead                    | 3.30E-03    | 7.44E-04  |
|                 |                                         |                               | Total HAPs <sup>a</sup> | 5.33E-02    | 1.20E-02  |
|                 |                                         |                               | PM                      | 1,252.20    | 119.12    |
|                 |                                         |                               | PM <sub>10</sub>        | 651.14      | 61.94     |
|                 | DI 11 (1004)                            | Fugitive                      | PM <sub>2.5</sub>       | 37.57       | 3.57      |
|                 |                                         |                               | СО                      | 4,064.40    | 914.49    |
|                 |                                         |                               | NOx                     | 180.00      | 40.50     |
| 026-2           |                                         |                               | SO <sub>2</sub>         | 1.23        | 0.28      |
| (AOS1)          | Blasting (AOS1)                         |                               | CO <sub>2</sub>         | 38,066.47   | 8,564.96  |
|                 |                                         |                               | CH <sub>4</sub>         | 1.49        | 0.33      |
|                 |                                         |                               | N <sub>2</sub> O        | 0.29        | 0.07      |
|                 |                                         |                               | CO <sub>2</sub> e       | 38,191.09   | 8,593.00  |
|                 |                                         |                               | Lead                    | 1.59E-02    | 1.79E-03  |
|                 |                                         |                               | Total HAPs <sup>a</sup> | 3.44E-01    | 4.86E-02  |
|                 |                                         |                               | PM                      | 1,014.96    | 2,492.53  |
|                 |                                         |                               | PM <sub>10</sub>        | 278.95      | 685.04    |
| 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1) | Fugitive                      | PM <sub>2.5</sub>       | 27.90       | 68.50     |
|                 |                                         |                               | Lead                    | 5.91E-03    | 1.45E-02  |
|                 |                                         |                               | Total HAPs <sup>a</sup> | 9.53E-02    | 2.34E-01  |

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| Process         | Process/Emission Unit                          | Non-Fugitive                  | Regulated Air           | Potential I | Emissions |
|-----------------|------------------------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number          | Description                                    | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
|                 |                                                |                               | PM                      | 338.32      | 830.84    |
|                 |                                                |                               | PM <sub>10</sub>        | 92.98       | 228.35    |
| 022-2<br>(AOS1) | Haul Truck Travel Outside the Pit (AOS1)       | Fugitive                      | PM <sub>2.5</sub>       | 9.30        | 22.83     |
| , ,             | , ,                                            |                               | Lead                    | 1.97E-03    | 4.84E-03  |
|                 |                                                |                               | Total HAPs <sup>a</sup> | 3.18E-02    | 7.80E-02  |
|                 |                                                |                               | PM                      | 1,044.33    | 1,338.92  |
|                 |                                                |                               | PM <sub>10</sub>        | 287.02      | 367.99    |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                    | Fugitive                      | PM <sub>2.5</sub>       | 28.70       | 36.80     |
| , ,             | ( CCC )                                        |                               | Lead                    | 6.08E-03    | 7.80E-03  |
|                 |                                                |                               | Total HAPs <sup>a</sup> | 9.80E-02    | 1.26E-01  |
|                 | Dozer Operation (AOS1)                         | Fugitive                      | PM                      | 141.54      | 345.20    |
|                 |                                                |                               | PM <sub>10</sub>        | 25.69       | 62.66     |
| 023-1<br>(AOS1) |                                                |                               | PM <sub>2.5</sub>       | 14.86       | 36.25     |
|                 |                                                |                               | Lead                    | 5.44E-04    | 1.33E-03  |
|                 |                                                |                               | Total HAPs <sup>a</sup> | 8.78E-03    | 2.14E-02  |
|                 |                                                |                               | PM                      | 10.58       | 20.91     |
|                 |                                                |                               | PM <sub>10</sub>        | 3.30        | 6.53      |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                   | Fugitive                      | PM <sub>2.5</sub>       | 0.33        | 0.65      |
|                 |                                                |                               | Lead                    | 7.00E-05    | 1.38E-04  |
|                 |                                                |                               | Total HAPs <sup>a</sup> | 1.13E-03    | 2.23E-03  |
|                 |                                                |                               | PM                      | 80.51       | 290.62    |
|                 |                                                |                               | PM <sub>10</sub>        | 38.08       | 137.46    |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1) | Fugitive                      | PM <sub>2.5</sub>       | 5.77        | 20.81     |
|                 | •                                              |                               | Lead                    | 8.07E-04    | 2.91E-03  |
|                 |                                                |                               | Total HAPs <sup>a</sup> | 1.30E-02    | 4.70E-02  |

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| Permit #17414   |                                                  |                               |                         |                 |           |  |
|-----------------|--------------------------------------------------|-------------------------------|-------------------------|-----------------|-----------|--|
| Process         | Process/Emission Unit                            | Non-Fugitive                  | Regulated Air           | Potential I     | Emissions |  |
| Number          | Description                                      | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr           | tpy       |  |
|                 |                                                  |                               | PM                      | 16.97           | 43.33     |  |
|                 |                                                  |                               | PM <sub>10</sub>        | 8.03            | 20.50     |  |
| 001-6<br>(AOS1) | Unloading Ore to Primary<br>Crusher 1 (AOS1)     | Fugitive                      | PM <sub>2.5</sub>       | 1.22            | 3.10      |  |
|                 |                                                  |                               | Lead                    | 9.04E-05        | 2.53E-04  |  |
|                 |                                                  |                               | Total HAPs <sup>a</sup> | 2.22E-03        | 6.21E-03  |  |
|                 |                                                  |                               | PM                      | 16.97           | 43.33     |  |
|                 |                                                  |                               | PM <sub>10</sub>        | 8.03            | 20.50     |  |
| 001-7<br>(AOS1) | Unloading Ore to Primary<br>Crusher 2 (AOS1)     | Fugitive                      | PM <sub>2.5</sub>       | 1.22            | 3.10      |  |
| , ,             | ` ,                                              |                               | Lead                    | 1.08E-04        | 2.53E-04  |  |
|                 |                                                  |                               | Total HAPs <sup>a</sup> | 2.65E-03        | 6.21E-03  |  |
|                 | Unloading Ore to Leaching<br>Areas (AOS1)        | Fugitive                      | PM                      | 9.06            | 39.67     |  |
|                 |                                                  |                               | PM <sub>10</sub>        | 4.28            | 18.76     |  |
| 045-3<br>(AOS1) |                                                  |                               | PM <sub>2.5</sub>       | 0.65            | 2.84      |  |
| , ,             |                                                  |                               | Lead                    | 5.48E-05        | 2.40E-04  |  |
|                 |                                                  |                               | Total HAPs <sup>a</sup> | 9.41E-04        | 4.12E-03  |  |
|                 |                                                  |                               | PM                      | 37.51           | 164.28    |  |
|                 | Hala adia a Ovada ada (1 av                      |                               | PM <sub>10</sub>        | 17.74           | 77.70     |  |
| 045-1<br>(AOS1) | Unloading Overburden/Low<br>Grade Ore to Storage | Fugitive                      | PM <sub>2.5</sub>       | 2.69            | 11.77     |  |
| , ,             | Areas (AOS1)                                     |                               | Lead                    | 4.94E-04        | 2.17E-03  |  |
|                 |                                                  |                               | Total HAPs <sup>a</sup> | 6.94E-03        | 3.04E-02  |  |
| Primary Cı      | rushing and Overland Conve                       | ying Operations               | (to Bagdad Cond         | entrator) (AOS1 | )         |  |
|                 |                                                  |                               | PM                      | 1.74            | 7.60      |  |
|                 |                                                  |                               | PM <sub>10</sub>        | 1.74            | 7.60      |  |
| 001-5<br>(AOS1) | Dust Collector C51 (AOS1)                        | Non-Fugitive                  | PM <sub>2.5</sub>       | 1.74            | 7.60      |  |
| , ,             |                                                  |                               | Lead                    | 2.14E-05        | 9.39E-05  |  |
|                 |                                                  |                               | Total HAPs <sup>a</sup> | 5.26E-04        | 2.30E-03  |  |
|                 |                                                  |                               |                         |                 |           |  |

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| Process          | Process/Emission Unit                                             | Non-Fugitive                  | Regulated Air           | Potential I | Emissions |
|------------------|-------------------------------------------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number           | Description                                                       | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
|                  |                                                                   |                               | PM                      | 0.45        | 1.95      |
|                  |                                                                   |                               | PM <sub>10</sub>        | 0.45        | 1.95      |
| 001-16<br>(AOS1) | Dust Collector AE-001<br>(AOS1)                                   | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.45        | 1.95      |
|                  |                                                                   |                               | Lead                    | 5.50E-06    | 2.41E-05  |
|                  |                                                                   |                               | Total HAPs <sup>a</sup> | 1.35E-04    | 5.92E-04  |
|                  |                                                                   |                               | PM                      | 0.27        | 1.17      |
|                  |                                                                   |                               | PM <sub>10</sub>        | 0.27        | 1.17      |
| 001-17<br>(AOS1) | Dust Collector AE-014<br>(AOS1)                                   | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.27        | 1.17      |
|                  | (1.001)                                                           |                               | Lead                    | 3.30E-06    | 1.45E-05  |
|                  |                                                                   |                               | Total HAPs <sup>a</sup> | 8.11E-05    | 3.55E-04  |
|                  | Dust Collector AE-015<br>(AOS1)                                   | Non-Fugitive                  | PM                      | 0.27        | 1.17      |
|                  |                                                                   |                               | PM <sub>10</sub>        | 0.27        | 1.17      |
| 001-18<br>(AOS1) |                                                                   |                               | PM <sub>2.5</sub>       | 0.27        | 1.17      |
|                  |                                                                   |                               | Lead                    | 3.30E-06    | 1.45E-05  |
|                  |                                                                   |                               | Total HAPs <sup>a</sup> | 8.11E-05    | 3.55E-04  |
|                  |                                                                   |                               | PM                      | 20.05       | 43.33     |
|                  | Dadial Starker 5 (AOS4) to                                        |                               | PM <sub>10</sub>        | 9.48        | 20.50     |
| 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to<br>Coarse Ore Stockpiles 1/4           | Fugitive                      | PM <sub>2.5</sub>       | 1.44        | 3.10      |
|                  | (AOS1)                                                            |                               | Lead                    | 1.17E-04    | 2.53E-04  |
|                  |                                                                   |                               | Total HAPs <sup>a</sup> | 2.87E-03    | 6.21E-03  |
|                  |                                                                   |                               | PM                      | 10.46       | 21.38     |
|                  | Dadial Starter C 40                                               |                               | PM <sub>10</sub>        | 4.95        | 10.11     |
| 001-19<br>(AOS1) | Radial Stacker C-10<br>(AOS1) to Coarse Ore<br>Stockpile 5 (AOS1) | Fugitive                      | PM <sub>2.5</sub>       | 0.75        | 1.53      |
|                  | σιουκριίε ο (ΑΟσ Ι)                                               |                               | Lead                    | 6.11E-05    | 1.25E-04  |
|                  |                                                                   |                               | Total HAPs <sup>a</sup> | 1.50E-03    | 3.06E-03  |

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| _                 |                                                     | Non-Fugitive                  | Regulated Air           | Potential E     | Emissions |
|-------------------|-----------------------------------------------------|-------------------------------|-------------------------|-----------------|-----------|
| Process<br>Number | Process/Emission Unit<br>Description                | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr           | tpy       |
|                   |                                                     |                               | PM                      | 2.18            | 9.56      |
|                   |                                                     |                               | PM <sub>10</sub>        | 1.09            | 4.78      |
| 027-1<br>(AOS1)   | Wind Erosion of Coarse<br>Ore Stockpiles 1/5 (AOS1) | Fugitive                      | PM <sub>2.5</sub>       | 0.16            | 0.72      |
| (1001)            |                                                     |                               | Lead                    | 1.35E-05        | 5.90E-05  |
|                   |                                                     |                               | Total HAPs <sup>a</sup> | 3.31E-04        | 1.45E-03  |
| Primary Cı        | ushing and Overland Conve                           | ying Operations               | (to Sycamore Co         | ncentrator) (AO | S1)       |
|                   |                                                     |                               | PM                      | 0.27            | 1.17      |
|                   |                                                     |                               | PM <sub>10</sub>        | 0.27            | 1.17      |
| 001-12<br>(AOS1)  | Dust Collector AE-002<br>(AOS1)                     | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.27            | 1.17      |
|                   |                                                     |                               | Lead                    | 3.30E-06        | 1.45E-05  |
|                   |                                                     |                               | Total HAPs <sup>a</sup> | 8.11E-05        | 3.55E-04  |
|                   | Dust Collector AE-003<br>(AOS1)                     | Non-Fugitive                  | РМ                      | 0.33            | 1.46      |
|                   |                                                     |                               | PM <sub>10</sub>        | 0.33            | 1.46      |
| 001-13<br>(AOS1)  |                                                     |                               | PM <sub>2.5</sub>       | 0.33            | 1.46      |
|                   |                                                     |                               | Lead                    | 4.13E-06        | 1.81E-05  |
|                   |                                                     |                               | Total HAPs <sup>a</sup> | 1.01E-04        | 4.44E-04  |
|                   |                                                     |                               | PM                      | 0.27            | 1.17      |
|                   |                                                     |                               | PM <sub>10</sub>        | 0.27            | 1.17      |
| 001-14<br>(AOS1)  | Dust Collector AE-016<br>(AOS1)                     | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.27            | 1.17      |
|                   |                                                     |                               | Lead                    | 3.30E-06        | 1.45E-05  |
|                   |                                                     |                               | Total HAPs <sup>a</sup> | 8.11E-05        | 3.55E-04  |
|                   |                                                     |                               | PM                      | 0.27            | 1.17      |
|                   |                                                     |                               | PM <sub>10</sub>        | 0.27            | 1.17      |
| 001-15<br>(AOS1)  | Dust Collector AE-017<br>(AOS1)                     | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.27            | 1.17      |
|                   |                                                     |                               | Lead                    | 3.30E-06        | 1.45E-05  |
|                   |                                                     |                               | Total HAPs <sup>a</sup> | 8.11E-05        | 3.55E-04  |

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| Process          | Process/Emission Unit                                      | Non-Fugitive                  | Regulated Air           | Potential E             | Emissions |
|------------------|------------------------------------------------------------|-------------------------------|-------------------------|-------------------------|-----------|
| Number           | Description                                                | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr                   | tpy       |
|                  |                                                            |                               | РМ                      | 5.01                    | 21.96     |
|                  | Dadial Otaslas C 40                                        |                               | PM <sub>10</sub>        | 2.37                    | 10.38     |
| 001-20<br>(AOS1) | Radial Stacker C-10<br>(AOS1) to Coarse Ore<br>Stockpile 6 | Fugitive                      | PM <sub>2.5</sub>       | 0.36                    | 1.57      |
|                  | Stockpile o                                                |                               | Lead                    | 2.93E-05                | 1.28E-04  |
|                  |                                                            |                               | Total HAPs <sup>a</sup> | 7.19E-04                | 3.15E-03  |
|                  |                                                            |                               | РМ                      | 0.74                    | 3.25      |
|                  |                                                            |                               | PM <sub>10</sub>        | 0.37                    | 1.63      |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse<br>Ore Stockpile 6 (AOS1)           | Fugitive                      | PM <sub>2.5</sub>       | 0.06                    | 0.24      |
|                  |                                                            |                               | Lead                    | 4.58E-06                | 2.01E-05  |
|                  |                                                            |                               |                         | Total HAPs <sup>a</sup> | 1.12E-04  |
| Sycamore         | Milling Operations (AOS1)                                  |                               |                         |                         |           |
|                  | Dust Collector AE-008<br>(AOS1)                            | Non-Fugitive                  | РМ                      | 1.11                    | 4.88      |
|                  |                                                            |                               | PM <sub>10</sub>        | 1.11                    | 4.88      |
| 002-7<br>(AOS1)  |                                                            |                               | PM <sub>2.5</sub>       | 1.11                    | 4.88      |
|                  |                                                            |                               | Lead                    | 1.38E-05                | 6.03E-05  |
|                  |                                                            |                               | Total HAPs <sup>a</sup> | 3.38E-04                | 1.48E-03  |
|                  |                                                            |                               | PM                      | 0.27                    | 1.17      |
|                  |                                                            |                               | PM <sub>10</sub>        | 0.27                    | 1.17      |
| 002-8<br>(AOS1)  | Dust Collector AE-009<br>(AOS1)                            | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.27                    | 1.17      |
|                  |                                                            |                               | Lead                    | 3.30E-06                | 1.45E-05  |
|                  |                                                            |                               | Total HAPs <sup>a</sup> | 8.11E-05                | 3.55E-04  |
|                  |                                                            |                               | РМ                      | 0.45                    | 1.95      |
|                  |                                                            |                               | PM <sub>10</sub>        | 0.45                    | 1.95      |
| 002-9<br>(AOS1)  | Dust Collector AE-010<br>(AOS1)                            | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.45                    | 1.95      |
|                  | •                                                          |                               | Lead                    | 5.50E-06                | 2.41E-05  |
|                  |                                                            |                               | Total HAPs <sup>a</sup> | 1.35E-04                | 5.92E-04  |

Table 5.1 Potential Emissions from the Design of AOS1 in Class II Air Quality Permit #77414

| Process          | Process/Emission Unit           | Non-Fugitive                  | Regulated Air           | Potential I | Emissions |
|------------------|---------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number           | Description                     | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
|                  |                                 |                               | РМ                      | 0.27        | 1.17      |
|                  |                                 |                               | PM <sub>10</sub>        | 0.27        | 1.17      |
| 002-10<br>(AOS1) | Dust Collector AE-011<br>(AOS1) | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.27        | 1.17      |
|                  |                                 |                               | Lead                    | 3.30E-06    | 1.45E-05  |
|                  |                                 |                               | Total HAPs <sup>a</sup> | 8.11E-05    | 3.55E-04  |
|                  |                                 |                               | PM                      | 0.27        | 1.17      |
|                  | Dust Collector AE-007<br>(AOS1) | Non-Fugitive                  | PM <sub>10</sub>        | 0.27        | 1.17      |
| 002-11<br>(AOS1) |                                 |                               | PM <sub>2.5</sub>       | 0.27        | 1.17      |
|                  |                                 |                               | Lead                    | 3.30E-06    | 1.45E-05  |
|                  |                                 |                               | Total HAPs <sup>a</sup> | 8.11E-05    | 3.55E-04  |
|                  |                                 |                               | PM                      | 0.74        | 3.22      |
|                  |                                 |                               | PM <sub>10</sub>        | 0.74        | 3.22      |
| 002-12<br>(AOS1) | Dust Collector AE-012<br>(AOS1) |                               | PM <sub>2.5</sub>       | 0.74        | 3.22      |
|                  |                                 |                               | Lead                    | 9.08E-06    | 3.98E-05  |
|                  |                                 |                               | Total HAPs <sup>a</sup> | 2.23E-04    | 9.76E-04  |
|                  |                                 |                               | РМ                      | 0.40        | 1.76      |
|                  |                                 |                               | PM <sub>10</sub>        | 0.40        | 1.76      |
| 002-13<br>(AOS1) | Dust Collector AE-013<br>(AOS1) | Non-Fugitive                  | PM <sub>2.5</sub>       | 0.40        | 1.76      |
|                  |                                 |                               | Lead                    | 4.95E-06    | 2.17E-05  |
|                  |                                 |                               | Total HAPs <sup>a</sup> | 1.22E-04    | 5.33E-04  |

<sup>&</sup>lt;sup>a</sup> See Appendix G for individual HAPs.

Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process         | Process/Emission Unit                   | Non-Fugitive                  | Regulated Air           | Potential I | Emissions |
|-----------------|-----------------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number          | Description                             | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
| Mining Ope      | erations (AOS1)                         |                               |                         |             |           |
|                 |                                         |                               | PM                      | 637.31      | 69.04     |
|                 |                                         |                               | PM <sub>10</sub>        | 382.39      | 41.43     |
| 026-3<br>(AOS1) | Drilling (AOS1)                         | Fugitive                      | PM <sub>2.5</sub>       | 70.81       | 7.67      |
| Mining Ope      |                                         |                               | Lead                    | 8.65E-03    | 9.37E-04  |
|                 |                                         |                               | Total HAPs <sup>a</sup> | 1.37E-01    | 1.48E-02  |
|                 |                                         |                               | PM                      | 4,919.42    | 486.50    |
|                 |                                         |                               | PM <sub>10</sub>        | 2,558.10    | 252.98    |
|                 |                                         | Foreiting                     | PM <sub>2.5</sub>       | 147.58      | 14.60     |
|                 |                                         |                               | СО                      | 15,319.65   | 1,659.63  |
|                 |                                         |                               | NO <sub>X</sub>         | 678.46      | 73.50     |
| 026-2           |                                         |                               | SO <sub>2</sub>         | 4.64        | 0.50      |
| (AOS1)          | Blasting (AOS1)                         | Fugitive                      | CO <sub>2</sub>         | 143,484.81  | 15,544.19 |
|                 |                                         |                               | CH <sub>4</sub>         | 5.60        | 0.61      |
|                 |                                         |                               | N <sub>2</sub> O        | 1.11        | 0.12      |
|                 |                                         |                               | CO <sub>2</sub> e       | 143,954.54  | 15,595.07 |
|                 |                                         |                               | Lead                    | 6.58E-02    | 6.59E-03  |
|                 |                                         |                               | Total HAPs <sup>a</sup> | 1.38E+00    | 1.40E-01  |
|                 |                                         |                               | PM                      | 4,702.74    | 5,559.65  |
|                 |                                         |                               | PM <sub>10</sub>        | 1,292.50    | 1,528.01  |
| 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1) | Fugitive                      | PM <sub>2.5</sub>       | 129.25      | 152.80    |
|                 |                                         |                               | Lead                    | 2.93E-02    | 3.46E-02  |
|                 |                                         |                               | Total HAPs <sup>a</sup> | 4.63E-01    | 5.48E-01  |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process         | Process/Emission Unit                             | Non-Fugitive                  | Regulated Air                                      | Potential I | Emissions |
|-----------------|---------------------------------------------------|-------------------------------|----------------------------------------------------|-------------|-----------|
| Number          | Description                                       | or Fugitive<br>Classification | Pollutant<br>Emitted                               | lb/hr       | tpy       |
|                 |                                                   |                               | PM                                                 | 1,567.58    | 1,853.22  |
|                 |                                                   |                               | PM <sub>10</sub>                                   | 430.83      | 509.34    |
| 022-2<br>(AOS1) | Haul Truck Travel Outside<br>the Pit (AOS1)       | Fugitive                      | PM <sub>2.5</sub>                                  | 43.08       | 50.93     |
|                 |                                                   |                               | Lead                                               | 9.75E-03    | 1.15E-02  |
|                 |                                                   |                               | Total HAPs <sup>a</sup>                            | 1.54E-01    | 1.83E-01  |
|                 |                                                   |                               | РМ                                                 | 4,595.56    | 11,026.21 |
|                 |                                                   |                               | PM <sub>10</sub>                                   | 1,263.04    | 3,030.43  |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                       | Fugitive                      | PM <sub>2.5</sub>                                  | 126.30      | 303.04    |
|                 |                                                   |                               | Lead                                               | 2.86E-02    | 6.86E-02  |
|                 |                                                   |                               | Lead  Total HAPs <sup>a</sup> PM  PM <sub>10</sub> | 4.53E-01    | 1.09E+00  |
|                 | Dozer Operation (AOS1)                            | Fugitive                      | PM                                                 | 194.61      | 589.25    |
|                 |                                                   |                               | PM <sub>10</sub>                                   | 35.33       | 106.96    |
| 023-1<br>(AOS1) |                                                   |                               | PM <sub>2.5</sub>                                  | 20.43       | 61.87     |
|                 |                                                   |                               | Lead                                               | 7.99E-04    | 2.42E-03  |
|                 |                                                   |                               | Total HAPs <sup>a</sup>                            | 1.27E-02    | 3.83E-02  |
|                 |                                                   |                               | РМ                                                 | 16.93       | 74.16     |
|                 |                                                   |                               | PM <sub>10</sub>                                   | 5.29        | 23.16     |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                      | Fugitive                      | PM <sub>2.5</sub>                                  | 0.52        | 2.30      |
|                 |                                                   |                               | Lead                                               | 1.20E-04    | 5.24E-04  |
|                 |                                                   |                               | Total HAPs <sup>a</sup>                            | 1.90E-03    | 8.30E-03  |
|                 |                                                   |                               | РМ                                                 | 103.82      | 336.16    |
|                 |                                                   |                               | PM <sub>10</sub>                                   | 49.10       | 158.99    |
| 021-1<br>(AOS1) | Loading Mined Material into<br>Haul Trucks (AOS1) | Fugitive                      | PM <sub>2.5</sub>                                  | 7.44        | 24.08     |
|                 | ,                                                 |                               | Lead                                               | 1.11E-03    | 3.60E-03  |
|                 |                                                   |                               | Total HAPs <sup>a</sup>                            | 1.76E-02    | 5.70E-02  |

Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process         | Process/Emission Unit                                            | Non-Fugitive or Fugitive | Regulated Air<br>Pollutant                                                                                                                                              | Potential I      | Emissions |
|-----------------|------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| Number          | Description                                                      | Classification           | Emitted                                                                                                                                                                 | lb/hr            | tpy       |
|                 |                                                                  |                          | PM                                                                                                                                                                      | 21.11            | 58.61     |
|                 |                                                                  |                          | PM <sub>10</sub>                                                                                                                                                        | 9.98             | 27.72     |
| 001-6<br>(AOS1) | Unloading Ore to Primary<br>Crusher 1 (AOS1)                     | Fugitive                 | PM <sub>2.5</sub>                                                                                                                                                       | 1.51             | 4.20      |
|                 |                                                                  |                          | Lead                                                                                                                                                                    | 1.23E-04         | 3.42E-04  |
|                 |                                                                  |                          | Total HAPs <sup>a</sup>                                                                                                                                                 | 3.03E-03         | 8.40E-03  |
|                 |                                                                  |                          | PM                                                                                                                                                                      | 18.47            | 43.05     |
|                 |                                                                  |                          | PM <sub>10</sub>                                                                                                                                                        | 8.73             | 20.36     |
| 001-7<br>(AOS1) | Unloading Ore to Primary<br>Crusher 2 (AOS1)                     | Fugitive                 | PM <sub>2.5</sub>                                                                                                                                                       | 1.32             | 3.08      |
| , ,             |                                                                  |                          | Lead                                                                                                                                                                    | 1.08E-04         | 2.51E-04  |
|                 |                                                                  |                          | PM PM10 PM2.5 Lead Total HAPs a 3 PM PM10 PM2.5 Lead Total HAPs a 2 PM PM10 PM2.5 Lead Total HAPs a 3 PM PM10 PM2.5 Lead 2 Total HAPs a 3 Total HAPs a 3 Total HAPs a 3 | 2.65E-03         | 6.17E-03  |
|                 | Unloading Ore to Leaching<br>Areas (AOS1)                        | Fugitive                 | PM                                                                                                                                                                      | 3.34             | 12.18     |
|                 |                                                                  |                          | PM <sub>10</sub>                                                                                                                                                        | 1.58             | 5.76      |
| 045-3<br>(AOS1) |                                                                  |                          | PM <sub>2.5</sub>                                                                                                                                                       | 0.24             | 0.87      |
|                 |                                                                  |                          | Lead                                                                                                                                                                    | 2.02E-05         | 7.37E-05  |
|                 |                                                                  |                          | Total HAPs <sup>a</sup>                                                                                                                                                 | 3.47E-04         | 1.27E-03  |
|                 |                                                                  |                          | PM                                                                                                                                                                      | 60.91            | 222.32    |
|                 | Unloading Overhurden/Low                                         |                          | PM <sub>10</sub>                                                                                                                                                        | 28.81            | 105.15    |
| 045-1<br>(AOS1) | Unloading Overburden/Low<br>Grade Ore to Storage<br>Areas (AOS1) | Fugitive                 | PM <sub>2.5</sub>                                                                                                                                                       | 4.36             | 15.92     |
|                 | Aleas (AOS1)                                                     |                          | Lead                                                                                                                                                                    | 8.03E-04         | 2.93E-03  |
|                 |                                                                  |                          | Total HAPs <sup>a</sup>                                                                                                                                                 | 1.13E-02         | 4.12E-02  |
| Primary Cr      | ushing and Overland Conve                                        | ying Operations          | (to Bagdad Cond                                                                                                                                                         | centrator) (AOS1 | )         |
|                 |                                                                  |                          | PM                                                                                                                                                                      | 1.74             | 7.60      |
|                 |                                                                  |                          | PM <sub>10</sub>                                                                                                                                                        | 1.74             | 7.60      |
| 001-5<br>(AOS1) | Dust Collector C51 (AOS1)                                        | Non-Fugitive             | PM <sub>2.5</sub>                                                                                                                                                       | 1.74             | 7.60      |
|                 |                                                                  |                          | Lead                                                                                                                                                                    | 2.14E-05         | 9.39E-05  |
|                 |                                                                  |                          | Total HAPs <sup>a</sup>                                                                                                                                                 | 5.26E-04         | 2.30E-03  |
|                 |                                                                  |                          |                                                                                                                                                                         |                  |           |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process          | Process/Emission Unit                                                                                                                                                                                                                     | Non-Fugitive                  | Regulated Air                                                                                                                                                                                                                                                                                                                                                                                                                                         | Potential I | Emissions |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| Number           | Description                                                                                                                                                                                                                               | or Fugitive<br>Classification | Pollutant<br>Emitted                                                                                                                                                                                                                                                                                                                                                                                                                                  | lb/hr       | tpy       |
|                  |                                                                                                                                                                                                                                           |                               | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.22        | 0.97      |
|                  | Overdered October 24                                                                                                                                                                                                                      |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10        | 0.46      |
| 001-2<br>(AOS1)  | Overland Conveyor 3A<br>(AOS1) to Overland                                                                                                                                                                                                | Non-Fugitive                  | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02        | 0.07      |
|                  | Conveyor 3 (AOST)                                                                                                                                                                                                                         |                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.29E-06    | 5.64E-06  |
|                  |                                                                                                                                                                                                                                           |                               | Pollutant Emitted  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3  PM  PM10  PM2.5  Lead  1  Total HAPs a 3 | 3.16E-05    | 1.39E-04  |
|                  |                                                                                                                                                                                                                                           |                               | РМ                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.22        | 0.97      |
|                  | Overdand Conveyer 2                                                                                                                                                                                                                       |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10        | 0.46      |
| 001-8<br>(AOS1)  | (AOS1) to Overland                                                                                                                                                                                                                        | Non-Fugitive                  | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02        | 0.07      |
|                  | Conveyor 4 (AOST)                                                                                                                                                                                                                         | Lead                          | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.29E-06    | 5.64E-06  |
|                  |                                                                                                                                                                                                                                           |                               | Total HAPs <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.16E-05    | 1.39E-04  |
|                  | Overland Conveyor 4<br>(AOS1) to Radial Stacker 5                                                                                                                                                                                         | Non-Fugitive                  | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.22        | 0.97      |
|                  |                                                                                                                                                                                                                                           |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10        | 0.46      |
| 001-9<br>(AOS1)  |                                                                                                                                                                                                                                           |                               | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02        | 0.07      |
|                  | (AOS1)                                                                                                                                                                                                                                    |                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.29E-06    | 5.64E-06  |
|                  |                                                                                                                                                                                                                                           |                               | Total HAPs <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.16E-05    | 1.39E-04  |
|                  |                                                                                                                                                                                                                                           |                               | РМ                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.05       | 70.26     |
|                  | Dadial Stacker F (AOSA) to                                                                                                                                                                                                                |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.48        | 33.23     |
| 001-4<br>(AOS1)  | Coarse Ore Stockpiles 1/4                                                                                                                                                                                                                 | Fugitive                      | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.44        | 5.03      |
|                  | (AOS1)                                                                                                                                                                                                                                    |                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.17E-04    | 4.10E-04  |
|                  |                                                                                                                                                                                                                                           |                               | Total HAPs <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.87E-03    | 1.01E-02  |
|                  |                                                                                                                                                                                                                                           |                               | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20.05       | 17.56     |
|                  | Dadial Stacker 5 (AOSA) to                                                                                                                                                                                                                |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.48        | 8.31      |
| 001-10<br>(AOS1) | Free-Standing Stacker 6                                                                                                                                                                                                                   | Fugitive                      | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.44        | 1.26      |
|                  | Overland Conveyor 3 (AOS1) to Overland Conveyor 4 (AOS1)  Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)  Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1)  Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1) |                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.17E-04    | 1.03E-04  |
|                  |                                                                                                                                                                                                                                           |                               | Total HAPs <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.87E-03    | 2.52E-03  |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process          | Process/Emission Unit                                                 | Non-Fugitive<br>or Fugitive | Regulated Air Pollutant | Potential E                                                                                  | Emissions |  |
|------------------|-----------------------------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------------------------------------------------------|-----------|--|
| Number           | Description                                                           | Classification              | Emitted                 | lb/hr                                                                                        | tpy       |  |
|                  |                                                                       |                             | РМ                      | 20.05                                                                                        | 17.56     |  |
|                  | Franchen ding Stanker C                                               |                             | PM <sub>10</sub>        | 9.48                                                                                         | 8.31      |  |
| 001-3<br>(AOS1)  | Free-Standing Stacker 6<br>(AOS1) to Coarse Ore<br>Stockpile 5 (AOS1) | Fugitive                    | PM <sub>2.5</sub>       | 1.44                                                                                         | 1.26      |  |
|                  | Glockpile 3 (AOS1)                                                    |                             | Lead                    | 1.17E-04                                                                                     | 1.03E-04  |  |
|                  |                                                                       |                             | Total HAPs <sup>a</sup> | 2.87E-03                                                                                     | 2.52E-03  |  |
|                  |                                                                       |                             | PM                      | 1.96                                                                                         | 8.59      |  |
|                  |                                                                       |                             | PM <sub>10</sub>        | 0.98                                                                                         | 4.29      |  |
| 027-1<br>(AOS1)  | Wind Erosion of Coarse<br>Ore Stockpiles 1/5 (AOS1)                   | Fugitive                    | PM <sub>2.5</sub>       | 0.15                                                                                         | 0.64      |  |
|                  |                                                                       |                             | Lead                    | 1.21E-05                                                                                     | 5.30E-05  |  |
|                  |                                                                       |                             | Total HAPs <sup>a</sup> | 2.97E-04                                                                                     | 1.30E-03  |  |
| Primary Cr       | rushing and Overland Convey                                           | ing Operations              | (to Sycamore Co         | encentrator) (AOS                                                                            | S1)       |  |
|                  | PC1 Dust Collector 1<br>(AOS1)                                        | Non-Fugitive                | PM                      | 0.29                                                                                         | 1.25      |  |
|                  |                                                                       |                             | PM <sub>10</sub>        | 0.29                                                                                         | 1.25      |  |
| 001-12<br>(AOS1) |                                                                       |                             | PM <sub>2.5</sub>       | 0.29                                                                                         | 1.25      |  |
|                  |                                                                       |                             | Lead                    | 3.53E-06                                                                                     | 1.55E-05  |  |
|                  |                                                                       |                             | Total HAPs <sup>a</sup> | Ib/hr   20.05   9.48   1.44   1.17E-04   2.87E-03   1.96   0.98   0.15   1.21E-05   2.97E-04 | 3.79E-04  |  |
|                  |                                                                       |                             | PM                      | 0.33                                                                                         | 1.44      |  |
|                  |                                                                       |                             | PM <sub>10</sub>        | 0.33                                                                                         | 1.44      |  |
| 001-13<br>(AOS1) | PC1 CCC1 Dust Collector 2<br>(AOS1)                                   | Non-Fugitive                | PM <sub>2.5</sub>       | 0.33                                                                                         | 1.44      |  |
|                  |                                                                       |                             | Lead                    | 4.07E-06                                                                                     | 1.78E-05  |  |
|                  |                                                                       |                             | Total HAPs <sup>a</sup> | 9.98E-05                                                                                     | 4.37E-04  |  |
|                  |                                                                       |                             | РМ                      | 0.33                                                                                         | 1.44      |  |
|                  |                                                                       |                             | PM <sub>10</sub>        | 0.33                                                                                         | 1.44      |  |
| 001-14<br>(AOS1) | PC1 CCC2 Dust Collector 3 (AOS1)                                      | Non-Fugitive                | PM <sub>2.5</sub>       | 0.33                                                                                         | 1.44      |  |
|                  |                                                                       |                             | Lead                    | 4.07E-06                                                                                     | 1.78E-05  |  |
|                  |                                                                       |                             | Total HAPs <sup>a</sup> | 9.98E-05                                                                                     | 4.37E-04  |  |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

|                  |                                                             |                             |                                       | B. G. C. L. C. L. C. |           |  |
|------------------|-------------------------------------------------------------|-----------------------------|---------------------------------------|----------------------|-----------|--|
| Process          | Process/Emission Unit                                       | Non-Fugitive<br>or Fugitive | Regulated Air<br>Pollutant<br>Emitted | Potential E          | Emissions |  |
| Number           | Description                                                 | Classification              |                                       | lb/hr                | tpy       |  |
|                  |                                                             |                             | PM                                    | 0.33                 | 1.44      |  |
|                  |                                                             |                             | PM <sub>10</sub>                      | 0.33                 | 1.44      |  |
| 001-15<br>(AOS1) | PC1 CCC3 Dust Collector 4<br>(AOS1)                         | Non-Fugitive                | PM <sub>2.5</sub>                     | 0.33                 | 1.44      |  |
|                  |                                                             |                             | Lead                                  | 4.07E-06             | 1.78E-05  |  |
|                  |                                                             |                             | Total HAPs <sup>a</sup>               | 9.98E-05             | 4.37E-04  |  |
|                  |                                                             |                             | PM                                    | 21.11                | 92.44     |  |
|                  | PC1 Cross Country                                           |                             | PM <sub>10</sub>                      | 9.98                 | 43.72     |  |
| 001-20<br>(AOS1) | Conveyor 3 (AOS1) to<br>Coarse Ore Stockpile 6              | Fugitive                    | PM <sub>2.5</sub>                     | 1.51                 | 6.62      |  |
|                  | (AOS1)                                                      |                             | Lead                                  | 1.23E-04             | 5.40E-04  |  |
|                  |                                                             |                             | Lead  Total HAPs <sup>a</sup> PM      | 3.03E-03             | 1.33E-02  |  |
|                  |                                                             |                             | РМ                                    | 0.96                 | 4.22      |  |
|                  | Wind Erosion of Coarse<br>Ore Stockpile 6 (AOS1)            | Fugitive                    | PM <sub>10</sub>                      | 0.48                 | 2.11      |  |
| 027-7<br>(AOS1)  |                                                             |                             | PM <sub>2.5</sub>                     | 0.07                 | 0.32      |  |
|                  |                                                             |                             | Lead                                  | 5.95E-06             | 2.61E-05  |  |
|                  |                                                             |                             | Total HAPs <sup>a</sup>               | 1.46E-04             | 6.40E-04  |  |
| Sycamore         | Milling Operations (AOS1)                                   |                             |                                       |                      |           |  |
|                  |                                                             |                             | РМ                                    | 0.43                 | 1.90      |  |
|                  | Caaraa Ora Baalaim                                          |                             | PM <sub>10</sub>                      | 0.43                 | 1.90      |  |
| 002-7<br>(AOS1)  | Coarse Ore Reclaim<br>Conveyor 1 Dust Collector<br>5 (AOS1) | Non-Fugitive                | PM <sub>2.5</sub>                     | 0.43                 | 1.90      |  |
|                  | 3 (AOS1)                                                    |                             | Lead                                  | 5.36E-06             | 2.35E-05  |  |
|                  |                                                             |                             | Total HAPs <sup>a</sup>               | 1.31E-04             | 5.76E-04  |  |
|                  |                                                             |                             | РМ                                    | 0.43                 | 1.90      |  |
|                  | Coarse Ore Reclaim                                          |                             | PM <sub>10</sub>                      | 0.43                 | 1.90      |  |
| 002-8<br>(AOS1)  | Conveyor 2 Dust Collector                                   | Non-Fugitive                | PM <sub>2.5</sub>                     | 0.43                 | 1.90      |  |
| ,                | 6 (AOS1)                                                    |                             | Lead                                  | 5.36E-06             | 2.35E-05  |  |
|                  |                                                             |                             | Total HAPs <sup>a</sup>               | 1.31E-04             | 5.76E-04  |  |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process          | Process/Emission Unit                                | Non-Fugitive                  | Regulated Air                                                | Potential I | Emissions |
|------------------|------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-------------|-----------|
| Number           | Description                                          | or Fugitive<br>Classification | Pollutant<br>Emitted                                         | lb/hr       | tpy       |
|                  |                                                      |                               | PM                                                           | 0.45        | 1.99      |
|                  |                                                      |                               | PM <sub>10</sub>                                             | 0.45        | 1.99      |
| 002-9<br>(AOS1)  | HPGR Discharge Dust<br>Collector 7 (AOS1)            | Non-Fugitive                  | PM <sub>2.5</sub>                                            | 0.45        | 1.99      |
|                  |                                                      |                               | Lead                                                         | 5.60E-06    | 2.45E-05  |
|                  |                                                      |                               | Pollutant<br>Emitted  PM  PM <sub>10</sub> PM <sub>2.5</sub> | 1.37E-04    | 6.02E-04  |
|                  |                                                      |                               | РМ                                                           | 0.53        | 2.33      |
|                  | LIDOD Disabarra Carrayayar                           |                               | PM <sub>10</sub>                                             | 0.53        | 2.33      |
| 002-10<br>(AOS1) | HPGR Discharge Conveyor<br>Transfer Dust Collector 8 | Non-Fugitive                  | PM <sub>2.5</sub>                                            | 0.53        | 2.33      |
|                  | (AOS1)                                               | (AOS1)                        | Lead                                                         | 6.57E-06    | 2.88E-05  |
|                  |                                                      |                               | Total HAPs <sup>a</sup>                                      | 1.61E-04    | 7.07E-04  |
|                  | HPGR Product Bin Dust<br>Collector 9 (AOS1)          | Non-Fugitive                  | PM                                                           | 0.49        | 2.16      |
|                  |                                                      |                               | PM <sub>10</sub>                                             | 0.49        | 2.16      |
| 002-11<br>(AOS1) |                                                      |                               | PM <sub>2.5</sub>                                            | 0.49        | 2.16      |
|                  |                                                      |                               | Lead                                                         | 6.09E-06    | 2.67E-05  |
|                  |                                                      |                               | Total HAPs <sup>a</sup>                                      | 1.49E-04    | 6.54E-04  |
|                  |                                                      |                               | РМ                                                           | 0.20        | 0.86      |
|                  |                                                      |                               | PM <sub>10</sub>                                             | 0.20        | 0.86      |
| 002-12<br>(AOS1) | HPGR Product Transfer<br>Dust Collector 10 (AOS1)    | Non-Fugitive                  | PM <sub>2.5</sub>                                            | 0.20        | 0.86      |
|                  |                                                      |                               | Lead                                                         | 2.43E-06    | 1.07E-05  |
|                  |                                                      |                               | Total HAPs <sup>a</sup>                                      | 5.98E-05    | 2.62E-04  |
|                  |                                                      |                               | PM                                                           | 0.20        | 0.86      |
|                  |                                                      |                               | PM <sub>10</sub>                                             | 0.20        | 0.86      |
| 002-13<br>(AOS1) | HPGR Product Transfer<br>Dust Collector 11 (AOS1)    | Non-Fugitive                  | PM <sub>2.5</sub>                                            | 0.20        | 0.86      |
|                  | , ,                                                  |                               | Lead                                                         | 2.43E-06    | 1.07E-05  |
|                  |                                                      |                               | Total HAPs <sup>a</sup>                                      | 5.98E-05    | 2.62E-04  |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| _                                                                       |                                                                                                                 | Non-Fugitive                  | Regulated Air                                                                                                                                                                                                                                                                                                                                                                                               | Potential E | Emissions |  |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|--|--|
| Process<br>Number                                                       | Process/Emission Unit<br>Description                                                                            | or Fugitive<br>Classification | Pollutant<br>Emitted                                                                                                                                                                                                                                                                                                                                                                                        | lb/hr       | tpy       |  |  |
| Sycamore                                                                | Bulk and Molyhdenum Flotat                                                                                      | ion Operations (              | (AOS1)                                                                                                                                                                                                                                                                                                                                                                                                      |             | -77       |  |  |
| Sycamore Bulk and Molybdenum Flotation Operations (AOS1)  VOC 0.27 1.18 |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                             |             |           |  |  |
| 044-2                                                                   | Sycamore Bulk and<br>Molybdenum Flotation                                                                       | Fugitive                      |                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50        | 2.18      |  |  |
| (AOS1)                                                                  | Equipment                                                                                                       | i ugitive                     |                                                                                                                                                                                                                                                                                                                                                                                                             | 2.38E-02    | 1.04E-01  |  |  |
| Sycamore                                                                | Concentrate Handling Opera                                                                                      | tions (AOS1)                  | TOTAL TIAL S                                                                                                                                                                                                                                                                                                                                                                                                | 2.30L-02    | 1.046-01  |  |  |
| Sycamore                                                                | Concentrate framuling Opera                                                                                     | tions (AOS1)                  | PM                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003       | 0.01      |  |  |
|                                                                         |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003       | 0.006     |  |  |
| 006-11                                                                  | Copper Concentrate Filters 1/2 (AOS1) to Copper                                                                 | Fugitivo                      |                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0001      | 0.0009    |  |  |
| (AOS1)                                                                  | Concentrate Filter Drop<br>Storage (AOS1)                                                                       | rugilive                      |                                                                                                                                                                                                                                                                                                                                                                                                             | 9.85E-07    | 4.31E-06  |  |  |
|                                                                         |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                             | 2.99E-06    |           |  |  |
|                                                                         |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                             |             | 1.31E-05  |  |  |
|                                                                         | Copper Concentrate Filter Drop Storage (AOS1) to Copper Concentrate Loadout Storage (AOS1) via Front-End Loader |                               |                                                                                                                                                                                                                                                                                                                                                                                                             | 0.003       | 0.01      |  |  |
| 006-12                                                                  |                                                                                                                 | Fugitive                      |                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001       | 0.006     |  |  |
| (AOS1)                                                                  |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0002      | 0.0009    |  |  |
|                                                                         |                                                                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                                                             | 9.85E-07    | 4.31E-06  |  |  |
|                                                                         |                                                                                                                 |                               | or Fugitive assification         Pollutant Emitted           Operations (AOS1)         VOC           Fugitive         H2S           Total HAPs a         PM           PM10         PM2.5           Lead         Total HAPs a           PM         PM10           PM2.5         PM3.5           Lead         PM3.5           PM3.5         PM3.5           PM4.0         PM4.0           PM4.0         PM4.0 | 2.99E-06    | 1.31E-05  |  |  |
|                                                                         |                                                                                                                 |                               | PM                                                                                                                                                                                                                                                                                                                                                                                                          | 0.003       | 0.01      |  |  |
|                                                                         | Copper Concentrate                                                                                              |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                            | 0.001       | 0.006     |  |  |
| 006-13<br>(AOS1)                                                        | Loadout Storage (AOS1) to<br>Trucks via Front-End                                                               | Fugitive                      | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                           | 0.0002      | 0.0009    |  |  |
|                                                                         | Loader                                                                                                          |                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                        | 9.85E-07    | 4.31E-06  |  |  |
|                                                                         |                                                                                                                 |                               | Total HAPs <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                     | 2.99E-06    | 1.31E-05  |  |  |
|                                                                         |                                                                                                                 |                               | РМ                                                                                                                                                                                                                                                                                                                                                                                                          | 0.31        | 1.35      |  |  |
|                                                                         | Wind Erosion of Copper                                                                                          |                               | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                            | 0.15        | 0.68      |  |  |
| 027-8<br>(AOS1)                                                         | Concentrate Filter Drop<br>Storage (AOS1) and<br>Copper Concentrate                                             | Fugitive                      | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                           | 0.02        | 0.10      |  |  |
| ,                                                                       | Loadout Storage (AOS1)                                                                                          |                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                        | 1.13E-04    | 4.93E-04  |  |  |
|                                                                         |                                                                                                                 |                               | Total HAPs <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                     | 3.41E-04    | 1.50E-03  |  |  |

Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process         | Process/Emission Unit                                                | Non-Fugitive                  | Regulated Air                                                                                                                                                  | Potential I                                                                                                                           | Emissions |
|-----------------|----------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Number          | Description                                                          | or Fugitive<br>Classification | Pollutant<br>Emitted                                                                                                                                           | lb/hr                                                                                                                                 | tpy       |
|                 |                                                                      |                               | РМ                                                                                                                                                             | 0.06                                                                                                                                  | 0.28      |
|                 |                                                                      |                               | PM <sub>10</sub>                                                                                                                                               | 0.06                                                                                                                                  | 0.28      |
| 052-2           | Molybdenum Dryer Wet                                                 | Nan Evritiva                  | PM <sub>2.5</sub>                                                                                                                                              | 0.06                                                                                                                                  | 0.28      |
| (AOS1)          | Scrubber System (AOS1)                                               | Non-Fugitive                  | VOC                                                                                                                                                            | 1.83                                                                                                                                  | 8.02      |
|                 |                                                                      |                               | Lead                                                                                                                                                           | 9.67E-06                                                                                                                              | 4.23E-05  |
|                 |                                                                      |                               | Total HAPs <sup>a</sup> 1.  PM  PM <sub>10</sub> PM <sub>2.5</sub> Lead 3.  Total HAPs <sup>a</sup> 2.  PM  PM <sub>10</sub> PM <sub>10</sub> PM <sub>10</sub> | 1.61E-01                                                                                                                              | 7.07E-01  |
|                 |                                                                      |                               | РМ                                                                                                                                                             | 0.004                                                                                                                                 | 0.02      |
|                 | Molybdenum Concentrate                                               |                               | PM <sub>10</sub>                                                                                                                                               | 0.002                                                                                                                                 | 0.009     |
| 052-3<br>(AOS1) | Dryer (AOS1) to Dried Molybdenum Concentrate                         | Non-Fugitive                  | PM <sub>2.5</sub>                                                                                                                                              | 0.0003                                                                                                                                | 0.001     |
| ,               | Storage Bin (AOS1)                                                   |                               | Lead                                                                                                                                                           | 3.22E-07                                                                                                                              | 1.41E-06  |
|                 |                                                                      |                               | Total HAPs <sup>a</sup>                                                                                                                                        | 2.86E-06                                                                                                                              | 1.25E-05  |
|                 | Dried Molybdenum<br>Concentrate Storage Bin<br>(AOS1) to Molybdenum  |                               | PM                                                                                                                                                             | 0.004                                                                                                                                 | 0.02      |
|                 |                                                                      |                               | PM <sub>10</sub>                                                                                                                                               | 0.002                                                                                                                                 | 0.009     |
| 052-4<br>(AOS1) |                                                                      | Fugitive                      | PM <sub>2.5</sub>                                                                                                                                              | 0.0003                                                                                                                                | 0.001     |
| ,               | Concentrate Bagging<br>System (AOS1)                                 |                               | Lead                                                                                                                                                           | 3.22E-07                                                                                                                              | 1.41E-06  |
|                 |                                                                      |                               | Total HAPs <sup>a</sup>                                                                                                                                        | 2.86E-06                                                                                                                              | 1.25E-05  |
| Sycamore        | Lime and Other Regent Oper                                           | ations (AOS1)                 |                                                                                                                                                                |                                                                                                                                       |           |
|                 | T ( (): 1                                                            |                               | PM                                                                                                                                                             | 0.15                                                                                                                                  | 0.30      |
| 007-6<br>(AOS1) | Transfer of Lime to Sycamore Lime Silo                               | Non-Fugitive                  | PM <sub>10</sub>                                                                                                                                               | 0.05                                                                                                                                  | 0.11      |
| ,               | (AOS1)                                                               |                               | PM <sub>2.5</sub>                                                                                                                                              | Ib/hr  0.06  0.06  0.06  1.83  9.67E-06  1.61E-01  0.004  0.002  0.0003  3.22E-07  2.86E-06  0.004  0.002  0.0003  3.22E-07  2.86E-06 | 0.02      |
|                 |                                                                      |                               | РМ                                                                                                                                                             | 0.01                                                                                                                                  | 0.06      |
| 007-7<br>(AOS1) | Sycamore Lime Slaker<br>(AOS1)                                       | Non-Fugitive                  | PM <sub>10</sub>                                                                                                                                               | 0.01                                                                                                                                  | 0.06      |
| ( 15 2 1)       | , ,                                                                  |                               | PM <sub>2.5</sub>                                                                                                                                              | 0.01                                                                                                                                  | 0.06      |
|                 | Transfer of Flandsland                                               |                               | РМ                                                                                                                                                             | 0.06                                                                                                                                  | 0.25      |
| 055-1<br>(AOS1) | Transfer of Flocculant to Tailings Flocculant Bag Broaker Rip (AOS1) | Non-Fugitive                  | PM <sub>10</sub>                                                                                                                                               | 0.03                                                                                                                                  | 0.12      |
|                 | Breaker Bin (AOS1)                                                   |                               | PM <sub>2.5</sub>                                                                                                                                              | 0.004                                                                                                                                 | 0.02      |

 Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

|                 |                                                                               | F                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |          |  |
|-----------------|-------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|--|
| Process         | Process/Emission Unit                                                         | Non-Fugitive or Fugitive | Regulated Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Potential Emissions |          |  |
| Number          | Description                                                                   | Classification           | Emitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lb/hr               | tpy      |  |
|                 |                                                                               |                          | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.004               | 0.02     |  |
| 055-2<br>(AOS1) | Transfer of Flocculant to<br>Concentrate Flocculant Bag<br>Breaker Bin (AOS1) | Non-Fugitive             | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.002               | 0.008    |  |
|                 | Breaker Bill (AOST)                                                           |                          | Pollutant ion         Pollutant Emitted         Ib/hr           PM         0.004           PM10         0.002           PM2.5         0.0003           VOC         0.49           Greatest Single HAP         4.94E-01           Total HAPs a         4.94E-01           Ve         PM         0.52           PM2.5         0.03           PM         1.00           Ve         PM10         0.35           PM2.5         0.05           PM2.5         0.05           PM10         0.20           PM2.5         0.20           PM2.5         0.20           CO         3.50           NOx         3.74           SO2         0.007 | 0.0003              | 0.001    |  |
|                 | Xanthate Mix Tank (AOS1),<br>Xanthate Holding Tank                            |                          | VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.49                | 1.31     |  |
| 053-2<br>(AOS1) | (AOS1), Test Reagent Mix<br>Tank (AOS1), and Test                             | Non-Fugitive             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.94E-01            | 1.31E+00 |  |
|                 | Reagent Holding Tank<br>(AOS1)                                                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.94E-01            | 1.31E+00 |  |
| 055-3<br>(AOS1) | Sycamore NaHS System<br>Scrubber (AOS1)                                       | Non-Fugitive             | H₂S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.04                | 0.17     |  |
| , ,             | Prill Handling Operations (A                                                  | OS1)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | I        |  |
|                 | 5 11 64 1                                                                     |                          | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.52                | 0.25     |  |
| 050-7<br>(AOS1) | Delivery of Ammonium<br>Nitrate Prill to Prill Bin 6<br>(AOS1)                | Non-Fugitive             | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.18                | 0.09     |  |
| , ,             |                                                                               |                          | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.03                | 0.01     |  |
|                 |                                                                               | Non-Fugitive             | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                | 0.25     |  |
| 050-8<br>(AOS1) | Prill Bin 6 to ANFO Trucks for Transfer to Drill Holes                        |                          | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.35                | 0.09     |  |
|                 |                                                                               |                          | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                | 0.01     |  |
| Sycamore        | Emergency ICE (AOS1)                                                          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |          |  |
|                 |                                                                               |                          | PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                | 0.05     |  |
|                 |                                                                               |                          | PM <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.20                | 0.05     |  |
|                 |                                                                               |                          | PM <sub>2.5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20                | 0.05     |  |
|                 |                                                                               |                          | СО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.50                | 0.88     |  |
|                 |                                                                               |                          | $NO_X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.74                | 0.93     |  |
| 049-59          | Sycamore Diesel                                                               | Non Fugitive             | SO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.007               | 0.002    |  |
| (AOS1)          | Emergency Generator 1 (AOS1) (609 hp engine)                                  | Non-rugilive             | VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.27                | 0.07     |  |
|                 |                                                                               |                          | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 695.10              | 173.77   |  |
|                 |                                                                               |                          | CH₄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.03                | 0.007    |  |
|                 |                                                                               |                          | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.006               | 0.001    |  |
|                 |                                                                               |                          | CO <sub>2</sub> e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 697.48              | 174.37   |  |
|                 |                                                                               |                          | Total HAPs a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.71E-03            | 1.68E-03 |  |

Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process | Process/Emission Unit                     | Non-Fugitive                  | Regulated Air           | Potential E | Emissions |
|---------|-------------------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number  | Description                               | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
|         |                                           |                               | PM                      | 0.25        | 0.06      |
|         |                                           |                               | PM <sub>10</sub>        | 0.25        | 0.06      |
|         |                                           |                               | PM <sub>2.5</sub>       | 0.25        | 0.06      |
|         |                                           |                               | СО                      | 4.38        | 1.10      |
|         |                                           |                               | NOx                     | 7.52        | 1.88      |
| 049-60  | Sycamore Diesel<br>Emergency Generator 2  | Non-Fugitive                  | SO <sub>2</sub>         | 0.008       | 0.002     |
| (AOS1)  | (AOS1) (762 hp engine)                    | Non-rugilive                  | VOC                     | 0.50        | 0.13      |
|         |                                           |                               | CO <sub>2</sub>         | 869.73      | 217.43    |
|         |                                           |                               | CH <sub>4</sub>         | 0.04        | 0.009     |
|         |                                           |                               | N <sub>2</sub> O        | 0.007       | 0.002     |
|         |                                           |                               | CO₂e                    | 872.71      | 218.18    |
|         |                                           |                               | Total HAPs <sup>a</sup> | 8.39E-03    | 2.10E-03  |
|         |                                           |                               | PM                      | 0.02        | 0.004     |
|         |                                           |                               | PM <sub>10</sub>        | 0.02        | 0.004     |
|         |                                           |                               | PM <sub>2.5</sub>       | 0.02        | 0.004     |
|         |                                           |                               | СО                      | 16.77       | 4.19      |
|         |                                           |                               | NOx                     | 1.14        | 0.29      |
| 049-61  | Sycamore Propane<br>Emergency Generator 1 | Non-Fugitive                  | SO <sub>2</sub>         | 0.01        | 0.003     |
| (AOS1)  | (AOS1) (84.7 hp engine)                   | Non-rugilive                  | VOC                     | 0.25        | 0.06      |
|         |                                           |                               | CO <sub>2</sub>         | 123.27      | 30.82     |
|         |                                           |                               | CH <sub>4</sub>         | 0.006       | 0.001     |
|         |                                           |                               | N <sub>2</sub> O        | 0.001       | 0.0003    |
|         |                                           |                               | CO <sub>2</sub> e       | 123.77      | 30.94     |
|         |                                           |                               | Total HAPs <sup>a</sup> | 2.89E-02    | 7.22E-03  |

Table 5.2 Potential Emissions from the Proposed Updated Design of AOS1

| Process | Process/Emission Unit                         | Non-Fugitive                  | Regulated Air           | Potential E | Emissions |
|---------|-----------------------------------------------|-------------------------------|-------------------------|-------------|-----------|
| Number  | Description                                   | or Fugitive<br>Classification | Pollutant<br>Emitted    | lb/hr       | tpy       |
|         |                                               |                               | PM                      | 0.02        | 0.004     |
|         |                                               |                               | PM <sub>10</sub>        | 0.02        | 0.004     |
|         |                                               |                               | PM <sub>2.5</sub>       | 0.02        | 0.004     |
|         |                                               | N = "                         | со                      | 16.77       | 4.19      |
|         |                                               |                               | NOx                     | 1.14        | 0.29      |
| 049-62  | Sycamore Propane                              |                               | SO <sub>2</sub>         | 0.01        | 0.003     |
| (AOS1)  | Emergency Generator 2 (AOS1) (84.7 hp engine) | Non-Fugitive                  | VOC                     | 0.25        | 0.06      |
|         |                                               |                               | CO <sub>2</sub>         | 123.27      | 30.82     |
|         |                                               |                               | CH <sub>4</sub>         | 0.006       | 0.001     |
|         |                                               |                               | N <sub>2</sub> O        | 0.001       | 0.0003    |
|         |                                               |                               | CO₂e                    | 123.77      | 30.94     |
|         |                                               |                               | Total HAPs <sup>a</sup> | 2.89E-02    | 7.22E-03  |

<sup>&</sup>lt;sup>a</sup> See Appendix G for individual HAPs.

 Table 5.3 Summary of the Changes in Hourly Facility-Wide Potential Emissions

| Potential                                          |                            | Hourly Facility-Wide Potential Emissions (lb/hr) |                  |                   |          |        |                 |       |      |        |                           |               |
|----------------------------------------------------|----------------------------|--------------------------------------------------|------------------|-------------------|----------|--------|-----------------|-------|------|--------|---------------------------|---------------|
| Emission<br>Description                            | Emission<br>Classification | PM                                               | PM <sub>10</sub> | PM <sub>2.5</sub> | со       | NOx    | SO <sub>2</sub> | voc   | H₂S  | CO₂e   | Greatest<br>Single<br>HAP | Total<br>HAPs |
| Primary Operating Scenario                         |                            |                                                  |                  |                   |          |        |                 |       |      |        |                           |               |
|                                                    | Non-Fugitive               | 34.25                                            | 23.03            | 16.52             | 96.93    | 72.86  | 0.41            | 10.89 |      | 15,198 | 2.15                      | 2.78          |
| Potential<br>Emissions<br>Following MPR<br>#96299  | Fugitive                   | 4,330.88                                         | 1,624.52         | 167.80            | 4,064.40 | 180.00 | 1.23            | 3.75  | 2.15 | 38,191 |                           | 1.46          |
| #90299                                             | Total                      | 4,365.13                                         | 1,647.55         | 184.32            | 4,161.33 | 252.86 | 1.64            | 14.64 | 2.15 | 53,390 | 2.15                      | 4.24          |
| Change in                                          | Non-Fugitive               |                                                  |                  |                   |          |        |                 |       |      |        |                           | 1             |
| Potential Emissions Due to the Proposed            | Fugitive                   |                                                  |                  |                   |          |        |                 |       |      |        |                           |               |
| Updates                                            | Total                      |                                                  |                  |                   |          |        |                 |       |      |        |                           | 1             |
| Detection                                          | Non-Fugitive               | 34.25                                            | 23.03            | 16.52             | 96.93    | 72.86  | 0.41            | 10.89 |      | 15,198 | 2.15                      | 2.78          |
| Potential Emissions Following the Proposed Updates | Fugitive                   | 4,330.88                                         | 1,624.52         | 167.80            | 4,064.40 | 180.00 | 1.23            | 3.75  | 2.15 | 38,191 |                           | 1.46          |
|                                                    | Total                      | 4,365.13                                         | 1,647.55         | 184.32            | 4,161.33 | 252.86 | 1.64            | 14.64 | 2.15 | 53,390 | 2.15                      | 4.24          |

 Table 5.3 Summary of the Changes in Hourly Facility-Wide Potential Emissions

| Potential                                          |                                | Hourly Facility-Wide Potential Emissions (lb/hr) |                  |                   |           |        |                 |       |      |         |                           |               |
|----------------------------------------------------|--------------------------------|--------------------------------------------------|------------------|-------------------|-----------|--------|-----------------|-------|------|---------|---------------------------|---------------|
| Emission<br>Description                            | Emission<br>Classification     | PM                                               | PM <sub>10</sub> | PM <sub>2.5</sub> | со        | NOx    | SO <sub>2</sub> | voc   | H₂S  | CO₂e    | Greatest<br>Single<br>HAP | Total<br>HAPs |
| Alternate Operating                                | Alternate Operating Scenario 1 |                                                  |                  |                   |           |        |                 |       |      |         |                           |               |
|                                                    | Non-Fugitive                   | 31.98                                            | 24.24            | 20.39             | 96.93     | 72.86  | 0.41            | 10.89 |      | 15,198  | 2.15                      | 2.78          |
| Potential<br>Emissions<br>Following MPR<br>#96299  | Fugitive                       | 4,326.30                                         | 1,622.35         | 167.47            | 4,064.40  | 180.00 | 1.23            | 3.75  | 2.15 | 38,191  |                           | 1.46          |
| #90299                                             | Total                          | 4,358.28                                         | 1,646.60         | 187.86            | 4,161.33  | 252.86 | 1.64            | 14.64 | 2.15 | 53,390  | 2.15                      | 4.24          |
| Change in                                          | Non-Fugitive                   | 1.35                                             | -0.11            | -0.90             | 41.42     | 13.54  | 0.04            | 3.59  | 0.04 | 1,818   | 0.49                      | 0.73          |
| Potential<br>Emissions Due to<br>the Proposed      | Fugitive                       | 12,664.92                                        | 4,516.22         | 397.09            | 11,255.26 | 498.46 | 3.41            | 0.27  | 0.50 | 105,763 |                           | 2.01          |
| Updates                                            | Total                          | 12,666.27                                        | 4,516.11         | 396.19            | 11,296.68 | 512.00 | 3.44            | 3.86  | 0.54 | 107,581 | 0.49                      | 2.73          |
| 5                                                  | Non-Fugitive                   | 33.33                                            | 24.13            | 19.49             | 138.35    | 86.40  | 0.44            | 14.48 | 0.04 | 17,016  | 2.65                      | 3.51          |
| Potential Emissions Following the Proposed Updates | Fugitive                       | 16,991.22                                        | 6,138.57         | 564.56            | 15,319.65 | 678.46 | 4.64            | 4.02  | 2.65 | 143,955 |                           | 3.46          |
|                                                    | Total                          | 17,024.55                                        | 6,162.70         | 584.05            | 15,458.00 | 764.86 | 5.08            | 18.50 | 2.69 | 160,971 | 2.65                      | 6.97          |

Table 5.4 Summary of the Changes in Annual Facility-Wide Potential Emissions

| Potential                                   |                            | Annual Facility-Wide Potential Emissions (tpy) |                  |                   |        |        |                 |       |      |                   |                           |               |
|---------------------------------------------|----------------------------|------------------------------------------------|------------------|-------------------|--------|--------|-----------------|-------|------|-------------------|---------------------------|---------------|
| Emission<br>Description                     | Emission<br>Classification | PM                                             | PM <sub>10</sub> | PM <sub>2.5</sub> | со     | NOx    | SO <sub>2</sub> | voc   | H₂S  | CO <sub>2</sub> e | Greatest<br>Single<br>HAP | Total<br>HAPs |
| Primary Operating                           | Scenario                   |                                                |                  |                   |        |        |                 |       |      |                   |                           |               |
|                                             | Non-Fugitive               | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274            | 5.55                      | 6.84          |
| Potential<br>Emissions                      | Fugitive                   | 6,169.77                                       | 1,913.29         | 248.56            | 914.49 | 40.50  | 0.28            | 16.42 | 9.43 | 8,593             |                           | 4.08          |
| Following MPR<br>#96299                     | Total                      | 6,287.19                                       | 1,998.86         | 313.59            | 980.34 | 102.51 | 1.65            | 46.54 | 9.43 | 45,867            | 5.55                      | 10.92         |
|                                             | PTE                        | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274            | 5.55                      | 10.92         |
|                                             | Non-Fugitive               |                                                |                  |                   |        |        |                 |       |      |                   |                           |               |
| Change in Potential                         | Fugitive                   |                                                |                  |                   |        |        |                 |       |      |                   |                           |               |
| Emissions Due to<br>the Proposed<br>Updates | Total                      |                                                |                  |                   |        |        |                 |       |      |                   |                           |               |
| -1                                          | PTE                        |                                                |                  |                   |        |        |                 |       |      |                   |                           |               |
|                                             | Non-Fugitive               | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274            | 5.55                      | 6.84          |
| Potential<br>Emissions                      | Fugitive                   | 6,169.77                                       | 1,913.29         | 248.56            | 914.49 | 40.50  | 0.28            | 16.42 | 9.43 | 8,593             |                           | 4.08          |
| Following the<br>Proposed Updates           | Total                      | 6,287.19                                       | 1,998.86         | 313.59            | 980.34 | 102.51 | 1.65            | 46.54 | 9.43 | 45,867            | 5.55                      | 10.92         |
|                                             | PTE                        | 117.41                                         | 85.57            | 65.02             | 65.85  | 62.01  | 1.38            | 30.12 |      | 37,274            | 5.55                      | 10.92         |

Table 5.4 Summary of the Changes in Annual Facility-Wide Potential Emissions

| Potential                                                   |                            | Annual Facility-Wide Potential Emissions (tpy) |                  |                   |          |        |                 |       |       |        |                           |               |
|-------------------------------------------------------------|----------------------------|------------------------------------------------|------------------|-------------------|----------|--------|-----------------|-------|-------|--------|---------------------------|---------------|
| Emission<br>Description                                     | Emission<br>Classification | PM                                             | PM <sub>10</sub> | PM <sub>2.5</sub> | со       | NOx    | SO <sub>2</sub> | voc   | H₂S   | CO₂e   | Greatest<br>Single<br>HAP | Total<br>HAPs |
| Alternate Operating                                         | g Scenario 1               |                                                |                  |                   |          |        |                 |       |       |        |                           |               |
|                                                             | Non-Fugitive               | 107.83                                         | 91.06            | 82.00             | 65.85    | 62.01  | 1.38            | 30.12 |       | 37,274 | 5.55                      | 6.84          |
| Potential<br>Emissions                                      | Fugitive                   | 6,152.44                                       | 1,905.09         | 247.32            | 914.49   | 40.50  | 0.28            | 16.42 | 9.43  | 8,593  |                           | 4.08          |
| Following MPR<br>#96299                                     | Total                      | 6,260.27                                       | 1,996.15         | 329.32            | 980.34   | 102.51 | 1.65            | 46.54 | 9.43  | 45,867 | 5.55                      | 10.92         |
|                                                             | PTE                        | 107.83                                         | 91.06            | 82.00             | 65.85    | 62.01  | 1.38            | 30.12 |       | 37,274 | 5.55                      | 10.92         |
|                                                             | Non-Fugitive               | -2.57                                          | -4.77            | -6.29             | 10.35    | 3.38   | 0.009           | 9.65  | 0.17  | 454    | 1.31                      | 2.04          |
| Change in Potential                                         | Fugitive                   | 14,655.64                                      | 4,141.05         | 432.70            | 745.14   | 33.00  | 0.23            | 1.18  | 2.18  | 7,002  |                           | 1.64          |
| Emissions Due to<br>the Proposed<br>Updates                 | Total                      | 14,653.08                                      | 4,136.28         | 426.41            | 755.49   | 36.38  | 0.23            | 10.83 | 2.35  | 7,457  | 1.31                      | 3.68          |
| - '                                                         | PTE                        | -2.57                                          | -4.77            | -6.29             | 10.35    | 3.38   | 0.009           | 9.65  | 0.17  | 454    | 1.31                      | 3.68          |
|                                                             | Non-Fugitive               | 105.26                                         | 86.29            | 75.71             | 76.20    | 65.40  | 1.39            | 39.77 | 0.17  | 37,728 | 6.87                      | 8.88          |
| Potential<br>Emissions<br>Following the<br>Proposed Updates | Fugitive                   | 20,808.08                                      | 6,046.14         | 680.02            | 1,659.63 | 73.50  | 0.50            | 17.60 | 11.61 | 15,595 |                           | 5.72          |
|                                                             | Total                      | 20,913.35                                      | 6,132.43         | 755.73            | 1,735.83 | 138.90 | 1.89            | 57.37 | 11.78 | 53,323 | 6.87                      | 14.60         |
|                                                             | PTE                        | 105.26                                         | 86.29            | 75.71             | 76.20    | 65.40  | 1.39            | 39.77 | 0.17  | 37,728 | 6.87                      | 14.60         |

### 6 PROPOSED VOLUNTARY LIMITATIONS

As part of the design of AOS1 in Class II Air Quality Permit #77414, FMBI previously accepted voluntary emission limitations for the processes controlled by new dust collectors. The limitations were initially established as lb/hr emission caps for PM<sub>10</sub> but were eventually converted to outlet grain loading limits for both PM and PM<sub>10</sub>. While FMBI's engineering team designed the dust collectors at an outlet grain loading of 0.002 gr/dscf, FMBI accepted voluntary emission limitations of 0.0026 gr/dscf to provide a buffer for compliance demonstrations during performance testing.

After many years of experience with the specific dust collectors chosen for AOS1 (i.e., FARR cartridge filter dust collectors), FMBI feels confident with a smaller buffer for performance testing and proposes to accept limitations of 0.0023 gr/dscf for both PM and PM<sub>10</sub> for the processes controlled by new dust collectors in the updated design of AOS1. FMBI also proposes to accept a voluntary limitation for the operation of fogging systems on the transfer points associated with existing overland conveying operations. Finally, for the processes controlled by existing Dust Collector C51, FMBI proposes to retain the previously established voluntary emission limitation of 0.0135 gr/dscf for both PM and PM<sub>10</sub>.

The voluntary limitations for the updated design of AOS1 are presented in Table 6.1. The associated averaging period and monitoring, recordkeeping, and reporting requirements necessary to demonstrate that the voluntary limitations are permanent, quantifiable, and otherwise enforceable as a practical matter are also presented in Table 6.1.

 Table 6.1 Voluntary Limitations for the Proposed Updated Design of AOS1

| Process<br>Number                                                                  | Process/Emission Unit<br>Description <sup>a</sup>               | Type of Voluntary<br>Limitation | Description of Voluntary<br>Limitation                                                                              | Averaging Period            | Proposed Monitoring, Recordkeeping, and Reporting Requirements       |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|
| Affected Emissions Units - Proposed Updated Design of AOS1                         |                                                                 |                                 |                                                                                                                     |                             |                                                                      |  |  |  |  |  |  |
| Primary Crushing and Overland Conveying Operations (to Bagdad Concentrator) (AOS1) |                                                                 |                                 |                                                                                                                     |                             |                                                                      |  |  |  |  |  |  |
| 001-5<br>(AOS1)                                                                    | Dust Collector C51 (AOS1)                                       | Emissions Limitations           | PM ≤ 0.0135 gr/dscf<br>PM <sub>10</sub> ≤ 0.0135 gr/dscf                                                            | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |
| 001-2<br>(AOS1)                                                                    | Overland Conveyor 3A<br>(AOS1) to Overland<br>Conveyor 3 (AOS1) | Operational Requirement         | Install, maintain, and operate a fogging system to minimize particulate matter emissions from the transfer process. | N/A                         | Perform periodic opacity monitoring                                  |  |  |  |  |  |  |
| 001-8<br>(AOS1)                                                                    | Overland Conveyor 3 (AOS1)<br>to Overland Conveyor 4<br>(AOS1)  | Operational Requirement         | Install, maintain, and operate a fogging system to minimize particulate matter emissions from the transfer process. | N/A                         | Perform periodic opacity monitoring                                  |  |  |  |  |  |  |
| 001-9<br>(AOS1)                                                                    | Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)           | Operational Requirement         | Install, maintain, and operate a fogging system to minimize particulate matter emissions from the transfer process. | N/A                         | Perform periodic opacity monitoring                                  |  |  |  |  |  |  |
| Primary Cr                                                                         | ushing and Overland Conveying                                   | Operations (to Sycamore Conc    | entrator) (AOS1)                                                                                                    |                             |                                                                      |  |  |  |  |  |  |
| 001-12<br>(AOS1)                                                                   | PC1 Dust Collector 1 (AOS1)                                     | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf                                                            | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |
| 001-13<br>(AOS1)                                                                   | PC1 CCC1 Dust Collector 2<br>(AOS1)                             | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf                                                            | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |
| 001-14<br>(AOS1)                                                                   | PC1 CCC2 Dust Collector 3<br>(AOS1)                             | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf                                                            | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |
| 001-15<br>(AOS1)                                                                   | PC1 CCC3 Dust Collector 4<br>(AOS1)                             | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf                                                            | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |

Table 6.1 Voluntary Limitations for the Proposed Updated Design of AOS1

| Process<br>Number | Process/Emission Unit<br>Description <sup>a</sup>              | Type of Voluntary<br>Limitation | Description of Voluntary<br>Limitation                   | Averaging Period            | Proposed Monitoring, Recordkeeping, and Reporting Requirements       |  |  |  |  |  |  |  |
|-------------------|----------------------------------------------------------------|---------------------------------|----------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|--|--|--|--|--|--|--|
| Sycamore          | Sycamore Milling Operations (AOS1)                             |                                 |                                                          |                             |                                                                      |  |  |  |  |  |  |  |
| 002-7<br>(AOS1)   | Coarse Ore Reclaim<br>Conveyor 1 Dust Collector 5<br>(AOS1)    | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |
| 002-8<br>(AOS1)   | Coarse Ore Reclaim<br>Conveyor 2 Dust Collector 6<br>(AOS1)    | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |
| 002-9<br>(AOS1)   | HPGR Discharge Dust<br>Collector 7 (AOS1)                      | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |
| 002-10<br>(AOS1)  | HPGR Discharge Conveyor<br>Transfer Dust Collector 8<br>(AOS1) | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |
| 002-11<br>(AOS1)  | HPGR Product Bin Dust<br>Collector 9 (AOS1)                    | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |
| 002-12<br>(AOS1)  | HPGR Product Transfer Dust<br>Collector 10 (AOS1)              | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |
| 002-13<br>(AOS1)  | HPGR Product Transfer Dust<br>Collector 11 (AOS1)              | Emissions Limitations           | PM ≤ 0.0023 gr/dscf<br>PM <sub>10</sub> ≤ 0.0023 gr/dscf | Three Method 5 Test<br>Runs | Perform periodic opacity monitoring and complete performance testing |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>a</sup> The voluntary limitation is applicable to the entire process controlled by the pollution control device and the pollution control device is used to demonstrate compliance with the voluntary emission limitation. See Table 4.1 for the emission units/processes controlled by the pollution control devices listed in this table.

# 7 APPLICABLE REQUIREMENTS AND PROPOSED EXEMPTIONS FROM OTHERWISE APPLICABLE REQUIREMENTS

#### 7.1 APPLICABLE REQUIREMENTS

Reference to the regulatory requirements applicable to the equipment/processes associated with the proposed updated design of AOS1 are presented in Table 2.1. The regulatory requirements include the following:

- Ore Processing Equipment
  - o A.A.C. R18-2-306.01 (Voluntarily Accepted Emission Limitations and Standards);
  - A.A.C. R18-2-702.B.3 (Opacity Standard) and A.A.C. R18-2-721 (Standards of Performance for Existing Nonferrous Metals Industry Sources); and/or
  - A.A.C. R18-2-901.46 and 40 CFR 60 Subpart LL (Standards of Performance for Metallic Mineral Processing Plants).
- Lime and Other Reagent Operations and Prill Handling Operations (A.A.C. R18-2-730 also applies to bulk and molybdenum flotation operations)
  - o A.A.C. R18-2-702.B.3 (Opacity Standard); and
  - o A.A.C. R18-2-730 (Standards of Performance for Unclassified Sources).
- Diesel Emergency Engines
  - A.A.C. R18-2-901.84 and 40 CFR 60 Subpart IIII (Standards of Performance for Stationary Compression Ignition Internal Combustion Engines); and
  - A.A.C. R18-2-1101.B.81 and 40 CFR 63 Subpart ZZZZ (National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines).
- Propane Emergency Engines
  - A.A.C. R18-2-901.85 and 40 CFR 60 Subpart JJJJ (Standards of Performance for Stationary Spark Ignition Internal Combustion Engines); and
  - A.A.C. R18-2-1101.B.81 and 40 CFR 63 Subpart ZZZZ (National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines).

Detailed descriptions of the regulatory requirements are presented in Tables 7.1 through 7.8. All applicable requirements are currently included in FMBI's Class II Air Quality Permit #77414.

The applicability of A.A.C. R18-2-721 (Standards of Performance for Existing Nonferrous Metals Industry Sources) to certain mining equipment largely depends on whether that equipment is subject to 40 CFR 60 Subpart LL and therefore considered a new source rather than an existing source. In turn, the applicability of 40 CFR 60 Subpart LL largely depends on whether the equipment is an "affected facility" (as defined under Subpart LL) and is located within certain areas of FMBI's metallic

mineral processing plant. For example, the overland and cross-country conveyors will not be located "at the mill or concentrator" and are not considered crushers or screens "in open-pit mines." Therefore, they are subject to A.A.C. R18-2-721 instead of 40 CFR 60 Subpart LL. Likewise, while the AG mills, ball mills, and regrind mills will be located at the mill or concentrator, they do not meet the definition of a "crusher" in 40 CFR 60.381 and therefore these mills are also subject to A.A.C. R18-2-721 instead of 40 CFR 60 Subpart LL. Specific to Molybdenum Concentrate Dryer Screw Feeder and Coarse Ore Reclaim Feeders 1 through 6, because they will not have a belt, they cannot be affected facilities under 40 CFR 60 Subpart LL in and of themselves (i.e., they are not "conveyor belt transfer points," which are defined as points in the process where "metallic mineral concentrate is transferred to or from a conveyor belt"). Accordingly, these feeders are instead subject to A.A.C. R18-2-721.

Finally, the Molybdenum Concentrate Dryer will be a holoflite-type dryer, which uses heated oil in conjunction with a hollow screw to dry the molybdenum concentrate. The definition of "thermal dryer" in 40 CFR 60.381 requires the surface moisture content of a metallic mineral or a metallic mineral concentrate to be reduced by direct or indirect contact with a heated gas stream. Because heated oil will be used in place of a heated gas stream, the Molybdenum Concentrate Dryer is subject to the requirements of A.A.C. R18-2-721 instead of 40 CFR 60 Subpart LL.

Updating the design of AOS1 will require revisions to Attachments "B," "C," and "D" of Class II Air Quality Permit #77414. Suggested draft permit language is presented in Appendix H.

# 7.2 PROPOSED EXEMPTION FROM OTHERWISE APPLICABLE REQUIREMENTS

FMBI does not propose to be exempt from any otherwise applicable regulatory requirement.

Table 7.1 Applicable Regulatory Requirements of A.A.C. R18-2-306.01 and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                | Methods Used to Demonstrate<br>Compliance                                                                                  |
|----------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| A.A.C. R18-2-306.01                                | Limit emissions as described in Table 6.1.                                 | Records of performance tests; operation & maintenance (O&M) plans; facility procedures; operation and maintenance records. |
| A.A.C. R18-2-306.01                                | Install, maintain, and operate the fogging systems described in Table 6.1. | Facility procedure; design and configuration of the fogging systems.                                                       |

Table 7.2 Applicable Regulatory Requirements of A.A.C. R18-2-702.B.3 and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                 | Methods Used to Demonstrate<br>Compliance                                                  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| A.A.C. R18-2-702.B.3<br>A.A.C. R18-2-702.C         | For all sources described in A.A.C. R18-2-702.A (except as otherwise provided in Title 18, Chapter 2 of the A.A.C. relating to specific types of sources):  • Opacity ≤ 20% | Records of visible emission surveys; records of Method 9 observations; facility procedure. |
|                                                    | If the presence of uncombined water is the only reason for an exceedance of the opacity limit, the exceedance shall not constitute a violation.                             |                                                                                            |

Table 7.3 Applicable Regulatory Requirements of A.A.C. R18-2-721 and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                         | Methods Used to Demonstrate<br>Compliance                                      |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| A.A.C. R18-2-721.B<br>A.A.C. R18-2-721.D           | $PM \le 4.10 \ P^{0.67}$ , when $P \le 30$ tons per hour (tph)<br>$PM \le 55.0 \ P^{0.11} - 40$ , when $P > 30$ tph                                 | Records of process weight rate, PM limit, and potential emission calculations. |
|                                                    | (where PM = maximum allowable PM emission rate in lb/hr, P = total process rate in tons/hr)                                                         |                                                                                |
|                                                    | The total process weight from all similar units employing a similar type process shall be used in determining the maximum allowable emission of PM. |                                                                                |
| A.A.C. R18-2-721.F                                 | Record the daily process rates and hours of operation of all material handling facilities.                                                          | Facility procedure; records review.                                            |

Table 7.4 Applicable Regulatory Requirements of A.A.C. R18-2-730 and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methods Used to Demonstrate<br>Compliance                                                                              |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| A.A.C. R18-2-730.A.1                               | $PM \le 4.10 \ P^{0.67}$ , when $P \le 30 \ tph$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Process weight rates, PM limits, potential                                                                             |
| A.A.C. R18-2-730.B                                 | $PM \le 55.0 \ P^{0.11} - 40$ , when $P > 30 \ tph$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | emission calculations.                                                                                                 |
|                                                    | (where PM = maximum allowable PM emission rate in lb/hr, P = total process rate in tons/hr)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |
|                                                    | The total process weight from all similar units employing a similar type process shall be used for determining the maximum allowable emission of PM.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                        |
| A.A.C. R18-2-730.D                                 | Operate equipment, processes, and premises such that gaseous or odorous materials are not emitted in such quantities or concentrations as to cause air pollution.                                                                                                                                                                                                                                                                                                                                                    | O&M plans; facility procedures; operations and maintenance records; facility configuration; review of odor complaints. |
| A.A.C. R18-2-730.F                                 | Processing, storage, usage, and transportation of solvents or other volatile compounds, paints, acids, alkalis, pesticides, fertilizers and manure in such a manner and by such means that they will not evaporate, leak, escape, or otherwise be discharged into the ambient air as to cause or contribute to air pollution. Where means are available to reduce effectively the contribution to air pollution from evaporation, leakage or discharge, install and use such control methods, devices, or equipment. | O&M plans; facility procedures; operations and maintenance records.                                                    |
| A.A.C. R18-2-730.G                                 | If required by the Director, install abatement equipment or alter the stack, vent, or other outlet to a degree that will adequately dilute, reduce or eliminate the discharge of air pollution to adjoining property.                                                                                                                                                                                                                                                                                                | Explanatory statement of law; management of change procedures.                                                         |
| A.A.C. R18-2-730.H                                 | $H_2S \leq 0.03$ parts per million by volume (ppm <sub>v</sub> ) for any averaging period of 30 minutes or more at any occupied place beyond the premises of FMMI.                                                                                                                                                                                                                                                                                                                                                   | O&M plans; facility procedures; operations and maintenance records; H <sub>2</sub> S monitoring.                       |

Table 7.5 Applicable Regulatory Requirements of A.A.C. R18-2-901.46 and 40 CFR 60 Subpart LL and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                            | Methods Used to Demonstrate<br>Compliance                                                       |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 40 CFR 60.382(a)(1)<br>A.A.C. R18-2-901.46         | On and after the date on which the performance test required to be conducted by 40 CFR 60.8 is completed, do not cause to be discharged into the atmosphere from an affected facility any stack emissions that contain particulate matter in excess of 0.05 grams per dry standard cubic meter (0.05 g/dscm).                          | Records of performance test; O&M plan; operations and maintenance records; facility procedures. |
| 40 CFR 60.382(a)(2)<br>A.A.C. R18-2-901.46         | On and after the date on which the performance test required to be conducted by 40 CFR 60.8 is completed, do not cause to be discharged into the atmosphere from an affected facility any stack emissions that exhibit greater than 7 percent opacity.                                                                                 | Records of monthly visual surveys; facility procedure.                                          |
| 40 CFR 60.382(b)<br>A.A.C. R18-2-901.46            | On and after the sixtieth day after achieving the maximum production rate at which the affected facility will be operated, but not later than 180 days after initial startup, do not cause to be discharged into the atmosphere from an affected facility any process fugitive emissions that exhibit greater than 10 percent opacity. | Records of monthly visual surveys; facility procedure.                                          |
| 40 CFR 60.385(a)<br>A.A.C. R18-2-901.46            | Conduct a performance test and submit to the Administrator a written report of the results of the test as specified in 40 CFR 60.8(a).                                                                                                                                                                                                 | Facility procedure; records of performance test results and reports.                            |
| 40 CFR 60.386(a)<br>A.A.C. R18-2-901.46            | In conducting the performance tests required in 40 CFR 60.8, use as reference methods and procedures the test methods in 40 CFR 60, Appendix A or other methods and procedures as specified in 40 CFR 60 Subpart LL, except as provided in 40 CFR 60.8(b).                                                                             | Facility procedure; records of performance test procedures.                                     |

Table 7.5 Applicable Regulatory Requirements of A.A.C. R18-2-901.46 and 40 CFR 60 Subpart LL and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methods Used to Demonstrate<br>Compliance                   |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 40 CFR 60.386(b) A.A.C. R18-2-901.46               | <ul> <li>Determine compliance with the particulate matter standards by:         <ul> <li>Using Method 5 or 17 to determine the particulate matter concentration. The sample volume for each run must be at least 60 dscf. The sampling probe and filter holder of Method 5 may be operated without heaters if the gas stream being sampled is at ambient temperature. For gas streams above ambient temperature, the Method 5 sampling train must be operated with a probe and filter temperature slightly above the effluent temperature (up to a maximum filter temperature of 250°F) in order to prevent water condensation on the filter.</li> <li>Using Method 9 and the procedures in 40 CFR 60.11 to determine opacity from stack emissions and process fugitive emissions. The observer must read opacity only when emissions are clearly identified as emanating solely from the affected facility being observed. A single visible emission observer may conduct visible emission observations for up to three fugitive, stack, or vent emission points within a 15-second interval. This option is subject to the following limitations:</li></ul></li></ul> | Facility procedure; records of performance test procedures. |

Table 7.6 Applicable Regulatory Requirements of A.A.C. R18-2-901.84 and 40 CFR 60 Subpart IIII (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements               | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Methods Used to Demonstrate<br>Compliance                                                                                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 60.4205(b)<br>40 CFR 60.4202(a)(2)<br>A.A.C. R18-2-901.84 | For an emergency stationary CI engine with a rated power greater than or equal to 50 hp but less than or equal to 3,000 hp with a displacement of less than 10 liters per cylinder that are not fire pump engines, comply with the Tier 2 or Tier 3 emission standards for new nonroad CI engines for the same rated power as described in 40 CFR 1039 Appendix I, for all pollutants and the smoke standards as specified in 40 CFR 1039.105 beginning in model year 2007. | Records of manufacturer's certifications;<br>O&M plans; manufacturer's emission-<br>related instructions; operations and<br>maintenance records. |
| 40 CFR 60.4206<br>A.A.C. R18-2-901.84                            | Operate and maintain the stationary CI engine that achieves the emission standards of 40 CFR 60.4205 over the entire life of the engine.                                                                                                                                                                                                                                                                                                                                    | O&M plans; facility procedures; operation inspection, and O&M records.                                                                           |
| 40 CFR 60.4207(b)<br>A.A.C. R18-2-901.84                         | For a stationary CI engine with a displacement of less than 30 liters per cylinder that uses diesel fuel, use diesel fuel that meets the requirements of 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to October 1, 2010, may be used until depleted.  The requirements of 40 CFR 1090.305 include:  Sulfur content ≤ 15 ppm; and  Cetane index ≥ 40 or aromatic content ≤ 35% by volume.          | Facility procedure; records of fuel specifications from fuel supplier.                                                                           |
| 40 CFR 60.4209(a)<br>A.A.C. R18-2-901.84                         | If the emergency stationary CI engine does not meet the standards applicable to non-emergency engines, install a non-resettable hour meter prior to startup of the engine.                                                                                                                                                                                                                                                                                                  | Facility procedure; record of non-resettable hour meter installed on all emergency engines.                                                      |
| 40 CFR 60.4211(a)<br>A.A.C. R18-2-901.84                         | Operate and maintain the engine according to the manufacturer's emission-related written instructions, except as permitted by 40 CFR 60.4211(g).  Change only those emission-related settings that are permitted by the manufacturer, except as permitted by 40 CFR 60.4211(g).  Meet the requirements of 40 CFR Part 1068, as they apply.                                                                                                                                  | O&M plans; manufacturer's emission-<br>related written instructions; facility<br>procedures; O&M records.                                        |

Table 7.6 Applicable Regulatory Requirements of A.A.C. R18-2-901.84 and 40 CFR 60 Subpart IIII (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements                                          | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methods Used to Demonstrate<br>Compliance                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 60.4211(c)<br>A.A.C. R18-2-901.84                                                    | Purchase an engine certified to the emission standards in 40 CFR 60.4204(b), 40 CFR 60.4205(b), or 40 CFR 60.4205(c), as applicable, for the same model year and maximum (or in the case of fire pumps, NFPA nameplate) engine power. The engine must be installed and configured according to the manufacturer's emission-related specifications, except as permitted by 40 CFR 60.4211(g).                                                                                                                                                                                                                                                                                                                                                                                             | Records of manufacturer's certifications; records of installation and configuration according to the manufacturer's emission-related specifications; O&M plans; manufacturer's emission-related written instructions; facility procedures; O&M records. |
| 40 CFR 60.4211(f)(1)<br>40 CFR 60.4211(f)(2)<br>40 CFR 60.4211(f)(3)<br>A.A.C. R18-2-901.84 | <ul> <li>Operate the emergency stationary CI engine as follows to retain classification as an emergency engine:         <ul> <li>Unlimited operation for use in emergency situations;</li> <li>Maximum of 100 hr/yr for maintenance checks and readiness testing (provided that the tests are recommended); and</li> </ul> </li> <li>Maximum of 50 hr/yr in non-emergency situations (counted towards the 100 hr/yr in 40 CFR 60.4211(f)(2)). The 50 hr/yr for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity unless all conditions in 40 CFR 60.4211(f)(3)(i) are met.</li> </ul> | O&M plans; facility procedures; O&M records; records of hourly meter readings and engine use; records review.                                                                                                                                           |

Table 7.6 Applicable Regulatory Requirements of A.A.C. R18-2-901.84 and 40 CFR 60 Subpart IIII (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Methods Used to Demonstrate<br>Compliance                                                                                     |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 60.4211(g)(3) A.A.C. R18-2-901.84           | If the engine that is greater than 500 hp is not installed, configured, operated, or maintained according to the manufacturer's emission-related written instructions, or if emission-related settings are changed in a way that is not permitted by the manufacturer, then a maintenance plan and records of conducted maintenance must be kept and, to the extent practicable, the engine must be maintained and operated in a manner consistent with good air pollution control practice for minimizing emissions. In addition, an initial performance test shall be conducted to demonstrate compliance with the applicable emission standards within 1 year of startup, or within 1 year after the engine is no longer installed, configured, operated, and maintained in accordance with the manufacturer's emission-related written instructions, or within 1 year after the emission-related settings are changed in a way that is not permitted by the manufacturer. Subsequent performance testing must be completed every 8,760 hours of engine operation or 3 years, whichever comes first, thereafter, to demonstrate compliance with the applicable emission standards. | Facility procedure; records of O&M plans; O&M records; records of performance test results and reports (if necessary).        |
| 40 CFR 60.4214(b)<br>A.A.C. R18-2-901.84           | For an emergency stationary engine, initial notification is not required.  Starting with the model years in Table 5 of 40 CFR 60 Subpart IIII, if the emergency engine does not meet the standards applicable to non-emergency engines in the applicable model year, keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The time of operation of the engine and the reason the engine was in operation during that time must be recorded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Facility procedure; records of hourly meter readings, engine use, and the reason the engine was in operation; records review. |
| 40 CFR 60.4214(d)<br>A.A.C. R18-2-901.84           | For an emergency stationary CI engine with a maximum engine power more than 100 hp that for the purpose specified in 40 CFR 60.4211(f)(3)(i), submit an annual report according to the requirements in 40 CFR 60.4214(d)(1) through (3).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Submittal of annual reports (if necessary); maintenance of records.                                                           |
| 40 CFR 60.4218<br>A.A.C. R18-2-901.84              | Comply with the General Provisions as specified in Table 8 of 40 CFR 60 Subpart IIII.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility procedure; records review.                                                                                           |

Table 7.7 Applicable Regulatory Requirements of A.A.C. R18-2-901.85 and 40 CFR 60 Subpart JJJJ (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                   | Methods Used to Demonstrate<br>Compliance                                                                                                                                                                                   |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 60.4233(c)                                  | For emergency SI engine greater than 25 hp and less than 130 hp that are rich                                                                                                                                                                                                                                                                                                                                 | Records of manufacturer's certifications;                                                                                                                                                                                   |
| 40 CFR 60.4231(c)                                  | burn engines that use LPG and that are manufactured on or after the applicable date in 40 CFR 60.4230(a)(4), comply with the Phase 1 emission                                                                                                                                                                                                                                                                 | O&M plans; manufacturer's emission-<br>related instructions; operations and                                                                                                                                                 |
| A.A.C. R18-2-901.85                                | standards in 40 CFR 1054 Appendix I, applicable to class II engines, and other requirements for new nonroad SI engines in 40 CFR 1054.                                                                                                                                                                                                                                                                        | maintenance records.                                                                                                                                                                                                        |
| 40 CFR 60.4234                                     | Operate and maintain the stationary SI ICE that achieves the emission                                                                                                                                                                                                                                                                                                                                         | Records of manufacturers' certifications;                                                                                                                                                                                   |
| A.A.C. R18-2-901.85                                | standards of 40 CFR 60.4233 over the entire life of the engine.                                                                                                                                                                                                                                                                                                                                               | O&M plans; manufacturers' emission-<br>related instructions; operations and<br>maintenance records.                                                                                                                         |
| 40 CFR 60.4237(c)                                  | For an emergency stationary SI engine that is less than 130 hp, was built on or                                                                                                                                                                                                                                                                                                                               | Facility procedure; record of non-resettable                                                                                                                                                                                |
| A.A.C. R18-2-901.85                                | after July 1, 2008, and does not meet the standards applicable to non-<br>emergency engines, install a non-resettable hour meter upon startup.                                                                                                                                                                                                                                                                | hour meter installed on all emergency engines.                                                                                                                                                                              |
| 40 CFR 60.4243(a)                                  | For SI ICE subject to the emission standards specified in 40 CFR 60.4233(a)                                                                                                                                                                                                                                                                                                                                   | Records of manufacturers' certifications;                                                                                                                                                                                   |
| A.A.C. R18-2-901.85                                | through (c), purchase an engine certified to the emission standards in 40 CFR 60.4231(a) and (c) for the same engine class and maximum engine power and meet one of the following:                                                                                                                                                                                                                            | records of installation and configuration according to the manufacturer's emission-related specifications; O&M plans; manufacturers' emission-related instructions; facility procedures; operation and maintenance records. |
|                                                    | (1) Operate and maintain the engine and control device according to<br>manufacturer's emission-related written instructions, keep records of<br>conducted maintenance, and meet the applicable requirements of 40<br>CFR 1068, Subparts A and D.                                                                                                                                                              |                                                                                                                                                                                                                             |
|                                                    | (2) Do not operate and maintain the engine and control device according to<br>manufacturer's emission-related written instructions but keep a<br>maintenance plan and records of conducted maintenance and, to the<br>extent practicable, maintain and operate the engine in a manner<br>consistent with good air pollution control practice for minimizing<br>emissions. No performance testing is required. |                                                                                                                                                                                                                             |

Table 7.7 Applicable Regulatory Requirements of A.A.C. R18-2-901.85 and 40 CFR 60 Subpart JJJJ (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methods Used to Demonstrate<br>Compliance                                                                                           |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 60.4243(d)                                  | Operate the emergency stationary SI ICE as follows to retain classification as an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | O&M plans; facility procedures; operation and maintenance records; records of hourly meter readings and engine use; records review. |
| A.A.C. R18-2-901.85                                | <ul> <li>Unlimited operation for use in emergency situations;</li> <li>Maximum of 100 hr/year (yr) for maintenance checks and readiness testing (provided that the tests are recommended); and</li> <li>Maximum of 50 hr/yr in non-emergency situations (counted towards the 100 hr/yr in 40 CFR 60.4243(d)(2)). The 50 hr/yr for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity unless all conditions in 40 CFR 60.4243(d)(3)(i) are met.</li> </ul>                                                                                                                                                                                                                                             |                                                                                                                                     |
| 40 CFR 60.4243(f) A.A.C. R18-2-901.85              | For SI ICE that is less than or equal to 500 hp and either a non-certified engine or not operated and maintained according to the manufacturer's written emission-related instructions, perform initial performance testing as indicated in 40 CFR 60.4243, but do not conduct subsequent performance testing unless the stationary engine undergoes rebuild, major repair or maintenance. Engine rebuilding means to overhaul an engine or to otherwise perform extensive service on the engine (or on a portion of the engine or engine system). For the purpose of 40 CFR 60.4243(f), perform extensive service means to disassemble the engine (or portion of the engine or engine system), inspect and/or replace many of the parts, and reassemble the engine (or portion of the engine or engine system) in such a manner that significantly increases the service life of the resultant engine. | Facility procedure; records of O&M plans; O&M records; records of performance test results and reports (if necessary).              |

Table 7.7 Applicable Regulatory Requirements of A.A.C. R18-2-901.85 and 40 CFR 60 Subpart JJJJ (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Methods Used to Demonstrate<br>Compliance                                                                                                                                 |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40 CFR 60.4245(a)                               | Maintain records of the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Facility procedures; records of                                                                                                                                           |
| A.A.C. R18-2-901.85                             | <ul> <li>All notifications submitted to comply with 40 CFR 60 Subpart JJJJ and all documentation supporting any notification;</li> <li>Maintenance conducted on the engine;</li> <li>If the stationary SI ICE is a certified engine, documentation from the manufacturer that the engine is certified to meet the emission standards and information as required in 40 CFR Parts 1048, 1054, and 1060, as applicable; and</li> <li>If the stationary SI ICE is not a certified engine or is a certified engine operating in a non-certified manner and subject to 40 CFR 60.4243(a)(2), documentation that the engine meets the emission standards.</li> </ul> | notifications and supporting documentation, manufacturer's certifications, maintenance conducted on the engines, and performance test results and reports (if necessary). |
| 40 CFR 60.4245(b)<br>A.A.C. R18-2-901.85        | For a stationary SI emergency engine greater than 25 hp and less than 130 hp manufactured on or after July 1, 2008, that does not meet the standards applicable to non-emergency engines, keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. Document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation.                                                                                                                                                                               | Facility procedure; records of hourly meter readings, engine use, and what classified the operation as emergency; records review.                                         |
| 40 CFR 60.4245(d)<br>A.A.C. R18-2-901.85        | For stationary SI ICE that are subject to performance testing, submit a copy of each performance test as conducted in 40 CFR 60.4244 within 60 days after the test has been completed. Performance test reports using EPA Method 18, EPA Method 320, or ASTM D6348-03 (incorporated by reference—see 40 CFR 60.17) to measure VOC require reporting of all QA/QC data. For Method 18, report results from sections 8.4 and 11.1.1.4; for Method 320, report results from sections 8.6.2, 9.0, and 13.0; and for ASTM D6348-03 report results of all QA/QC procedures in Annexes 1-7.                                                                           | Records of performance test reports (if necessary).                                                                                                                       |

Table 7.7 Applicable Regulatory Requirements of A.A.C. R18-2-901.85 and 40 CFR 60 Subpart JJJJ (Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                             | Methods Used to Demonstrate<br>Compliance |
|----------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|
| 40 CFR 60.4246                                     | Comply with the General Provisions as specified in Table 3 of 40 CFR 60 | Facility procedure; records review.       |
| A.A.C. R18-2-901.85                                | Subpart JJJJ.                                                           |                                           |

Table 7.8 Applicable Regulatory Requirements of A.A.C. R18-2-1101.B.81 and 40 CFR 63 Subpart ZZZZ (New Emergency Engines) and Methods for Demonstrating Compliance

| Regulatory Citation for<br>Applicable Requirements | Description of Requirements                                                                                                                                                                                                                                                                                   | Methods Used to Demonstrate<br>Compliance       |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 40 CFR 63.6590(c)                                  | For a new stationary reciprocating internal combustion engine (RICE) located                                                                                                                                                                                                                                  | See individual applicable requirements for      |
| A.A.C. R18-2-1101.B.81                             | at an area source, meet the requirements of 40 CFR 63 Subpart ZZZZ by meeting the requirements of 40 CFR 60 Subpart IIII for compression ignition engines and 40 CFR 60 Subpart JJJJ for spark ignition engines (as applicable). No further requirements apply for such engines under 40 CFR 63 Subpart ZZZZ. | engines subject to NSPS Subparts IIII and JJJJ. |

## 8 INSIGNIFICANT AND TRIVIAL ACTIVITY INFORMATION

# 8.1 INSIGNIFICANT ACTIVITIES

The proposed insignificant activities associated with the proposed updated design of AOS1 are presented in Table 8.1. Pursuant to A.A.C. R18-2-304.F.8, insignificant activities shall be listed in a permit application, but the application need not provide emissions data, except as requested by ADEQ following submittal of the application. Therefore, any emissions from the equipment and activities presented in Table 8.1 are not considered in this application.

## 8.2 TRIVIAL ACTIVITIES

The proposed trivial activities associated with the proposed updated design of AOS1 are presented in Table 8.2. Although trivial activities can be omitted from permit applications, FMBI is identifying them in this application for ADEQ's concurrence and future reference purposes. Table 8.2 is not intended to be an exhaustive list of all the equipment and activities associated with the proposed updated design of AOS1 that meet the trivial activities classification.

**Table 8.1 Proposed Insignificant Activities** 

| Proposed Insignificant Activity                                                                                                                                                                           | Insignificant Activity Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Diesel fuels and fuel oil in storage tanks with capacity of 40,000 gallons or less                                                                                                                        | A.A.C. R18-2-101.68.a.i          |
| Lubricating oil, transformer oil, and used oil tanks                                                                                                                                                      | A.A.C. R18-2-101.68.a.i          |
| Gasoline storage tanks with capacity of 10,000 gallons or less                                                                                                                                            | A.A.C. R18-2-101.68.a.ii         |
| Storage and piping of natural gas, butane, propane, or liquified petroleum gas                                                                                                                            | A.A.C. R18-2-101.68.a.iii        |
| Housekeeping activities and associated products used for cleaning purposes, including collecting spilled and accumulated materials                                                                        | A.A.C. R18-2-101.68.d.i          |
| Noncommercial (in-house) experimental, analytical laboratory equipment which is bench scale in nature, including quality control/quality assurance laboratories and research and development laboratories | A.A.C. R18-2-101.68.e.i          |

**Table 8.2 Proposed Trivial Activities** 

| Proposed Insignificant Activity                                                                                                                                                                           | Insignificant Activity Reference |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Transfers from HPGR Product Bin to HPGR Product Recycle Feeder, HPGR Product Feeder 1, and HPGR Product Feeder 2                                                                                          | A.A.C. R18-2-101.146             |
| Ball Mill Ball Delivery System                                                                                                                                                                            | A.A.C. R18-2-101.146             |
| Cyclones                                                                                                                                                                                                  | A.A.C. R18-2-101.146             |
| Filter Presses                                                                                                                                                                                            | A.A.C. R18-2-101.146             |
| Nitrogen System                                                                                                                                                                                           | A.A.C. R18-2-101.146             |
| Thickeners and Clarifiers                                                                                                                                                                                 | A.A.C. R18-2-101.146             |
| Discharge of collected dust back to the process (minimized by wet suppression)                                                                                                                            | A.A.C. R18-2-101.146             |
| Material handling and processing of clean, washed ore                                                                                                                                                     | A.A.C. R18-2-101.146             |
| Material handling and processing of wet, saturated ore                                                                                                                                                    | A.A.C. R18-2-101.146             |
| Addition of the molybdenum collector to AG Mills 1/2 and Ball Mills 1/2                                                                                                                                   | A.A.C. R18-2-101.146             |
| Solid reagents transferred directly into liquid tanks                                                                                                                                                     | A.A.C. R18-2-101.146             |
| Liquid chemical reagent systems                                                                                                                                                                           | A.A.C. R18-2-101.146             |
| Manual cleanup around conveyor belts and chutes                                                                                                                                                           | A.A.C. R18-2-101.146             |
| Ammonium nitrate emulsion bins                                                                                                                                                                            | A.A.C. R18-2-101.146             |
| Electric heaters                                                                                                                                                                                          | A.A.C. R18-2-101.146             |
| Combustion emissions from propulsion of mobile sources                                                                                                                                                    | A.A.C. R18-2-101.146.a.i         |
| Process water filtration systems and demineralizers                                                                                                                                                       | A.A.C. R18-2-101.146.b.xv        |
| Electric Motors                                                                                                                                                                                           | A.A.C. R18-2-101.146.b.xxiv      |
| Plant and building maintenance and upkeep activities, including grounds-keeping, general repairs, cleaning, painting, welding, plumbing, re-tarring roofs, installing insulation, and paving parking lots | A.A.C. R18-2-101.146.c.i         |

**Table 8.2 Proposed Trivial Activities** 

| Proposed Insignificant Activity                                                                                                                          | Insignificant Activity Reference |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Repair or maintenance shop activities                                                                                                                    | A.A.C. R18-2-101.146.c.ii        |
| Janitorial services and consumer use of janitorial products                                                                                              | A.A.C. R18-2-101.146.c.iii       |
| Routine calibration and maintenance of laboratory equipment or other analytical instruments                                                              | A.A.C. R18-2-101.146.c.v         |
| Air conditioning and electric heaters                                                                                                                    | A.A.C. R18-2-101.146.d.i         |
| General office activities, such as paper shredding, copying, photographic activities, pencil sharpening and blueprinting, but not including incineration | A.A.C. R18-2-101.146.d.v         |
| Use of consumer products, including hazardous substances where the product is used at a source in the same manner as normal consumer use                 | A.A.C. R18-2-101.146.d.ix        |
| Storage tanks, vessels, and containers holding or storing liquid substances that will not emit any VOC or HAP                                            | A.A.C. R18-2-101.146.e.i         |
| Sewage Treatment Plants (at the primary crusher and concentrator/tailings areas)                                                                         | A.A.C. R18-2-101.146.e.iv        |
| Storage cabinets for flammable products                                                                                                                  | A.A.C. R18-2-101.146.e.v         |
| Individual sampling points, analyzers, and process instrumentation, whose operation may result in emissions but that are not regulated as emission units | A.A.C. R18-2-101.146.f.vii       |

July 2023

# 9 COMPLIANCE SCHEDULE

At the time of this application's submittal, FMBI is in compliance with all applicable requirements and therefore a compliance schedule is not required.

## 10 MINOR NSR APPLICABILITY DETERMINATION

## 10.1 GENERAL INFORMATION

According to A.A.C. R18-2-334.A.1, minor New Source Review (NSR) applies to:

- Construction of any new Class I or Class II source, including the construction of any source requiring a Class II permit under A.A.C. R18-2-302.01.C.4; or
- Any minor NSR modification to a Class I or Class II source.

#### A minor NSR modification is:

- 1. Any physical change in or change in the method of operation of an emission unit or a stationary source that either:
  - a. Increases the PTE of a regulated minor NSR pollutant by an amount greater than the permitting exemption thresholds; or
  - b. Results in emissions of a regulated minor NSR pollutant not previously emitted by such emission unit or stationary source in an amount greater than the permitting exemption thresholds.
- 2. Construction of one or more new emissions units that have a PTE of regulated minor NSR pollutants at an amount greater than the permitting exemption threshold.

The notice of final rulemaking promulgating the minor NSR program on page 1549 of Volume 18, Issue 27 of the Arizona Administrative Register states, "the use of emissions decreases to reduce the net emissions increase from a modification in order to avoid minor NSR applicability is not allowed, except in the case of the replacement of an existing emission unit with a new one." Consequently, FMBI understands that ADEQ's interpretation in determining applicability under these rules is that only the difference in PTE is counted when replacing an existing emission unit.

## 10.2 APPLICABILITY DETERMINATION

As described in Section 2.1, FMBI proposes to update the design of AOS1. This includes some increases and some decreases in the PTE of emission units associated with AOS1. Therefore, FMBI completed a two-step analysis. The first step evaluates if the changes in PTE from the entire scope of AOS1 are greater than the permitting exemption thresholds. The second step considers each emission unit in the proposed updated design of AOS1 as a replacement for the corresponding emission unit in the design of AOS1 in Class II Air Quality Permit #77414. Then, only the emission unit pairs with increases in PTE are totaled with the PTE of new emission units and compared to the permitting exemption thresholds.

The changes in PTE due to the updates to the design of AOS1 are presented in Tables 10.1 and 10.2 on a comparable emission unit basis. As shown in Tables 10.1 and 10.2, both the Step 1 and Step 2 analyses conclude that the total increases in PTE of regulated minor NSR pollutants are below the

permitting exemption thresholds. Consequently, the updates to the design of AOS1 will not be subject to minor NSR as a minor NSR modification for any regulated minor NSR pollutant.

# 10.3 CALCULATION METHODOLOGY

The methodology used to calculate the changes in PTE as shown in Tables 10.1 and 10.2 is presented in Appendix F (equivalent to the calculations presented in Section 5.1). The Excel spreadsheets used to make the calculations are reproduced in Appendix G. An electronic copy of the emission calculations will be provided via email with the SPR application.

Table 10.1 Change in PTE and Comparison to the Permitting Exemption Thresholds - Particulate Emissions

| Process         | Process/Emission Unit                                                 | Process         | Process/Emission Unit                                         | Non-Fugitive                  | Change in PTE (tpy) |                   |           |
|-----------------|-----------------------------------------------------------------------|-----------------|---------------------------------------------------------------|-------------------------------|---------------------|-------------------|-----------|
| Number          | Description - Design of AOS1 in<br>Class II Air Quality Permit #77414 | Number          | Description - Proposed Updated Design of AOS1                 | or Fugitive<br>Classification | PM <sub>10</sub>    | PM <sub>2.5</sub> | Pb        |
| Mining Op       | perations (AOS1)                                                      |                 |                                                               |                               |                     |                   |           |
| 026-3<br>(AOS1) | Drilling (AOS1)                                                       | 026-3<br>(AOS1) | Drilling (AOS1)                                               | Fugitive                      |                     |                   | 1.94E-04  |
| 026-2<br>(AOS1) | Blasting (AOS1)                                                       | 026-2<br>(AOS1) | Blasting (AOS1)                                               | Fugitive                      |                     |                   | 4.80E-03  |
| 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1)                               | 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1)                       | Fugitive                      |                     |                   | 2.01E-02  |
| 022-2<br>(AOS1) | Haul Truck Travel Outside the Pit (AOS1)                              | 022-2<br>(AOS1) | Haul Truck Travel Outside the Pit (AOS1)                      | Fugitive                      |                     |                   | 6.69E-03  |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                                           | 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                                   | Fugitive                      |                     |                   | 6.08E-02  |
| 023-1<br>(AOS1) | Dozer Operation (AOS1)                                                | 023-1<br>(AOS1) | Dozer Operation (AOS1)                                        | Fugitive                      |                     |                   | 1.09E-03  |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                                          | 023-2<br>(AOS1) | Road Grader Operation (AOS1)                                  | Fugitive                      |                     |                   | 3.86E-04  |
| 021-1<br>(AOS1) | Loading Mined Material into Haul<br>Trucks (AOS1)                     | 021-1<br>(AOS1) | Loading Mined Material into Haul<br>Trucks (AOS1)             | Fugitive                      |                     |                   | 6.86E-04  |
| 001-6<br>(AOS1) | Unloading Ore to Primary Crusher 1 (AOS1)                             | 001-6<br>(AOS1) | Unloading Ore to Primary Crusher 1<br>(AOS1)                  | Fugitive                      |                     |                   | 8.93E-05  |
| 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)                             | 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)                     | Fugitive                      | -                   |                   | -1.68E-06 |
| 045-3<br>(AOS1) | Unloading Ore to Leaching Areas (AOS1)                                | 045-3<br>(AOS1) | Unloading Ore to Leaching Areas (AOS1)                        | Fugitive                      |                     |                   | -1.66E-04 |
| 045-1<br>(AOS1) | Unloading Overburden/Low Grade<br>Ore to Storage Areas (AOS1)         | 045-1<br>(AOS1) | Unloading Overburden/Low Grade<br>Ore to Storage Areas (AOS1) | Fugitive                      |                     |                   | 7.65E-04  |

Table 10.1 Change in PTE and Comparison to the Permitting Exemption Thresholds - Particulate Emissions

| Process          | COCCC Drococc                                                         |                  | Process/Emission Unit                                              | Non-Fugitive                  | Change in PTE (tpy) |                   |           |  |
|------------------|-----------------------------------------------------------------------|------------------|--------------------------------------------------------------------|-------------------------------|---------------------|-------------------|-----------|--|
| Number           | Description - Design of AOS1 in<br>Class II Air Quality Permit #77414 | Number           | Description - Proposed Updated Design of AOS1                      | or Fugitive<br>Classification | PM <sub>10</sub>    | PM <sub>2.5</sub> | Pb        |  |
| Primary C        | rushing and Overland Conveying Op                                     | erations (to     | Bagdad Concentrator) (AOS1)                                        |                               |                     |                   |           |  |
| 001-16<br>(AOS1) | Dust Collector AE-001 (AOS1)                                          | 001-2<br>(AOS1)  | Overland Conveyor 3A (AOS1) to<br>Overland Conveyor 3 (AOS1)       | Non-Fugitive                  | -1.50               | -1.88             | -1.85E-05 |  |
| 001-17<br>(AOS1) | Dust Collector AE-014 (AOS1)                                          | 001-8<br>(AOS1)  | Overland Conveyor 3 (AOS1) to<br>Overland Conveyor 4 (AOS1)        | Non-Fugitive                  | -0.71               | -1.10             | -8.82E-06 |  |
| 001-18<br>(AOS1) | Dust Collector AE-015 (AOS1)                                          | 001-9<br>(AOS1)  | Overland Conveyor 4 (AOS1) to<br>Radial Stacker 5 (AOS1)           | Non-Fugitive                  | -0.71               | -1.10             | -8.82E-06 |  |
| 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to Coarse<br>Ore Stockpiles 1/4 (AOS1)        | 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to Coarse<br>Ore Stockpiles 1/4 (AOS1)     | Fugitive                      |                     |                   | 1.57E-04  |  |
|                  |                                                                       | 001-10<br>(AOS1) | Radial Stacker 5 (AOS1) to Free-<br>Standing Stacker 6 (AOS1)      | Fugitive                      |                     |                   | 1.03E-04  |  |
| 001-19<br>(AOS1) | Radial Stacker C-10 (AOS1) to<br>Coarse Ore Stockpile 5 (AOS1)        | 001-3<br>(AOS1)  | Free-Standing Stacker 6 (AOS1) to<br>Coarse Ore Stockpile 5 (AOS1) | Fugitive                      |                     |                   | -2.23E-05 |  |
| 027-1<br>(AOS1)  | Wind Erosion of Coarse Ore<br>Stockpiles 1/5 (AOS1)                   | 027-1<br>(AOS1)  | Wind Erosion of Coarse Ore<br>Stockpiles 1/5 (AOS1)                | Fugitive                      |                     |                   | -6.01E-06 |  |
| Primary C        | rushing and Overland Conveying Op                                     | erations (to     | Sycamore Concentrator) (AOS1)                                      |                               |                     |                   |           |  |
| 001-12<br>(AOS1) | Dust Collector AE-002 (AOS1)                                          | 001-12<br>(AOS1) | PC1 Dust Collector 1 (AOS1)                                        | Non-Fugitive                  | 0.08                | 0.08              | 9.97E-07  |  |
| 001-13<br>(AOS1) | Dust Collector AE-003 (AOS1)                                          | 001-13<br>(AOS1) | PC1 CCC1 Dust Collector 2 (AOS1)                                   | Non-Fugitive                  | -0.02               | -0.02             | -2.74E-07 |  |
| 001-14<br>(AOS1) | Dust Collector AE-016 (AOS1)                                          | 001-14<br>(AOS1) | PC1 CCC2 Dust Collector 3 (AOS1)                                   | Non-Fugitive                  | 0.27                | 0.27              | 3.34E-06  |  |
| 001-15<br>(AOS1) | Dust Collector AE-017 (AOS1)                                          | 001-15<br>(AOS1) | PC1 CCC3 Dust Collector 4 (AOS1)                                   | Non-Fugitive                  | 0.27                | 0.27              | 3.34E-06  |  |

Table 10.1 Change in PTE and Comparison to the Permitting Exemption Thresholds - Particulate Emissions

| Process          | Process/Emission Unit                                                 | Process          | Process/Emission Unit                                                                        | Non-Fugitive                  | Cha              | Change in PTE (tpy) |           |  |
|------------------|-----------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------|-------------------------------|------------------|---------------------|-----------|--|
| Number           | Description - Design of AOS1 in<br>Class II Air Quality Permit #77414 | Number           | Description - Proposed Updated<br>Design of AOS1                                             | or Fugitive<br>Classification | PM <sub>10</sub> | PM <sub>2.5</sub>   | Pb        |  |
| 001-20<br>(AOS1) | Radial Stacker C-10 (AOS1) to<br>Coarse Ore Stockpile 6               | 001-20<br>(AOS1) | PC1 Cross Country Conveyor 3<br>(AOS1) to Coarse Ore Stockpile 6<br>(AOS1)                   | Fugitive                      |                  |                     | 4.12E-04  |  |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore<br>Stockpile 6 (AOS1)                      | 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore<br>Stockpile 6 (AOS1)                                             | Fugitive                      |                  |                     | 6.01E-06  |  |
| Sycamore         | e Milling Operations (AOS1)                                           |                  |                                                                                              |                               |                  |                     |           |  |
| 002-7<br>(AOS1)  | Dust Collector AE-008 (AOS1)                                          | 002-7<br>(AOS1)  | Coarse Ore Reclaim Conveyor 1<br>Dust Collector 5 (AOS1)                                     | Non-Fugitive                  | -2.98            | -2.98               | -3.68E-05 |  |
| 002-8<br>(AOS1)  | Dust Collector AE-009 (AOS1)                                          | 002-8<br>(AOS1)  | Coarse Ore Reclaim Conveyor 2<br>Dust Collector 6 (AOS1)                                     | Non-Fugitive                  | 0.73             | 0.73                | 8.99E-06  |  |
| 002-9<br>(AOS1)  | Dust Collector AE-010 (AOS1)                                          | 002-9<br>(AOS1)  | HPGR Discharge Dust Collector 7<br>(AOS1)                                                    | Non-Fugitive                  | 0.03             | 0.03                | 4.17E-07  |  |
| 002-10<br>(AOS1) | Dust Collector AE-011 (AOS1)                                          | 002-10<br>(AOS1) | HPGR Discharge Conveyor Transfer<br>Dust Collector 8 (AOS1)                                  | Non-Fugitive                  | 1.16             | 1.16                | 1.43E-05  |  |
| 002-11<br>(AOS1) | Dust Collector AE-007 (AOS1)                                          | 002-11<br>(AOS1) | HPGR Product Bin Dust Collector 9 (AOS1)                                                     | Non-Fugitive                  | 0.99             | 0.99                | 1.22E-05  |  |
| 002-12<br>(AOS1) | Dust Collector AE-012 (AOS1)                                          | 002-12<br>(AOS1) | HPGR Product Transfer Dust<br>Collector 10 (AOS1)                                            | Non-Fugitive                  | -2.36            | -2.36               | -2.91E-05 |  |
| 002-13<br>(AOS1) | Dust Collector AE-013 (AOS1)                                          | 002-13<br>(AOS1) | HPGR Product Transfer Dust<br>Collector 11 (AOS1)                                            | Non-Fugitive                  | -0.89            | -0.89               | -1.10E-05 |  |
| Sycamore         | Concentrate Handling Operations (A                                    | OS1)             |                                                                                              |                               |                  |                     |           |  |
|                  |                                                                       | 006-11<br>(AOS1) | Copper Concentrate Filters 1/2<br>(AOS1) to Copper Concentrate Filter<br>Drop Storage (AOS1) | Fugitive                      |                  |                     | 4.31E-06  |  |

Table 10.1 Change in PTE and Comparison to the Permitting Exemption Thresholds - Particulate Emissions

| Process  | Process/Emission Unit                                                 | Process          | Process/Emission Unit                                                                                                    | Non-Fugitive                  | Cha                                | ange in PTE ( | tpy)     |
|----------|-----------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------|----------|
| Number   | Description - Design of AOS1 in<br>Class II Air Quality Permit #77414 | Number           | Description - Proposed Updated Design of AOS1                                                                            | or Fugitive<br>Classification | PM <sub>10</sub> PM <sub>2.5</sub> |               | Pb       |
|          |                                                                       | 006-12<br>(AOS1) | Copper Concentrate Filter Drop<br>Storage (AOS1) to Copper<br>Concentrate Loadout Storage<br>(AOS1) via Front-End Loader | Fugitive                      | ł                                  |               | 4.31E-06 |
|          |                                                                       | 006-13<br>(AOS1) | Copper Concentrate Loadout<br>Storage (AOS1) to Trucks via Front-<br>End Loader                                          | Fugitive                      |                                    |               | 4.31E-06 |
|          | -                                                                     | 027-8<br>(AOS1)  | Wind Erosion of Copper Concentrate<br>Filter Drop Storage (AOS1) and<br>Copper Concentrate Loadout<br>Storage (AOS1)     | Fugitive                      | ł                                  |               | 4.93E-04 |
|          |                                                                       | 052-2<br>(AOS1)  | Molybdenum Dryer Wet Scrubber<br>System (AOS1)                                                                           | Non-Fugitive                  | 0.28                               | 0.28          | 4.23E-05 |
|          |                                                                       | 052-3<br>(AOS1)  | Molybdenum Concentrate Dryer<br>(AOS1) to Dried Molybdenum<br>Concentrate Storage Bin (AOS1)                             | Non-Fugitive                  | 0.009                              | 0.001         | 1.41E-06 |
|          |                                                                       | 052-4<br>(AOS1)  | Dried Molybdenum Concentrate<br>Storage Bin (AOS1) to Molybdenum<br>Concentrate Bagging System<br>(AOS1)                 | Fugitive                      |                                    |               | 1.41E-06 |
| Sycamore | e Lime and Other Regent Operations (                                  | AOS1)            |                                                                                                                          |                               |                                    |               |          |
|          |                                                                       | 007-6<br>(AOS1)  | Transfer of Lime to the Sycamore Lime Silo (AOS1)                                                                        | Non-Fugitive                  | 0.11                               | 0.02          |          |
|          |                                                                       | 007-7<br>(AOS1)  | Sycamore Lime Slaker (AOS1)                                                                                              | Non-Fugitive                  | 0.06                               | 0.06          |          |
|          |                                                                       | 055-1<br>(AOS1)  | Transfer of Flocculant to Tailings<br>Flocculant Bag Breaker Bin (AOS1)                                                  | Non-Fugitive                  | 0.12                               | 0.02          |          |

Table 10.1 Change in PTE and Comparison to the Permitting Exemption Thresholds - Particulate Emissions

| Process  | Process/Emission Unit                                                 | Process          |                                                                         | Non-Fugitive                  | Change in PTE (tpy)                                             |                   |      |
|----------|-----------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------|-------------------|------|
| Number   | Description - Design of AOS1 in<br>Class II Air Quality Permit #77414 | Number           | Description - Proposed Updated Design of AOS1                           | or Fugitive<br>Classification | 0.008 0.00<br>0.009 0.00<br>0.09 0.00<br>0.05 0.00<br>0.06 0.00 | PM <sub>2.5</sub> | Pb   |
|          |                                                                       | 055-2<br>(AOS1)  | Transfer of Flocculant to Concentrate Flocculant Bag Breaker Bin (AOS1) | Non-Fugitive                  | 0.008                                                           | 0.001             |      |
| Sycamore | e Prill Handling Operations (AOS1)                                    |                  |                                                                         |                               |                                                                 |                   |      |
|          |                                                                       | 050-7<br>(AOS1)  | Delivery of Ammonium Nitrate Prill to<br>Prill Bin 6 (AOS1)             | Non-Fugitive                  | 0.09                                                            | 0.01              |      |
|          | +                                                                     | 050-8<br>(AOS1)  | Prill Bin 6 to ANFO Trucks for<br>Transfer to Drill Holes               | Non-Fugitive                  | 0.09                                                            | 0.01              |      |
| Sycamore | e Emergency ICE (AOS1)                                                |                  |                                                                         |                               |                                                                 |                   |      |
|          |                                                                       | 049-59<br>(AOS1) | Sycamore Diesel Emergency<br>Generator 1 (AOS1) (609 hp engine)         | Non-Fugitive                  | 0.05                                                            | 0.05              |      |
|          | +-                                                                    | 049-60<br>(AOS1) | Sycamore Diesel Emergency<br>Generator 2 (AOS1) (762 hp engine)         | Non-Fugitive                  | 0.06                                                            | 0.06              |      |
|          | -                                                                     | 049-61<br>(AOS1) | Sycamore Propane Emergency<br>Generator 1 (AOS1) (84.7 hp engine)       | Non-Fugitive                  | 0.004                                                           | 0.004             |      |
|          |                                                                       | 049-62<br>(AOS1) | Sycamore Propane Emergency<br>Generator 2 (AOS1) (84.7 hp engine)       | Non-Fugitive                  | 0.004                                                           | 0.004             |      |
|          | Step 1: Total Change in                                               | PTE for th       | e Entire Scope of AOS1 (tpy)                                            |                               | -4.77                                                           | -6.29             | 0.10 |
|          | Step 2: Sum of the Increases                                          | in PTE for       | Replacement Emission Units (tpy)                                        |                               | 4.41                                                            | 4.05              | 0.10 |
|          | Permitting Exemption Thresholds                                       | for Minor N      | ISR Modification Applicability Purposes                                 |                               | 7.5                                                             | 5                 | 0.30 |

Table 10.2Change in PTE and Comparison to the Permitting Exemption Thresholds - Gaseous Emissions

| Process  | Process/Emission Unit Description                              | Process          | Process/Emission Unit Description                                                                                                   | Non-Fugitive                  | ,     | Change in       | PTE (tpy)       |      |
|----------|----------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-----------------|-----------------|------|
| Number   | - Design of AOS1 in Class II Air<br>Quality Permit #77414      | Number           | - Proposed Updated Design of AOS1                                                                                                   | or Fugitive<br>Classification | со    | NO <sub>X</sub> | SO <sub>2</sub> | voc  |
| Sycamore | Sycamore Concentrate Handling Operations (AOS1)                |                  |                                                                                                                                     |                               |       |                 |                 |      |
|          |                                                                | 052-2<br>(AOS1)  | Molybdenum Dryer Wet Scrubber<br>System (AOS1)                                                                                      | Non-Fugitive                  |       |                 |                 | 8.02 |
| Sycamore | e Lime and Other Regent Operations (A                          | (OS1)            |                                                                                                                                     |                               |       |                 |                 |      |
|          |                                                                | 053-2<br>(AOS1)  | Xanthate Mix Tank (AOS1), Xanthate<br>Holding Tank (AOS1), Test Reagent<br>Mix Tank (AOS1), and Test Reagent<br>Holding Tank (AOS1) | Non-Fugitive                  |       |                 |                 | 1.31 |
| Sycamore | e Emergency ICE (AOS1)T                                        |                  |                                                                                                                                     |                               |       |                 |                 |      |
|          |                                                                | 049-59<br>(AOS1) | Sycamore Diesel Emergency<br>Generator 1 (AOS1) (609 hp engine)                                                                     | Non-Fugitive                  | 0.88  | 0.93            | 0.002           | 0.07 |
|          |                                                                | 049-60<br>(AOS1) | Sycamore Diesel Emergency<br>Generator 2 (AOS1) (762 hp engine)                                                                     | Non-Fugitive                  | 1.10  | 1.88            | 0.002           | 0.13 |
|          |                                                                | 049-61<br>(AOS1) | Sycamore Propane Emergency<br>Generator 1 (AOS1) (84.7 hp engine)                                                                   | Non-Fugitive                  | 4.19  | 0.29            | 0.003           | 0.06 |
|          |                                                                | 049-62<br>(AOS1) | Sycamore Propane Emergency<br>Generator 2 (AOS1) (84.7 hp engine)                                                                   | Non-Fugitive                  | 4.19  | 0.29            | 0.003           | 0.06 |
|          | Step 1: Total Change in PTE for the Entire Scope of AOS1 (tpy) |                  |                                                                                                                                     |                               |       | 3.38            | 0.009           | 9.65 |
|          | Step 2: Sum of the Increases                                   | in PTE for       | Replacement Emission Units (tpy)                                                                                                    |                               | 10.35 | 3.38            | 0.009           | 9.65 |
|          | Permitting Exemption Thresholds                                | s for Minor N    | ISR Modification Applicability Purposes                                                                                             |                               | 50    | 20              | 20              | 20   |

# 11 IDENTIFICATION OF CONFIDENTIAL INFORMATION

FMBI does not claim confidentiality of any of the information presented in this application. All information can be made available to the public.

# APPENDIX A STANDARD CLASS II PERMIT APPLICATION FORM

## ARIZONA DEPARTMENT OF ENVIRONMENTAL QUALITY

## **Air Quality Division**

1110 West Washington • Phoenix, AZ 85007 • Phone: (602) 771-2338

## STANDARD CLASS II PERMIT APPLICATION FORM

(As required by A.R.S. § 49-426, and Chapter 2, Article 3, Arizona Administrative Code)

| 1. | Permit to be issued to (Business license na                                                                                                                                                                         | •                                                                                                                                                                                                                                        | receive permit):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|    | Freeport-McMoRan Bagdad Inc.                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 2. | Mailing Address: P.O. Box 245                                                                                                                                                                                       |                                                                                                                                                                                                                                          | 710.00004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                             |
|    | City: Bagdad                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 3. | Name (or names) of Responsible Official:                                                                                                                                                                            |                                                                                                                                                                                                                                          | The state of the s |                               |
|    | Phone: <u>928-633-3446</u>                                                                                                                                                                                          | Fax: N/A                                                                                                                                                                                                                                 | Email: jmonteit@fmi.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| 4. | Facility Manager/Contact Person and Title                                                                                                                                                                           | : Marcus Middleton, Mana                                                                                                                                                                                                                 | ager Environmental Affairs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
|    | Phone: 928-633-3263                                                                                                                                                                                                 | Fax: N/A                                                                                                                                                                                                                                 | Email: mmiddlet@fmi.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| 5. | Facility Name: Freeport-McMoRan Bag                                                                                                                                                                                 | idad Inc.                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|    | Facility Location/Address (Current/Propos                                                                                                                                                                           |                                                                                                                                                                                                                                          | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
|    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                          | ZIP: 86321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |
|    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|    | Latitude/Longitude, Elevation: 34° 35' 23                                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 6  | General Nature of Business: Mining and                                                                                                                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 6. |                                                                                                                                                                                                                     | processing or copper ore.                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 7. | Type of Organization:                                                                                                                                                                                               |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|    | ■ Corporation □ Individual Owner □ Other □                                                                                                                                                                          | 200                                                                                                                                                                                                                                      | □ Government Entity □ LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |
| 8. | Permit Application Basis:                                                                                                                                                                                           | _                                                                                                                                                                                                                                        | ☐ Renewal of Existing Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |
|    | For renewal or modification, include existi                                                                                                                                                                         |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|    | Date of Commencement of Construction of                                                                                                                                                                             | - 1                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|    | Primary Standard Industrial Classification                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 9. | I certify that I have knowledge of the facts<br>my knowledge and belief, and that all informated<br>as public record. I also attest that I am in comply with such requirements and any function of compliance to AD | s herein set forth, that the sar<br>mation not identified by me a<br>compliance with the applicable<br>ature requirements that become<br>EQ no less than annually and<br>the construction, modification<br>apter 2 and any permit issues | me are true, accurate and complete to the best confidential in nature shall be treated by AI e requirements of the Permit and will continue effective during the life of the Permit. If more frequently if specified by ADEQ. I furn, or operation of the source in accordance of thereof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DEQ<br>ue to<br>will<br>rther |
|    | Date: 7/18/23                                                                                                                                                                                                       | Telephone Number:                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             |
|    |                                                                                                                                                                                                                     | reseptione (Antilog):                                                                                                                                                                                                                    | - 52U-UJJ-J-4U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |

# APPENDIX B EQUIPMENT LIST

| Type of Equipment              | Maximum Rated<br>Capacity                                                          | Make               | Model         | Serial Number | Date of Manufacture | Equipment ID<br>Number |  |
|--------------------------------|------------------------------------------------------------------------------------|--------------------|---------------|---------------|---------------------|------------------------|--|
| AOS1: Two Concentrate          | AOS1: Two Concentrator Operations                                                  |                    |               |               |                     |                        |  |
| Primary Crushing and Ov        | Primary Crushing and Overland Conveying Operations (to Bagdad Concentrator) (AOS1) |                    |               |               |                     |                        |  |
| Rock Breaker (AOS1)            | N/A                                                                                | NA                 | NA            | NA            | NA                  | RB                     |  |
| Primary Crusher 2<br>(AOS1)    | 7,000 tph                                                                          | Metso              | 60x89, MK-III | TBD           | 2019                | PC2                    |  |
| Dust Collector C51<br>(AOS1)   | 15,000 acfm                                                                        | FARR               | GS 36/30      | NA            | 2013                | C51                    |  |
| PC2 Surge Bin (AOS1)           | 640 tons                                                                           | Designed by M3     | NA            | NA            | 2005                | PC2SB                  |  |
| PC2 Apron Feeder<br>(AOS1)     | 6,700 tph                                                                          | Metso              | 84"           | NA            | 2005                | PC2AF                  |  |
| PC2 Dribble Conveyor<br>(AOS1) | N/A                                                                                | Turner Engineering | 60"           | NA            | 2005                | PC2DC                  |  |
| Overland Conveyor 3A<br>(AOS1) | 7,600 tph                                                                          | NA                 | 60"           | NA            | 2005                | OC3A                   |  |
| Overland Conveyor 3<br>(AOS1)  | 7,600 tph                                                                          | NA                 | 54"           | NA            | 1975                | OC3                    |  |
| Overland Conveyor 4<br>(AOS1)  | 7,600 tph                                                                          | NA                 | 54"           | NA            | 1975                | OC4                    |  |
| Radial Stacker 5<br>(AOS1)     | 7,600 tph                                                                          | NA                 | 60"           | NA            | 1975                | RST5                   |  |
| Free-Standing Stacker 6 (AOS1) | 7,600 tph                                                                          | NA                 | 60"           | NA            | 1990                | FSS6                   |  |

| Equi | ipment | List |
|------|--------|------|
| Julv | 2023   |      |

| Type of Equipment                      | Maximum Rated<br>Capacity                                                            | Make | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |  |  |
|----------------------------------------|--------------------------------------------------------------------------------------|------|-------|---------------|---------------------|------------------------|--|--|
| Primary Crushing and Ov                | Primary Crushing and Overland Conveying Operations (to Sycamore Concentrator) (AOS1) |      |       |               |                     |                        |  |  |
| PC1 Rock Breaker<br>(AOS1)             | N/A                                                                                  | TBD  | TBD   | TBD           | TBD                 | 2110-RKB-0021          |  |  |
| Primary Crusher 1<br>(AOS1)            | 8,000 tph                                                                            | TBD  | TBD   | TBD           | TBD                 | 2110-CRG-0021          |  |  |
| PC1 Dust Collector 1<br>(AOS1)         | 14,500 acfm                                                                          | FARR | TBD   | TBD           | TBD                 | 2140-DCD-0021          |  |  |
| PC1 Surge Pocket<br>(AOS1)             | 900 tons                                                                             | TBD  | TBD   | TBD           | TBD                 | 2110-BIN-0021          |  |  |
| PC1 Discharge Apron<br>Feeder (AOS1)   | 8,000 tph                                                                            | TBD  | TBD   | TBD           | TBD                 | 2110-FDA-0021          |  |  |
| PC1 Discharge<br>Conveyor (AOS1)       | 8,000 tph                                                                            | TBD  | TBD   | TBD           | TBD                 | 2140-CVB-0021          |  |  |
| PC1 Cross Country<br>Conveyor 1 (AOS1) | 8,000 tph                                                                            | TBD  | TBD   | TBD           | TBD                 | 2140-CVB-0022          |  |  |
| PC1 CCC1 Dust<br>Collector 2 (AOS1)    | 16,700 acfm                                                                          | FARR | TBD   | TBD           | TBD                 | 2140-DCD-0022          |  |  |
| PC1 Cross Country<br>Conveyor 2 (AOS1) | 8,000 tph                                                                            | TBD  | TBD   | TBD           | TBD                 | 2140-CVB-0023          |  |  |
| PC1 CCC2 Dust<br>Collector 3 (AOS1)    | 16,700 acfm                                                                          | FARR | TBD   | TBD           | TBD                 | 2140-DCD-0023          |  |  |
| PC1 Cross Country<br>Conveyor 3 (AOS1) | 8,000 tph                                                                            | TBD  | TBD   | TBD           | TBD                 | 2140-CVB-0024          |  |  |
| PC1 CCC3 Dust<br>Collector 4 (AOS1)    | 16,700 acfm                                                                          | FARR | TBD   | TBD           | TBD                 | 2140-DCD-0024          |  |  |

## **Equipment List**

July 2023

| Type of Equipment                                           | Maximum Rated<br>Capacity          | Make | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |  |  |
|-------------------------------------------------------------|------------------------------------|------|-------|---------------|---------------------|------------------------|--|--|
| Sycamore Milling Opera                                      | Sycamore Milling Operations (AOS1) |      |       |               |                     |                        |  |  |
| Coarse Ore Reclaim<br>Feeder 1 (AOS1)                       | 2,185 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-FDA-0101          |  |  |
| Coarse Ore Reclaim<br>Feeder 2 (AOS1)                       | 2,185 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-FDA-0102          |  |  |
| Coarse Ore Reclaim<br>Feeder 3 (AOS1)                       | 2,185 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-FDA-0103          |  |  |
| Coarse Ore Reclaim<br>Conveyor 1 (AOS1)                     | 4,954 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-CVB-0101          |  |  |
| Coarse Ore Reclaim<br>Conveyor 1 Dust<br>Collector 5 (AOS1) | 22,000 acfm                        | FARR | TBD   | TBD           | TBD                 | 2210-DCD-0101          |  |  |
| Coarse Ore Reclaim<br>Feeder 4 (AOS1)                       | 2,185 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-FDA-0201          |  |  |
| Coarse Ore Reclaim<br>Feeder 5 (AOS1)                       | 2,185 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-FDA-0202          |  |  |
| Coarse Ore Reclaim<br>Feeder 6 (AOS1)                       | 2,185 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-FDA-0203          |  |  |
| Coarse Ore Reclaim<br>Conveyor 2 (AOS1)                     | 4,954 tph                          | TBD  | TBD   | TBD           | TBD                 | 2210-CVB-0201          |  |  |
| Coarse Ore Reclaim<br>Conveyor 2 Dust<br>Collector 6 (AOS1) | 22,000 acfm                        | FARR | TBD   | TBD           | TBD                 | 2210-DCD-0201          |  |  |
| AG Mill 1 (AOS1)                                            | 4,954 tph                          | TBD  | TBD   | TBD           | TBD                 | 2310-MLA-0101          |  |  |
| AG Mill 1 Discharge<br>Screen 1 (AOS1)                      | 2,477 tph                          | TBD  | TBD   | TBD           | TBD                 | 2310-SCN-0101          |  |  |

# Equipment List

July 2023

| Type of Equipment                                 | Maximum Rated<br>Capacity | Make | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |
|---------------------------------------------------|---------------------------|------|-------|---------------|---------------------|------------------------|
| AG Mill 1 Discharge<br>Screen 2 (AOS1)            | 2,477 tph                 | TBD  | TBD   | TBD           | TBD                 | 2310-SCN-0102          |
| AG Mill Rotatable<br>Discharge Screen 1<br>(AOS1) | 2,477 tph                 | TBD  | TBD   | TBD           | TBD                 | 2310-SCN-0103          |
| Ball Mill 1 (AOS1)                                | 4,376 tph                 | TBD  | TBD   | TBD           | TBD                 | 2340-MLB-0111          |
| AG Mill 2 (AOS1)                                  | 4,954 tph                 | TBD  | TBD   | TBD           | TBD                 | 2310-MLA-0201          |
| AG Mill 2 Discharge<br>Screen 1 (AOS1)            | 2,477 tph                 | TBD  | TBD   | TBD           | TBD                 | 2310-SCN-0201          |
| AG Mill 2 Discharge<br>Screen 2 (AOS1)            | 2,477 tph                 | TBD  | TBD   | TBD           | TBD                 | 2310-SCN-0202          |
| AG Mill Rotatable<br>Discharge Screen 2<br>(AOS1) | 2,477 tph                 | TBD  | TBD   | TBD           | TBD                 | 2310-SCN-0203          |
| Ball Mill 2 (AOS1)                                | 4,376 tph                 | TBD  | TBD   | TBD           | TBD                 | 2340-MLB-0211          |
| Pebble Conveyor<br>(AOS1)                         | 4,080 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CVB-0121          |
| HPGR Feed Bin Feed<br>Conveyor (AOS1)             | 4,080 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CVB-0122          |
| HPGR Feed Diverter (AOS1)                         | N/A                       | TBD  | TBD   | TBD           | TBD                 | 2330-DVT-0123          |
| HPGR Feed Bin<br>(AOS1)                           | 11,400 ft3                | TBD  | TBD   | TBD           | TBD                 | 2330-BIN-0130          |
| HPGR Belt Feeder<br>(AOS1)                        | 4,080 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-FDB-0132          |

## Equipment List

July 2023

| Type of Equipment                                                 | Maximum Rated<br>Capacity | Make | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |
|-------------------------------------------------------------------|---------------------------|------|-------|---------------|---------------------|------------------------|
| HPGR Feed Conveyor<br>(AOS1)                                      | 5,626 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CVB-0134          |
| High Pressure<br>Grinding Roll (AOS1)                             | 5,626 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CRH-0140          |
| HPGR Discharge Dust<br>Collector 7 (AOS1)                         | 23,000 acfm               | FARR | TBD   | TBD           | TBD                 | 2330-DCD-0141          |
| HPGR Discharge<br>Conveyor 1 (AOS1)                               | 5,626 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CVB-0141          |
| HPGR Discharge<br>Conveyor 2 (AOS1)                               | 5,626 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CVB-0142          |
| HPGR Discharge<br>Conveyor Transfer<br>Dust Collector 8<br>(AOS1) | 27,000 acfm               | FARR | TBD   | TBD           | TBD                 | 2330-DCD-0142          |
| HPGR Product Bin<br>(AOS1)                                        | 20,700 ft3                | TBD  | TBD   | TBD           | TBD                 | 2330-BIN-0150          |
| HPGR Product Bin<br>Dust Collector 9<br>(AOS1)                    | 25,000 acfm               | FARR | TBD   | TBD           | TBD                 | 2330-DCD-0150          |
| HPGR Product<br>Recycle Feeder<br>(AOS1)                          | 1,546 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-FDB-0152          |
| HPGR Product Feeder<br>1 (AOS1)                                   | 2,040 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-FDB-0163          |
| HPGR Product Feeder 2 (AOS1)                                      | 2,040 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-FDB-0263          |
| HPGR Product Return<br>Conveyor 1 (AOS1)                          | 2,040 tph                 | TBD  | TBD   | TBD           | TBD                 | 2330-CVB-0163          |

| Type of Equipment                                                | Maximum Rated<br>Capacity | Make        | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |
|------------------------------------------------------------------|---------------------------|-------------|-------|---------------|---------------------|------------------------|
| HPGR Product<br>Transfer Dust Collector<br>10 (AOS1)             | 10,000 acfm               | FARR        | TBD   | TBD           | TBD                 | 2330-DCD-0163          |
| HPGR Product Return<br>Conveyor 2 (AOS1)                         | 2,040 tph                 | TBD         | TBD   | TBD           | TBD                 | 2330-CVB-0263          |
| HPGR Product<br>Transfer Dust Collector<br>11 (AOS1)             | 10,000 acfm               | FARR        | TBD   | TBD           | TBD                 | 2330-DCD-0263          |
| Sycamore Bulk and Moly                                           | bdenum Flotation Operati  | ions (AOS1) |       |               |                     |                        |
| Sycamore Bulk<br>Flotation Equipment<br>(AOS1)                   | 59.1 tph total conc.      | TBD         | TBD   | TBD           | TBD                 | S-FLO-B                |
| Sycamore Regrind Mill<br>1 (AOS1)                                | 250 tph                   | TBD         | TBD   | TBD           | TBD                 | 2420-MLV-0303          |
| Sycamore Regrind Mill 2 (AOS1)                                   | 250 tph                   | TBD         | TBD   | TBD           | TBD                 | 2420-MLV-0304          |
| Sycamore<br>Molybdenum Flotation<br>Equipment (AOS1)             | 59.1 tph total conc.      | NA          | NA    | NA            | varies              | S-FLO-M                |
| Sycamore Concentrate F                                           | Handling Operations (AOS  | 1)          |       |               |                     |                        |
| Copper Filter Feed<br>Tank Trash Screen<br>(AOS1)                | 57 tph                    | TBD         | TBD   | TBD           | TBD                 | 2630-SCN-0410          |
| Molybdenum<br>Thickener Trash<br>Screen (AOS1)                   | N/A                       | TBD         | TBD   | TBD           | TBD                 | 2520-SCN-0517          |
| Molybdenum<br>Concentrate Filter<br>Discharge Hopper 1<br>(AOS1) | N/A                       | TBD         | TBD   | TBD           | TBD                 | 2520-HPR-0576          |

| Type of Equipment                                                | Maximum Rated<br>Capacity | Make      | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |
|------------------------------------------------------------------|---------------------------|-----------|-------|---------------|---------------------|------------------------|
| Molybdenum<br>Concentrate Filter<br>Discharge Hopper 2<br>(AOS1) | N/A                       | TBD       | TBD   | TBD           | TBD                 | 2520-HPR-0577          |
| Molybdenum<br>Concentrate Dryer<br>Screw Feeder (AOS1)           | 2.1 tph                   | TBD       | TBD   | TBD           | TBD                 | 2520-CVS-0576          |
| Molybdenum<br>Concentrate Dryer<br>(AOS1)                        | 2.1 tph                   | Holoflite | TBD   | TBD           | TBD                 | 2520-DRY-0576          |
| Molybdenum Dryer<br>Wet Scrubber System<br>(AOS1)                | 337 acfm                  | TBD       | TBD   | TBD           | TBD                 | 2520-SCU-0576          |
| Dried Molybdenum<br>Concentrate Storage<br>Bin (AOS1)            | 2.6 tons                  | TBD       | TBD   | TBD           | TBD                 | 2520-BIN-0576          |
| Molybdenum<br>Concentrate Bagging<br>System (AOS1)               | 2.1 tph                   | TBD       | TBD   | TBD           | TBD                 | 2520-SYS-0576          |
| Sycamore Lime and Othe                                           | er Regent Operations (AC  | S1)       |       |               |                     |                        |
| Sycamore Lime Silo (AOS1)                                        | 617 tons                  | TBD       | TBD   | TBD           | TBD                 | 2360-SLO-0140          |
| Sycamore Lime Silo<br>Baghouse (AOS1)                            | 590 ft3                   | TBD       | TBD   | TBD           | TBD                 | 2360-BGH-0141          |
| Sycamore Lime Screw<br>Feeder (AOS1)                             | 19.5 tph                  | TBD       | TBD   | TBD           | TBD                 | 2360-FDR-0140          |
| Sycamore Lime Slaker<br>(AOS1)                                   | 11.36 tph                 | TBD       | TBD   | TBD           | TBD                 | 2360-MLV-0140          |
| Sycamore Lime<br>System Scrubber<br>(AOS1)                       | 4,400 scfm                | TBD       | TBD   | TBD           | TBD                 | 2360-SCU-0140          |

| Type of Equipment                                   | Maximum Rated<br>Capacity | Make | Model | Serial Number | Date of Manufacture | Equipment ID<br>Number |
|-----------------------------------------------------|---------------------------|------|-------|---------------|---------------------|------------------------|
| Tailings Flocculant<br>Bag Breaker Bin<br>(AOS1)    | 2.0 tons                  | TBD  | TBD   | TBD           | TBD                 | 2720-BIN-0720          |
| Tailings Flocculant<br>Screw Feeder (AOS1)          | 0.83 tph                  | TBD  | TBD   | TBD           | TBD                 | 2720-FDR-0720          |
| Concentrate Flocculant<br>Bag Breaker Bin<br>(AOS1) | 1.0 tons                  | TBD  | TBD   | TBD           | TBD                 | 2510-BIN-0580          |
| Concentrate Flocculant<br>Screw Feeder (AOS1)       | 0.06 tph                  | TBD  | TBD   | TBD           | TBD                 | 2510-FDR-0580          |
| Xanthate Mix Tank<br>(AOS1)                         | 1,575 ft3                 | TBD  | TBD   | TBD           | TBD                 | 2440-TNK-0150          |
| Xanthate Holding Tank<br>(AOS1)                     | 2,040 ft3                 | TBD  | TBD   | TBD           | TBD                 | 2440-TNK-0152          |
| Test Reagent Mix<br>Tank (AOS1)                     | 1,575 ft3                 | TBD  | TBD   | TBD           | TBD                 | 2440-TNK-0160          |
| Test Reagent Holding<br>Tank (AOS1)                 | 2,040 ft3                 | TBD  | TBD   | TBD           | TBD                 | 2440-TNK-0162          |
| NaHS Storage Tank<br>(AOS1)                         | 7,540 ft3                 | TBD  | TBD   | TBD           | TBD                 | 2520-TNK-0591          |
| NaHS Distribution<br>Tank (AOS1)                    | 700 ft3                   | TBD  | TBD   | TBD           | TBD                 | 2520-TNK-0592          |
| Sycamore NaHS<br>System Scrubber<br>(AOS1)          | 735 acfm                  | TBD  | TBD   | TBD           | TBD                 | 2520-SCU-0591          |
| Sycamore Prill Handling                             | Operations (AOS1)         |      |       |               |                     |                        |
| Prill Bin 6 (AOS1)                                  | 100 tons                  | NA   | NA    | NA            | TBD                 | PB6                    |

| Type of Equipment                                   | Maximum Rated<br>Capacity | Make        | Model      | Serial Number | Date of Manufacture | Equipment ID<br>Number |
|-----------------------------------------------------|---------------------------|-------------|------------|---------------|---------------------|------------------------|
| Prill Bin Vent 6 (no<br>filter) (AOS1)              | NA                        | NA          | NA         | NA            | TBD                 | PBV06                  |
| Sycamore Emergency IC                               | CE (AOS1)                 |             |            |               |                     |                        |
| Sycamore Diesel<br>Emergency Generator<br>1 (AOS1)  | 609 hp engine             | Caterpillar | C13        | TBD           | TBD                 | 2440-GEN-0101          |
| Sycamore Diesel<br>Emergency Generator<br>2 (AOS1)  | 762 hp engine             | Caterpillar | C15        | TBD           | TBD                 | 2500-GEN-0501          |
| Sycamore Propane<br>Emergency Generator<br>1 (AOS1) | 84.70 hp engine           | Cummins     | QSJ5.9G-G1 | TBD           | 2023                | 3650-GEN-0801          |
| Sycamore Propane<br>Emergency Generator<br>2 (AOS1) | 84.70 hp engine           | Cummins     | QSJ5.9G-G1 | TBD           | 2023                | 3650-GEN-0802          |

<sup>\*</sup> This table includes the equipment subject to permitting and associated with the updated design of AOS1 that is proposed to be added to Class II Air Quality Permit #77414.

# APPENDIX C EMISSION SOURCE FORM

|                  |                                   |                         |           |          |             | ONLY        |                  |
|------------------|-----------------------------------|-------------------------|-----------|----------|-------------|-------------|------------------|
|                  | Emission Point                    | Regulated Air           | PT        | Ē ª      | PTE AFTER M | ODIFICATION | CHANGE IN<br>PTE |
| Number           | Name (Current / Proposed)         | Pollutant Name          | lb/hr     | tons/yr  | lb/hr       | tons/yr     | tons/yr          |
| Mining Operation | ns (AOS1)                         |                         |           |          |             |             |                  |
|                  |                                   | PM                      | 260.00    | 58.50    | 637.31      | 69.04       | 10.54            |
|                  |                                   | PM <sub>10</sub>        | 156.00    | 35.10    | 382.39      | 41.43       | 6.33             |
| 026-3 (AOS1)     | Drilling (AOS1) / Drilling (AOS1) | PM <sub>2.5</sub>       | 28.89     | 6.50     | 70.81       | 7.67        | 1.17             |
|                  |                                   | Lead                    | 3.30E-03  | 7.44E-04 | 8.65E-03    | 9.37E-04    | 1.94E-04         |
|                  |                                   | Total HAPs <sup>b</sup> | 5.33E-02  | 1.20E-02 | 1.37E-01    | 1.48E-02    | 2.86E-03         |
|                  |                                   | PM                      | 1,252.20  | 119.12   | 4,919.42    | 486.50      | 367.39           |
|                  |                                   | PM <sub>10</sub>        | 651.14    | 61.94    | 2,558.10    | 252.98      | 191.04           |
|                  |                                   | PM <sub>2.5</sub>       | 37.57     | 3.57     | 147.58      | 14.60       | 11.02            |
|                  |                                   | со                      | 4,064.40  | 914.49   | 15,319.65   | 1,659.63    | 745.14           |
|                  |                                   | NOx                     | 180.00    | 40.50    | 678.46      | 73.50       | 33.00            |
| 026.2 (AOS1)     |                                   | SO <sub>2</sub>         | 1.23      | 0.28     | 4.64        | 0.50        | 0.23             |
| 026-2 (AOS1)     | Blasting (AOS1) / Blasting (AOS1) | CO <sub>2</sub>         | 38,066.47 | 8,564.96 | 143,484.81  | 15,544.19   | 6,979.23         |
|                  |                                   | CH <sub>4</sub>         | 1.49      | 0.33     | 5.60        | 0.61        | 0.27             |
|                  |                                   | N <sub>2</sub> O        | 0.29      | 0.07     | 1.11        | 0.12        | 0.05             |
|                  |                                   | CO <sub>2</sub> e       | 38,191.09 | 8,593.00 | 143,954.54  | 15,595.07   | 7,002.08         |
|                  |                                   | Lead                    | 1.59E-02  | 1.79E-03 | 6.58E-02    | 6.59E-03    | 4.80E-03         |
|                  |                                   | Total HAPs <sup>b</sup> | 3.44E-01  | 4.86E-02 | 1.38E+00    | 1.40E-01    | 9.19E-02         |

|              |                                                                                        |                         |          |          |             | UNLY                                    |               |
|--------------|----------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|-----------------------------------------|---------------|
|              | Emission Point                                                                         | Regulated Air           | РТ       | E a      | PTE AFTER N | IODIFICATION                            | CHANGE IN PTE |
| Number       | Name (Current / Proposed)                                                              | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                 | tons/yr       |
|              |                                                                                        | PM                      | 1,014.96 | 2,492.53 | 4,702.74    | 5,559.65                                | 3,067.13      |
|              |                                                                                        | PM <sub>10</sub>        | 278.95   | 685.04   | 1,292.50    | 1,528.01                                | 842.97        |
| 022-1 (AOS1) | Haul Truck Travel Inside the Pit (AOS1) / Haul<br>Truck Travel Inside the Pit (AOS1)   | PM <sub>2.5</sub>       | 27.90    | 68.50    | 129.25      | 152.80                                  | 84.30         |
|              |                                                                                        | Lead                    | 5.91E-03 | 1.45E-02 | 2.93E-02    | 3.46E-02                                | 2.01E-02      |
|              |                                                                                        | Total HAPs <sup>b</sup> | 9.53E-02 | 2.34E-01 | 4.63E-01    | 5.48E-01                                | 3.14E-01      |
|              | Haul Truck Travel Outside the Pit (AOS1) / Haul<br>Truck Travel Outside the Pit (AOS1) | PM                      | 338.32   | 830.84   | 1,567.58    | 1,853.22                                | 1,022.38      |
|              |                                                                                        | PM <sub>10</sub>        | 92.98    | 228.35   | 430.83      | 509.34                                  | 280.99        |
| 022-2 (AOS1) |                                                                                        | PM <sub>2.5</sub>       | 9.30     | 22.83    | 43.08       | 50.93                                   | 28.10         |
|              |                                                                                        | Lead                    | 1.97E-03 | 4.84E-03 | 9.75E-03    | 1.15E-02                                | 6.69E-03      |
|              |                                                                                        | Total HAPs <sup>b</sup> | 3.18E-02 | 7.80E-02 | 1.54E-01    | 509.34<br>50.93<br>1.15E-02<br>1.83E-01 | 1.05E-01      |
|              |                                                                                        | PM                      | 1,044.33 | 1,338.92 | 4,595.56    | 11,026.21                               | 9,687.29      |
|              |                                                                                        | PM <sub>10</sub>        | 287.02   | 367.99   | 1,263.04    | 3,030.43                                | 2,662.45      |
| 023-3 (AOS1) | Other Vehicle Travel (AOS1) / Other Vehicle<br>Travel (AOS1)                           | PM <sub>2.5</sub>       | 28.70    | 36.80    | 126.30      | 303.04                                  | 266.24        |
|              |                                                                                        | Lead                    | 6.08E-03 | 7.80E-03 | 2.86E-02    | 6.86E-02                                | 6.08E-02      |
|              |                                                                                        | Total HAPs <sup>b</sup> | 9.80E-02 | 1.26E-01 | 4.53E-01    | 1.09E+00                                | 9.61E-01      |

|              |                                                                                                 |                         |          |          |             | ONLY                                                                        |               |
|--------------|-------------------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|-----------------------------------------------------------------------------|---------------|
|              | Emission Point                                                                                  | Regulated Air           | PT       | E ª      | PTE AFTER M | ODIFICATION                                                                 | CHANGE IN PTE |
| Number       | Name (Current / Proposed)                                                                       | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                                                     | tons/yr       |
|              |                                                                                                 | РМ                      | 141.54   | 345.20   | 194.61      | 589.25                                                                      | 244.04        |
|              |                                                                                                 | PM <sub>10</sub>        | 25.69    | 62.66    | 35.33       | 106.96                                                                      | 44.30         |
| 023-1 (AOS1) | Dozer Operation (AOS1) / Dozer Operation (AOS1)                                                 | PM <sub>2.5</sub>       | 14.86    | 36.25    | 20.43       | 61.87                                                                       | 25.62         |
|              |                                                                                                 | Lead                    | 5.44E-04 | 1.33E-03 | 7.99E-04    | 2.42E-03                                                                    | 1.09E-03      |
|              |                                                                                                 | Total HAPs <sup>b</sup> | 8.78E-03 | 2.14E-02 | 1.27E-02    | 3.83E-02<br>74.16                                                           | 1.69E-02      |
|              | Road Grader Operation (AOS1) / Road Grader<br>Operation (AOS1)                                  | PM                      | 10.58    | 20.91    | 16.93       | 74.16                                                                       | 53.24         |
|              |                                                                                                 | PM <sub>10</sub>        | 3.30     | 6.53     | 5.29        | 23.16                                                                       | 16.63         |
| 023-2 (AOS1) |                                                                                                 | PM <sub>2.5</sub>       | 0.33     | 0.65     | 0.52        | 2.30                                                                        | 1.65          |
|              |                                                                                                 | Lead                    | 7.00E-05 | 1.38E-04 | 1.20E-04    | 5.24E-04                                                                    | 3.86E-04      |
|              |                                                                                                 | Total HAPs <sup>b</sup> | 1.13E-03 | 2.23E-03 | 1.90E-03    | 589.25<br>106.96<br>61.87<br>2.42E-03<br>3.83E-02<br>74.16<br>23.16<br>2.30 | 6.07E-03      |
|              |                                                                                                 | PM                      | 80.51    | 290.62   | 103.82      | 336.16                                                                      | 45.54         |
|              |                                                                                                 | PM <sub>10</sub>        | 38.08    | 137.46   | 49.10       | 158.99                                                                      | 21.54         |
| 021-1 (AOS1) | Loading Mined Material into Haul Trucks (AOS1) / Loading Mined Material into Haul Trucks (AOS1) | PM <sub>2.5</sub>       | 5.77     | 20.81    | 7.44        | 24.08                                                                       | 3.26          |
|              |                                                                                                 | Lead                    | 8.07E-04 | 2.91E-03 | 1.11E-03    | 3.60E-03                                                                    | 6.86E-04      |
|              |                                                                                                 | Total HAPs <sup>b</sup> | 1.30E-02 | 4.70E-02 | 1.76E-02    | 5.70E-02                                                                    | 1.00E-02      |

|              |                                                                                          |                         |          |          |             | ONLY                                                                     |                  |
|--------------|------------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|--------------------------------------------------------------------------|------------------|
|              | Emission Point                                                                           | Regulated Air           | PI       | Ē ª      | PTE AFTER N | ODIFICATION                                                              | CHANGE IN<br>PTE |
| Number       | Name (Current / Proposed)                                                                | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                                                  | tons/yr          |
|              |                                                                                          | PM                      | 16.97    | 43.33    | 21.11       | 58.61                                                                    | 15.28            |
|              |                                                                                          | PM <sub>10</sub>        | 8.03     | 20.50    | 9.98        | 27.72                                                                    | 7.23             |
| 001-6 (AOS1) | Unloading Ore to Primary Crusher 1 (AOS1) /<br>Unloading Ore to Primary Crusher 1 (AOS1) |                         | 3.10     | 1.51     | 4.20        | 1.09                                                                     |                  |
|              |                                                                                          | Lead                    | 9.04E-05 | 2.53E-04 | 1.23E-04    | 3.42E-04                                                                 | 8.93E-05         |
|              |                                                                                          | Total HAPs <sup>b</sup> | 2.22E-03 | 6.21E-03 | 3.03E-03    | 8.40E-03<br>43.05                                                        | 2.19E-03         |
|              | Unloading Ore to Primary Crusher 2 (AOS1) /<br>Unloading Ore to Primary Crusher 2 (AOS1) | PM                      | 16.97    | 43.33    | 18.47       | 43.05                                                                    | -0.29            |
|              |                                                                                          | PM <sub>10</sub>        | 8.03     | 20.50    | 8.73        | 20.36                                                                    | -0.14            |
| 001-7 (AOS1) |                                                                                          | PM <sub>2.5</sub>       | 1.22     | 3.10     | 1.32        | 3.08                                                                     | -0.02            |
|              |                                                                                          | Lead                    | 1.08E-04 | 2.53E-04 | 1.08E-04    | 2.51E-04                                                                 | -1.68E-06        |
|              |                                                                                          | Total HAPs <sup>b</sup> | 2.65E-03 | 6.21E-03 | 2.65E-03    | 58.61<br>27.72<br>4.20<br>3.42E-04<br>8.40E-03<br>43.05<br>20.36<br>3.08 | -4.12E-05        |
|              |                                                                                          | PM                      | 9.06     | 39.67    | 3.34        | 12.18                                                                    | -27.50           |
|              |                                                                                          | PM <sub>10</sub>        | 4.28     | 18.76    | 1.58        | 5.76                                                                     | -13.01           |
| 045-3 (AOS1) | Unloading Ore to Leaching Areas (AOS1) /<br>Unloading Ore to Leaching Areas (AOS1)       | PM <sub>2.5</sub>       | 0.65     | 2.84     | 0.24        | 0.87                                                                     | -1.97            |
|              |                                                                                          | Lead                    | 5.48E-05 | 2.40E-04 | 2.02E-05    | 7.37E-05                                                                 | -1.66E-04        |
|              |                                                                                          | Total HAPs <sup>b</sup> | 9.41E-04 | 4.12E-03 | 3.47E-04    | 1.27E-03                                                                 | -2.86E-03        |

|                  |                                                                                                |                         |          |                |             | UNLY                                                                                                              |                  |
|------------------|------------------------------------------------------------------------------------------------|-------------------------|----------|----------------|-------------|-------------------------------------------------------------------------------------------------------------------|------------------|
|                  | Emission Point                                                                                 | Regulated Air           | РТ       | E <sup>a</sup> | PTE AFTER M | ODIFICATION                                                                                                       | CHANGE IN<br>PTE |
| Number           | Name (Current / Proposed)                                                                      | Pollutant Name          | lb/hr    | tons/yr        | lb/hr       | tons/yr                                                                                                           | tons/yr          |
|                  |                                                                                                | PM                      | 37.51    | 164.28         | 60.91       | 222.32                                                                                                            | 58.04            |
|                  |                                                                                                | PM <sub>10</sub>        | 17.74    | 77.70          | 28.81       | 105.15                                                                                                            | 27.45            |
| 045-1 (AOS1)     | Unloading Overburden/Low Grade Ore to Storage Areas (AOS1) / Unloading Overburden/Low Grade    | PM <sub>2.5</sub>       | 2.69     | 11.77          | 4.36        | 15.92                                                                                                             | 4.16             |
|                  | Ore to Storage Areas (AOS1)                                                                    | Lead                    | 4.94E-04 | 2.17E-03       | 8.03E-04    | 222.32<br>105.15<br>15.92<br>2.93E-03<br>4.12E-02<br>7.60<br>7.60<br>7.60<br>9.39E-05<br>2.30E-03<br>0.97<br>0.46 | 7.65E-04         |
|                  |                                                                                                | Total HAPs <sup>b</sup> | 6.94E-03 | 3.04E-02       | 1.13E-02    | 4.12E-02                                                                                                          | 1.07E-02         |
| Primary Crush    | ing and Overland Conveying Operations (to Bagd                                                 | ad Concentrator) (AOS1) |          |                |             |                                                                                                                   |                  |
|                  | Dust Collector C51 (AOS1) / Dust Collector C51<br>(AOS1)                                       | PM                      | 1.74     | 7.60           | 1.74        | 7.60                                                                                                              | 0                |
|                  |                                                                                                | PM <sub>10</sub>        | 1.74     | 7.60           | 1.74        | 7.60                                                                                                              | 0                |
| 001-5 (AOS1)     |                                                                                                | PM <sub>2.5</sub>       | 1.74     | 7.60           | 1.74        | 7.60                                                                                                              | 0                |
|                  | ` ,                                                                                            | Lead                    | 2.14E-05 | 9.39E-05       | 2.14E-05    | 9.39E-05                                                                                                          | 0.00E+00         |
|                  |                                                                                                | Total HAPs <sup>b</sup> | 5.26E-04 | 2.30E-03       | 5.26E-04    | tons/yr  222.32  105.15  15.92  2.93E-03  4.12E-02  7.60  7.60  7.60  9.39E-05  2.30E-03  0.97                    | 0.00E+00         |
|                  |                                                                                                | PM                      | 0.45     | 1.95           | 0.22        | 0.97                                                                                                              | -0.99            |
|                  | D 10    1 AF 204 (A204) (0   1                                                                 | PM <sub>10</sub>        | 0.45     | 1.95           | 0.10        | 0.46                                                                                                              | -1.50            |
| 001-16<br>(AOS1) | Dust Collector AE-001 (AOS1) / Overland<br>Conveyor 3A (AOS1) to Overland Conveyor 3<br>(AOS1) | PM <sub>2.5</sub>       | 0.45     | 1.95           | 0.02        | 0.07                                                                                                              | -1.88            |
| (AOO1)           |                                                                                                | Lead                    | 5.50E-06 | 2.41E-05       | 1.29E-06    | 5.64E-06                                                                                                          | -1.85E-05        |
|                  |                                                                                                | Total HAPs <sup>b</sup> | 1.35E-04 | 5.92E-04       | 3.16E-05    | 7.60 7.60 7.60 9.39E-05 2.30E-03 0.97 0.46 0.07 5.64E-06                                                          | -4.53E-04        |

|                  |                                                                                                                           |                         |          |          |             | ONLY                                                                 |               |
|------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|----------------------------------------------------------------------|---------------|
|                  | Emission Point                                                                                                            | Regulated Air           | РТ       | E ª      | PTE AFTER M | IODIFICATION                                                         | CHANGE IN PTE |
| Number           | Name (Current / Proposed)                                                                                                 | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                                              | tons/yr       |
|                  |                                                                                                                           | PM                      | 0.27     | 1.17     | 0.22        | 0.97                                                                 | -0.21         |
|                  | Duet Oelle ten AE 044 (A 004) / Ouerlend                                                                                  | PM <sub>10</sub>        | 0.27     | 1.17     | 0.10        | 0.46                                                                 | -0.71         |
| 001-17<br>(AOS1) | Dust Collector AE-014 (AOS1) / Overland<br>Conveyor 3 (AOS1) to Overland Conveyor 4                                       | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.02        | 0.07                                                                 | -1.10         |
| , ,              | (AOS1)                                                                                                                    | Lead                    | 3.30E-06 | 1.45E-05 | 1.29E-06    | 5.64E-06                                                             | -8.82E-06     |
|                  |                                                                                                                           | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 3.16E-05    | 1.39E-04                                                             | -2.17E-04     |
|                  | Dust Collector AE-015 (AOS1) / Overland<br>Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)                                   | РМ                      | 0.27     | 1.17     | 0.22        | 0.97                                                                 | -0.21         |
|                  |                                                                                                                           | PM <sub>10</sub>        | 0.27     | 1.17     | 0.10        | 0.46                                                                 | -0.71         |
| 001-18<br>(AOS1) |                                                                                                                           | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.02        | 0.07                                                                 | -1.10         |
|                  |                                                                                                                           | Lead                    | 3.30E-06 | 1.45E-05 | 1.29E-06    | 5.64E-06                                                             | -8.82E-06     |
|                  |                                                                                                                           | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 3.16E-05    | 10DIFICATION tons/yr 0.97 0.46 0.07 5.64E-06 1.39E-04 0.97 0.46 0.07 | -2.17E-04     |
|                  |                                                                                                                           | РМ                      | 20.05    | 43.33    | 20.05       | 70.26                                                                | 26.92         |
|                  | Dadial Stankar F (AOS1) to Coorne Ore                                                                                     | PM <sub>10</sub>        | 9.48     | 20.50    | 9.48        | 33.23                                                                | 12.73         |
| 001-4 (AOS1)     | Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1) / Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1) | PM <sub>2.5</sub>       | 1.44     | 3.10     | 1.44        | 5.03                                                                 | 1.93          |
|                  |                                                                                                                           | Lead                    | 1.17E-04 | 2.53E-04 | 1.17E-04    | 4.10E-04                                                             | 1.57E-04      |
|                  |                                                                                                                           | Total HAPs <sup>b</sup> | 2.87E-03 | 6.21E-03 | 2.87E-03    | 1.01E-02                                                             | 3.86E-03      |
|                  |                                                                                                                           |                         | 1        | 1        |             |                                                                      |               |

|                  |                                                                                                                                     |                         |          |          |             | ONLY                              |               |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|-----------------------------------|---------------|
|                  | Emission Point                                                                                                                      | Regulated Air           | РТ       | E ª      | PTE AFTER M | IODIFICATION                      | CHANGE IN PTE |
| Number           | Name (Current / Proposed)                                                                                                           | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                           | tons/yr       |
|                  |                                                                                                                                     | PM                      |          |          | 20.05       | 17.56                             | 17.56         |
|                  |                                                                                                                                     | PM <sub>10</sub>        |          |          | 9.48        | 8.31                              | 8.31          |
| 001-10<br>(AOS1) | N/A / Radial Stacker 5 (AOS1) to Free-Standing<br>Stacker 6 (AOS1)                                                                  | PM <sub>2.5</sub>       |          |          | 1.44        | 1.26                              | 1.26          |
|                  |                                                                                                                                     | Lead                    |          |          | 1.17E-04    | 1.03E-04                          | 1.03E-04      |
|                  |                                                                                                                                     | Total HAPs <sup>b</sup> |          |          | 2.87E-03    | 2.52E-03                          | 2.52E-03      |
|                  | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 5 (AOS1) / Free-Standing Stacker 6<br>(AOS1) to Coarse Ore Stockpile 5 (AOS1) | PM                      | 10.46    | 21.38    | 20.05       | 17.56                             | -3.81         |
|                  |                                                                                                                                     | PM <sub>10</sub>        | 4.95     | 10.11    | 9.48        | 8.31                              | -1.80         |
| 001-19<br>(AOS1) |                                                                                                                                     | PM <sub>2.5</sub>       | 0.75     | 1.53     | 1.44        | 1.26                              | -0.27         |
|                  | (AOST) to Coarse Ore Stockpile 5 (AOST)                                                                                             | Lead                    | 6.11E-05 | 1.25E-04 | 1.17E-04    | 17.56<br>8.31<br>1.26<br>1.03E-04 | -2.23E-05     |
|                  |                                                                                                                                     | Total HAPs <sup>b</sup> | 1.50E-03 | 3.06E-03 | 2.87E-03    | 2.52E-03                          | -5.47E-04     |
|                  |                                                                                                                                     | PM                      | 2.18     | 9.56     | 1.96        | 8.59                              | -0.97         |
|                  | Wind Erasian of Coarse Ore Steekniles 1/5                                                                                           | PM <sub>10</sub>        | 1.09     | 4.78     | 0.98        | 4.29                              | -0.49         |
| 027-1 (AOS1)     | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1) / Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1)                                 | PM <sub>2.5</sub>       | 0.16     | 0.72     | 0.15        | 0.64                              | -0.07         |
|                  |                                                                                                                                     | Lead                    | 1.35E-05 | 5.90E-05 | 1.21E-05    | 5.30E-05                          | -6.01E-06     |
|                  |                                                                                                                                     | Total HAPs <sup>b</sup> | 3.31E-04 | 1.45E-03 | 2.97E-04    | 1.30E-03                          | -1.47E-04     |
|                  |                                                                                                                                     | Total HAPs <sup>b</sup> | 3.31E-04 | 1.45E-03 | 2.97E-04    | 1.30E-03                          |               |

|                  |                                                                    |                         |          |          |             | ONLY         |                  |
|------------------|--------------------------------------------------------------------|-------------------------|----------|----------|-------------|--------------|------------------|
|                  | Emission Point                                                     | Regulated Air           | PI       | E ª      | PTE AFTER N | IODIFICATION | CHANGE IN<br>PTE |
| Number           | Name (Current / Proposed)                                          | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr      | tons/yr          |
| Primary Crus     | hing and Overland Conveying Operations (to Sycar                   | nore Concentrator) (AO  | S1)      |          |             |              |                  |
|                  |                                                                    | PM                      | 0.27     | 1.17     | 0.29        | 1.25         | 0.08             |
|                  |                                                                    | PM <sub>10</sub>        | 0.27     | 1.17     | 0.29        | 1.25         | 0.08             |
| 001-12<br>(AOS1) | Dust Collector AE-002 (AOS1) / PC1 Dust<br>Collector 1 (AOS1)      | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.29        | 1.25         | 0.08             |
|                  |                                                                    | Lead                    | 3.30E-06 | 1.45E-05 | 3.53E-06    | 1.55E-05     | 9.97E-07         |
|                  |                                                                    | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 8.66E-05    | 3.79E-04     | 2.45E-05         |
|                  | Dust Collector AE-003 (AOS1) / PC1 CCC1 Dust<br>Collector 2 (AOS1) | PM                      | 0.33     | 1.46     | 0.33        | 1.44         | -0.02            |
|                  |                                                                    | PM <sub>10</sub>        | 0.33     | 1.46     | 0.33        | 1.44         | -0.02            |
| 001-13<br>(AOS1) |                                                                    | PM <sub>2.5</sub>       | 0.33     | 1.46     | 0.33        | 1.44         | -0.02            |
|                  |                                                                    | Lead                    | 4.13E-06 | 1.81E-05 | 4.07E-06    | 1.78E-05     | -2.74E-07        |
|                  |                                                                    | Total HAPs <sup>b</sup> | 1.01E-04 | 4.44E-04 | 9.98E-05    | 4.37E-04     | -6.71E-06        |
|                  |                                                                    | PM                      | 0.27     | 1.17     | 0.33        | 1.44         | 0.27             |
|                  |                                                                    | PM <sub>10</sub>        | 0.27     | 1.17     | 0.33        | 1.44         | 0.27             |
| 001-14<br>(AOS1) | Dust Collector AE-016 (AOS1) / PC1 CCC2 Dust<br>Collector 3 (AOS1) | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.33        | 1.44         | 0.27             |
|                  |                                                                    | Lead                    | 3.30E-06 | 1.45E-05 | 4.07E-06    | 1.78E-05     | 3.34E-06         |
|                  |                                                                    | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 9.98E-05    | 4.37E-04     | 8.20E-05         |

|                  |                                                                                                                                   |                         |          |          | ONLY        |                                                                                                                                    |               |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
|                  | Emission Point                                                                                                                    | Regulated Air           | РТ       | E ª      | PTE AFTER M | IODIFICATION                                                                                                                       | CHANGE IN PTE |  |
| Number           | Name (Current / Proposed)                                                                                                         | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                                                                                                            | tons/yr       |  |
|                  |                                                                                                                                   | PM                      | 0.27     | 1.17     | 0.33        | 1.44                                                                                                                               | 0.27          |  |
|                  |                                                                                                                                   | PM <sub>10</sub>        | 0.27     | 1.17     | 0.33        | 1.44                                                                                                                               | 0.27          |  |
| 001-15<br>(AOS1) | Dust Collector AE-017 (AOS1) / PC1 CCC3 Dust<br>Collector 4 (AOS1)                                                                | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.33        | 1.44 1.44 1.44 1.44 1.78E-05 1.37E-04 92.44 43.72 6.62 4 5.40E-04 3 1.33E-02 4.22 2.11                                             | 0.27          |  |
| , ,              |                                                                                                                                   | Lead                    | 3.30E-06 | 1.45E-05 | 4.07E-06    |                                                                                                                                    | 3.34E-06      |  |
|                  |                                                                                                                                   | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 9.98E-05    |                                                                                                                                    | 8.20E-05      |  |
|                  | D 15 101 1 0 40 (A004) 1 0 0                                                                                                      | PM                      | 5.01     | 21.96    | 21.11       | 92.44                                                                                                                              | 70.49         |  |
| 001.20           |                                                                                                                                   | PM <sub>10</sub>        | 2.37     | 10.38    | 9.98        | 43.72                                                                                                                              | 33.34         |  |
| 001-20<br>(AOS1) | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 6 / PC1 Cross Country Conveyor 3<br>(AOS1) to Coarse Ore Stockpile 6 (AOS1) | PM <sub>2.5</sub>       | 0.36     | 1.57     | 1.51        | 6.62                                                                                                                               | 5.05          |  |
|                  | (AOST) to Coarse Ore Stockpile 6 (AOST)                                                                                           | Lead                    | 2.93E-05 | 1.28E-04 | 1.23E-04    | 1.44 1.44 1.44 1.78E-05 4.37E-04 92.44 43.72 6.62 5.40E-04 1.33E-02 4.22                                                           | 4.12E-04      |  |
|                  |                                                                                                                                   | Total HAPs <sup>b</sup> | 7.19E-04 | 3.15E-03 | 3.03E-03    |                                                                                                                                    | 1.01E-02      |  |
|                  |                                                                                                                                   | PM                      | 0.74     | 3.25     | 0.96        | 4.22                                                                                                                               | 0.97          |  |
|                  |                                                                                                                                   | PM <sub>10</sub>        | 0.37     | 1.63     | 0.48        | 2.11                                                                                                                               | 0.49          |  |
| 027-7 (AOS1)     | Wind Erosion of Coarse Ore Stockpile 6 (AOS1) /<br>Wind Erosion of Coarse Ore Stockpile 6 (AOS1)                                  | PM <sub>2.5</sub>       | 0.06     | 0.24     | 0.07        | 0.32                                                                                                                               | 0.07          |  |
|                  |                                                                                                                                   | Lead                    | 4.58E-06 | 2.01E-05 | 5.95E-06    | 2.61E-05                                                                                                                           | 6.01E-06      |  |
|                  |                                                                                                                                   | Total HAPs <sup>b</sup> | 1.12E-04 | 4.93E-04 | 1.46E-04    | 1.44<br>1.44<br>1.44<br>1.78E-05<br>4.37E-04<br>92.44<br>43.72<br>6.62<br>5.40E-04<br>1.33E-02<br>4.22<br>2.11<br>0.32<br>2.61E-05 | 1.47E-04      |  |

|               |                                                                                         |                         |          |          | ONLY        |                                                                                                                             |               |  |
|---------------|-----------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|-----------------------------------------------------------------------------------------------------------------------------|---------------|--|
|               | Emission Point                                                                          | Regulated Air           | PT       | E a      | PTE AFTER M | IODIFICATION                                                                                                                | CHANGE IN PTE |  |
| Number        | Name (Current / Proposed)                                                               | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                                                                                                     | tons/yr       |  |
| Sycamore Mill | ing Operations (AOS1)                                                                   |                         |          |          |             |                                                                                                                             |               |  |
|               |                                                                                         | PM                      | 1.11     | 4.88     | 0.43        | 1.90                                                                                                                        | -2.98         |  |
|               |                                                                                         | PM <sub>10</sub>        | 1.11     | 4.88     | 0.43        | 1.90                                                                                                                        | -2.98         |  |
| 002-7 (AOS1)  | Dust Collector AE-008 (AOS1) / Coarse Ore<br>Reclaim Conveyor 1 Dust Collector 5 (AOS1) | PM <sub>2.5</sub>       | 1.11     | 4.88     | 0.43        | 1.90 1.90 1.90 2.35E-05 5.76E-04 1.90 1.90 2.35E-05 5.76E-04 1.90 1.90 1.90 1.90 1.90 2.35E-05 5.76E-04 1.99 1.99 1.99 1.99 | -2.98         |  |
|               |                                                                                         | Lead                    | 1.38E-05 | 6.03E-05 | 5.36E-06    |                                                                                                                             | -3.68E-05     |  |
|               |                                                                                         | Total HAPs <sup>b</sup> | 3.38E-04 | 1.48E-03 | 1.31E-04    |                                                                                                                             | -9.03E-04     |  |
|               |                                                                                         | PM                      | 0.27     | 1.17     | 0.43        | 1.90                                                                                                                        | 0.73          |  |
|               |                                                                                         | PM <sub>10</sub>        | 0.27     | 1.17     | 0.43        | 1.90                                                                                                                        | 0.73          |  |
| 002-8 (AOS1)  | Dust Collector AE-009 (AOS1) / Coarse Ore<br>Reclaim Conveyor 2 Dust Collector 6 (AOS1) | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.43        | 1.90                                                                                                                        | 0.73          |  |
|               |                                                                                         | Lead                    | 3.30E-06 | 1.45E-05 | 5.36E-06    | 1.90 1.90 1.90 2.35E-05 5.76E-04 1.90 2.35E-05 5.76E-04 1.90 1.90 2.35E-05 5.76E-04 1.99 1.99 1.99 2.45E-05                 | 8.99E-06      |  |
|               |                                                                                         | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 1.31E-04    |                                                                                                                             | 2.21E-04      |  |
|               |                                                                                         | PM                      | 0.45     | 1.95     | 0.45        | 1.99                                                                                                                        | 0.03          |  |
|               |                                                                                         | PM <sub>10</sub>        | 0.45     | 1.95     | 0.45        | 1.99                                                                                                                        | 0.03          |  |
| 002-9 (AOS1)  | Dust Collector AE-010 (AOS1) / HPGR Discharge<br>Dust Collector 7 (AOS1)                | PM <sub>2.5</sub>       | 0.45     | 1.95     | 0.45        | 1.99                                                                                                                        | 0.03          |  |
|               |                                                                                         | Lead                    | 5.50E-06 | 2.41E-05 | 5.60E-06    | 2.45E-05                                                                                                                    | 4.17E-07      |  |
|               |                                                                                         | Total HAPs <sup>b</sup> | 1.35E-04 | 5.92E-04 | 1.37E-04    | 1.90<br>1.90<br>1.90<br>2.35E-05<br>5.76E-04<br>1.90<br>1.90<br>2.35E-05<br>5.76E-04<br>1.99<br>1.99<br>1.99<br>1.99        | 1.02E-05      |  |

|                  |                                                                                            |                         |          |          |             | ONLY                                                                                                                     |                  |
|------------------|--------------------------------------------------------------------------------------------|-------------------------|----------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------|------------------|
|                  | Emission Point                                                                             | Regulated Air           | PI       | TE a     | PTE AFTER M | ODIFICATION                                                                                                              | CHANGE IN<br>PTE |
| Number           | Name (Current / Proposed)                                                                  | Pollutant Name          | lb/hr    | tons/yr  | lb/hr       | tons/yr                                                                                                                  | tons/yr          |
|                  |                                                                                            | PM                      | 0.27     | 1.17     | 0.53        | 2.33                                                                                                                     | 1.16             |
|                  |                                                                                            | PM <sub>10</sub>        | 0.27     | 1.17     | 0.53        | 2.33                                                                                                                     | 1.16             |
| 002-10<br>(AOS1) | Dust Collector AE-011 (AOS1) / HPGR Discharge<br>Conveyor Transfer Dust Collector 8 (AOS1) | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.53        | 2.33<br>2.88E-05<br>7.07E-04<br>2.16<br>2.16<br>2.16<br>2.67E-05                                                         | 1.16             |
|                  |                                                                                            | Lead                    | 3.30E-06 | 1.45E-05 | 6.57E-06    |                                                                                                                          | 1.43E-05         |
|                  |                                                                                            | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 1.61E-04    |                                                                                                                          | 3.52E-04         |
|                  |                                                                                            | PM                      | 0.27     | 1.17     | 0.49        | 2.16                                                                                                                     | 0.99             |
|                  |                                                                                            | PM <sub>10</sub>        | 0.27     | 1.17     | 0.49        | 2.16                                                                                                                     | 0.99             |
| 002-11<br>(AOS1) | Dust Collector AE-007 (AOS1) / HPGR Product<br>Bin Dust Collector 9 (AOS1)                 | PM <sub>2.5</sub>       | 0.27     | 1.17     | 0.49        | 2.16                                                                                                                     | 0.99             |
|                  |                                                                                            | Lead                    | 3.30E-06 | 1.45E-05 | 6.09E-06    | 2.67E-05                                                                                                                 | 1.22E-05         |
|                  |                                                                                            | Total HAPs <sup>b</sup> | 8.11E-05 | 3.55E-04 | 1.49E-04    | 2.33<br>2.33<br>2.33<br>2.88E-05<br>7.07E-04<br>2.16<br>2.16<br>2.16                                                     | 2.99E-04         |
|                  |                                                                                            | PM                      | 0.74     | 3.22     | 0.20        | 0.86                                                                                                                     | -2.36            |
|                  |                                                                                            | PM <sub>10</sub>        | 0.74     | 3.22     | 0.20        | 0.86                                                                                                                     | -2.36            |
| 002-12<br>(AOS1) | Dust Collector AE-012 (AOS1) / HPGR Product<br>Transfer Dust Collector 10 (AOS1)           | PM <sub>2.5</sub>       | 0.74     | 3.22     | 0.20        | 0.86                                                                                                                     | -2.36            |
|                  |                                                                                            | Lead                    | 9.08E-06 | 3.98E-05 | 2.43E-06    | 1.07E-05                                                                                                                 | -2.91E-05        |
|                  |                                                                                            | Total HAPs <sup>b</sup> | 2.23E-04 | 9.76E-04 | 5.98E-05    | 2.33<br>2.33<br>2.33<br>2.88E-05<br>7.07E-04<br>2.16<br>2.16<br>2.16<br>2.67E-05<br>6.54E-04<br>0.86<br>0.86<br>1.07E-05 | -7.15E-04        |
|                  |                                                                                            |                         |          |          |             |                                                                                                                          |                  |

|                  |                                                                                              |                                                               |             |              | ONLY             |                                                                                                    |           |  |
|------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|--------------|------------------|----------------------------------------------------------------------------------------------------|-----------|--|
|                  | Emission Point                                                                               | Regulated Air Pollutant Name   Ib/hr   tons/yr   Ib/hr     PM | PTE AFTER M | IODIFICATION | CHANGE IN<br>PTE |                                                                                                    |           |  |
| Number           | Name (Current / Proposed)                                                                    |                                                               | lb/hr       | tons/yr      | lb/hr            | tons/yr                                                                                            | tons/yr   |  |
|                  |                                                                                              | PM                                                            | 0.40        | 1.76         | 0.20             | 0.86                                                                                               | -0.89     |  |
|                  |                                                                                              | PM <sub>10</sub>                                              | 0.40        | 1.76         | 0.20             | tons/yr                                                                                            | -0.89     |  |
| 002-13<br>(AOS1) | Dust Collector AE-013 (AOS1) / HPGR Product Transfer Dust Collector 11 (AOS1)                | PM <sub>2.5</sub>                                             | 0.40        | 1.76         | 0.20             | 0.86                                                                                               | -0.89     |  |
| , ,              |                                                                                              | Lead                                                          | 4.95E-06    | 2.17E-05     | 2.43E-06         | 1.07E-05                                                                                           | -1.10E-05 |  |
|                  |                                                                                              | Total HAPs <sup>b</sup>                                       | 1.22E-04    | 5.33E-04     | 5.98E-05         | 2.62E-04                                                                                           | -2.71E-04 |  |
| Sycamore Bull    | and Molybdenum Flotation Operations (AOS1)                                                   |                                                               |             |              |                  |                                                                                                    |           |  |
|                  | N/A / Sycamore Bulk and Molybdenum Flotation<br>Equipment                                    | VOC                                                           |             |              | 0.27             | 1.18                                                                                               | 1.18      |  |
| 044-2 (AOS1)     |                                                                                              | H₂S                                                           |             |              | 0.50             | 2.18                                                                                               | 2.18      |  |
|                  |                                                                                              | Total HAPs <sup>b</sup>                                       |             |              | 2.38E-02         | 1.18                                                                                               | 1.04E-01  |  |
| Sycamore Con     | centrate Handling Operations (AOS1)                                                          |                                                               |             |              |                  |                                                                                                    |           |  |
|                  |                                                                                              | РМ                                                            |             |              | 0.003            | 0.01                                                                                               | 0.01      |  |
|                  |                                                                                              | PM <sub>10</sub>                                              |             |              | 0.001            | 0.006                                                                                              | 0.006     |  |
| 006-11<br>(AOS1) | N/A / Copper Concentrate Filters 1/2 (AOS1) to Copper Concentrate Filter Drop Storage (AOS1) | PM <sub>2.5</sub>                                             |             |              | 0.0002           | 0.0009                                                                                             | 0.0009    |  |
|                  |                                                                                              | Lead                                                          |             |              | 9.85E-07         | tons/yr  0.86  0.86  0.86  1.07E-05  2.62E-04  1.18  2.18  1.04E-01  0.01  0.006  0.0009  4.31E-06 | 4.31E-06  |  |
|                  |                                                                                              | Total HAPs <sup>b</sup>                                       |             |              | 2.99E-06         | 1.31E-05                                                                                           | 1.31E-05  |  |

|                  |                                                                                                                             |                         |       |         | ONLY        |                                                                                                                            |                  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|---------|-------------|----------------------------------------------------------------------------------------------------------------------------|------------------|--|
|                  | Emission Point                                                                                                              | Regulated Air           | РТ    | E ª     | PTE AFTER M | IODIFICATION                                                                                                               | CHANGE IN<br>PTE |  |
| Number           | Name (Current / Proposed)                                                                                                   | Pollutant Name          | lb/hr | tons/yr | lb/hr       | tons/yr                                                                                                                    | tons/yr          |  |
|                  |                                                                                                                             | PM                      |       |         | 0.003       | 0.01                                                                                                                       | 0.01             |  |
|                  | NVA / O O                                                                                                                   | PM <sub>10</sub>        |       |         | 0.001       | 0.006                                                                                                                      | 0.006            |  |
| 006-12<br>(AOS1) | N/A / Copper Concentrate Filter Drop Storage<br>(AOS1) to Copper Concentrate Loadout Storage<br>(AOS1) via Front-End Loader | PM <sub>2.5</sub>       |       |         | 0.0002      | 0.01<br>0.006<br>0.0009<br>4.31E-06<br>1.31E-05<br>0.01<br>0.006<br>0.0009<br>4.31E-06<br>1.31E-05<br>1.35<br>0.68<br>0.10 | 0.0009           |  |
|                  | (AOST) via Fiorit-Eria Loadei                                                                                               | Lead                    |       |         | 9.85E-07    |                                                                                                                            | 4.31E-06         |  |
|                  |                                                                                                                             | Total HAPs <sup>b</sup> |       |         | 2.99E-06    |                                                                                                                            | 1.31E-05         |  |
|                  |                                                                                                                             | PM                      |       |         | 0.003       | 0.01                                                                                                                       | 0.01             |  |
|                  |                                                                                                                             | PM <sub>10</sub>        |       |         | 0.001       | 0.006                                                                                                                      | 0.006            |  |
| 006-13<br>(AOS1) | N/A / Copper Concentrate Loadout Storage (AOS1) to Trucks via Front-End Loader                                              | PM <sub>2.5</sub>       |       |         | 0.0002      | 0.0009                                                                                                                     | 0.0009           |  |
|                  |                                                                                                                             | Lead                    |       |         | 9.85E-07    | tons/yr  0.01  0.006  0.0009  4.31E-06  1.31E-05  0.01  0.006  0.0009  4.31E-06  1.31E-05  1.35  0.68  0.10                | 4.31E-06         |  |
|                  |                                                                                                                             | Total HAPs <sup>b</sup> |       |         | 2.99E-06    |                                                                                                                            | 1.31E-05         |  |
|                  |                                                                                                                             | PM                      |       |         | 0.31        | 1.35                                                                                                                       | 1.35             |  |
|                  | N/A / Wind Francian of Conner Concentrate Filter                                                                            | PM <sub>10</sub>        |       |         | 0.15        | 0.68                                                                                                                       | 0.68             |  |
| 027-8 (AOS1)     | N/A / Wind Erosion of Copper Concentrate Filter Drop Storage (AOS1) and Copper Concentrate Loadout Storage (AOS1)           | PM <sub>2.5</sub>       |       |         | 0.02        | 0.10                                                                                                                       | 0.10             |  |
|                  | Loadout Storage (AOST)                                                                                                      | Lead                    |       |         | 1.13E-04    | 4.93E-04                                                                                                                   | 4.93E-04         |  |
|                  |                                                                                                                             | Total HAPs <sup>b</sup> |       |         | 3.41E-04    | tons/yr  0.01  0.006  0.0009  4.31E-06  1.31E-05  0.01  0.006  0.0009  4.31E-06  1.31E-05  1.35  0.68  0.10  4.93E-04      | 1.50E-03         |  |
|                  |                                                                                                                             |                         |       |         |             |                                                                                                                            |                  |  |

|              |                                                                                                             |                         |       |         | ONLY        |                                                                                                                           |               |
|--------------|-------------------------------------------------------------------------------------------------------------|-------------------------|-------|---------|-------------|---------------------------------------------------------------------------------------------------------------------------|---------------|
|              | Emission Point                                                                                              | Regulated Air           | РТ    | E a     | PTE AFTER M | IODIFICATION                                                                                                              | CHANGE IN PTE |
| Number       | Name (Current / Proposed)                                                                                   | Pollutant Name          | lb/hr | tons/yr | lb/hr       | tons/yr                                                                                                                   | tons/yr       |
|              |                                                                                                             | PM                      |       |         | 0.06        | 0.28                                                                                                                      | 0.28          |
|              |                                                                                                             | PM <sub>10</sub>        |       |         | 0.06        | 0.28                                                                                                                      | 0.28          |
| 050 0 (4004) | N/A / Molybdenum Dryer Wet Scrubber System                                                                  | PM <sub>2.5</sub>       |       |         | 0.06        | 0.28                                                                                                                      | 0.28          |
| 052-2 (AOS1) | (AOS1)                                                                                                      | VOC                     |       |         | 1.83        | tons/yr  0.28  0.28                                                                                                       | 8.02          |
|              |                                                                                                             | Lead                    |       |         | 9.67E-06    |                                                                                                                           | 4.23E-05      |
|              |                                                                                                             | Total HAPs <sup>b</sup> |       |         | 1.61E-01    | 7.07E-01                                                                                                                  | 7.07E-01      |
|              |                                                                                                             | PM                      |       |         | 0.004       | 0.02                                                                                                                      | 0.02          |
|              | N/A / M                                                                                                     | PM <sub>10</sub>        | 0.002 | 0.009   | 0.009       |                                                                                                                           |               |
| 052-3 (AOS1) | N/A / Molybdenum Concentrate Dryer (AOS1) to<br>Dried Molybdenum Concentrate Storage Bin<br>(AOS1)          | PM <sub>2.5</sub>       |       |         | 0.0003      | tons/yr  0.28  0.28  0.28  8.02  4.23E-05  7.07E-01  0.02  0.009  0.001  1.41E-06  1.25E-05  0.02  0.009  0.001  1.41E-06 | 0.001         |
|              | (AOS1)                                                                                                      | Lead                    |       |         | 3.22E-07    |                                                                                                                           | 1.41E-06      |
|              |                                                                                                             | Total HAPs <sup>b</sup> |       |         | 2.86E-06    |                                                                                                                           | 1.25E-05      |
|              |                                                                                                             | PM                      |       |         | 0.004       | 0.02                                                                                                                      | 0.02          |
|              | NVA / Deie d Melada de como Ococa estado Otama de Dia                                                       | PM <sub>10</sub>        |       |         | 0.002       | 0.009                                                                                                                     | 0.009         |
| 052-4 (AOS1) | N/A / Dried Molybdenum Concentrate Storage Bin<br>(AOS1) to Molybdenum Concentrate Bagging<br>System (AOS1) | PM <sub>2.5</sub>       |       |         | 0.0003      | 0.001                                                                                                                     | 0.001         |
|              | System (AOST)                                                                                               | Lead                    |       |         | 3.22E-07    | 1.41E-06                                                                                                                  | 1.41E-06      |
|              |                                                                                                             | Total HAPs <sup>b</sup> |       |         | 2.86E-06    | tons/yr  0.28  0.28  0.28  8.02  4.23E-05  7.07E-01  0.02  0.009  0.001  1.41E-06  1.25E-05  0.02  0.009  0.001  1.41E-06 | 1.25E-05      |

|              |                                                                                                                                        |                                           |       |                 |             | ONLY                                                                                                                                   |                  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|
|              | Emission Point                                                                                                                         | Regulated Air                             | Pi    | ΓE <sup>a</sup> | PTE AFTER N | IODIFICATION                                                                                                                           | CHANGE IN<br>PTE |
| Number       | Name (Current / Proposed)                                                                                                              | Pollutant Name                            | lb/hr | tons/yr         | lb/hr       | tons/yr                                                                                                                                | tons/yr          |
| Sycamore Lim | e and Other Regent Operations (AOS1)                                                                                                   |                                           |       | 1               |             |                                                                                                                                        |                  |
|              |                                                                                                                                        | PM                                        |       |                 | 0.15        | 0.30                                                                                                                                   | 0.30             |
| 007-6 (AOS1) | N/A / Transfer of Lime to Sycamore Lime Silo (AOS1)                                                                                    | PM <sub>10</sub>                          |       |                 | 0.05        | ODIFICATION<br>tons/yr                                                                                                                 | 0.11             |
|              | ` '                                                                                                                                    | PM <sub>2.5</sub>                         |       |                 | 0.008       | 0.02                                                                                                                                   | 0.02             |
|              |                                                                                                                                        | PM                                        |       |                 | 0.01        | 0.01     0.06       0.01     0.06       0.01     0.06       0.06     0.25       0.03     0.12       0.004     0.02                     | 0.06             |
| 007-7 (AOS1) | N/A / Sycamore Lime Slaker (AOS1)                                                                                                      | PM <sub>10</sub>                          |       |                 | 0.01        |                                                                                                                                        | 0.06             |
|              |                                                                                                                                        | PM <sub>2.5</sub>                         |       |                 | 0.01        | 0.06                                                                                                                                   | 0.06             |
|              |                                                                                                                                        | PM                                        |       |                 | 0.06        | 0.25                                                                                                                                   | 0.25             |
| 055-1 (AOS1) | N/A / Transfer of Flocculant to Tailings Flocculant<br>Bag Breaker Bin (AOS1)                                                          | PM <sub>10</sub>                          |       |                 | 0.03        | 0.30 0.11 0.02 0.06 0.06 0.06 0.025 0.12 0.02 0.002 0.008 0.001 1.31 1.31E+00 1.31E+00                                                 | 0.12             |
|              | . , ,                                                                                                                                  | PM <sub>2.5</sub>                         |       |                 | 0.004       |                                                                                                                                        | 0.02             |
|              |                                                                                                                                        | PM                                        |       |                 | 0.004       | 0.02                                                                                                                                   | 0.02             |
| 055-2 (AOS1) | N/A / Transfer of Flocculant to Concentrate<br>Flocculant Bag Breaker Bin (AOS1)                                                       | PM <sub>10</sub>                          |       |                 | 0.002       | 0.30<br>0.30<br>0.11<br>0.02<br>0.06<br>0.06<br>0.06<br>0.25<br>0.12<br>0.02<br>0.02<br>0.008<br>0.001<br>1.31<br>1.31E+00<br>1.31E+00 | 0.008            |
|              |                                                                                                                                        | PM <sub>2.5</sub>                         |       |                 | 0.0003      | 0.001                                                                                                                                  | 0.001            |
|              | N/A / X - II - I - M: T - I / A C C A X - II - I                                                                                       | VOC                                       |       |                 | 0.49        | 1.31                                                                                                                                   | 1.31             |
| 053-2 (AOS1) | N/A / Xanthate Mix Tank (AOS1), Xanthate<br>Holding Tank (AOS1), Test Reagent Mix Tank<br>(AOS1), and Test Reagent Holding Tank (AOS1) | Greatest Single HAP<br>(Carbon Disulfide) |       |                 | 4.94E-01    | 1.31E+00                                                                                                                               | 1.31E+00         |
|              | (AOST), and Test Reagent holding Tank (AOST)                                                                                           | Total HAPs <sup>b</sup>                   |       |                 | 4.94E-01    | 1.31E+00                                                                                                                               | 1.31E+00         |
| 055-3 (AOS1) | N/A / Sycamore NaHS System Scrubber (AOS1)                                                                                             | H₂S                                       |       |                 | 0.04        | 0.17                                                                                                                                   | 0.17             |

|                |                                                                   |                         |       |         |             | ONLY                                                                                                            | ONLY             |  |
|----------------|-------------------------------------------------------------------|-------------------------|-------|---------|-------------|-----------------------------------------------------------------------------------------------------------------|------------------|--|
|                | Emission Point                                                    | Regulated Air           | b.    | TE ª    | PTE AFTER M | ODIFICATION                                                                                                     | CHANGE IN<br>PTE |  |
| Number         | Name (Current / Proposed)                                         | Pollutant Name          | lb/hr | tons/yr | lb/hr       | tons/yr                                                                                                         | tons/yr          |  |
| Sycamore Prill | Handling Operations (AOS1)                                        |                         |       |         |             |                                                                                                                 |                  |  |
|                |                                                                   | PM                      |       |         | 0.52        | 0.25                                                                                                            | 0.25             |  |
| 050-7 (AOS1)   | N/A / Delivery of Ammonium Nitrate Prill to Prill<br>Bin 6 (AOS1) | PM <sub>10</sub>        |       |         | 0.18        | 0.09                                                                                                            | 0.09             |  |
|                | ,                                                                 | PM <sub>2.5</sub>       |       |         | 0.03        | tons/yr<br>0.25                                                                                                 | 0.01             |  |
|                |                                                                   | PM                      |       |         | 1.00        | 0.25                                                                                                            | 0.25             |  |
| 050-8 (AOS1)   | N/A / Prill Bin 6 to ANFO Trucks for Transfer to<br>Drill Holes   | PM <sub>10</sub>        |       |         | 0.35        | 0.25 0.09 0.01 0.25 0.09 0.01 0.25 0.09 0.01 0.05 0.05 0.05 0.05 0.08 0.93 0.002 0.07 173.77 0.007 0.001 174.37 | 0.09             |  |
|                |                                                                   | PM <sub>2.5</sub>       |       |         | 0.05        | 0.01                                                                                                            | 0.01             |  |
| Sycamore Eme   | ergency ICE (AOS1)                                                |                         |       |         |             |                                                                                                                 |                  |  |
|                |                                                                   | PM                      |       |         | 0.20        | 0.05                                                                                                            | 0.05             |  |
|                |                                                                   | PM <sub>10</sub>        |       |         | 0.20        | 0.05                                                                                                            | 0.05             |  |
|                |                                                                   | PM <sub>2.5</sub>       |       |         | 0.20        | 0.05                                                                                                            | 0.05             |  |
|                |                                                                   | CO                      |       |         | 3.50        | 0.25 0.09 0.01 0.25 0.09 0.01 0.05 0.05 0.05 0.08 0.93 0.002 0.07 173.77 0.007 0.001 174.37                     | 0.88             |  |
|                |                                                                   | $NO_X$                  |       |         | 3.74        | 0.93                                                                                                            | 0.93             |  |
| 049-59         | N/A / Sycamore Diesel Emergency Generator 1                       | SO <sub>2</sub>         |       |         | 0.007       | 0.002                                                                                                           | 0.002            |  |
| (AOS1)         | (AOS1) (609 hp engine)                                            | VOC                     |       |         | 0.27        | 0.07                                                                                                            | 0.07             |  |
|                |                                                                   | CO <sub>2</sub>         |       |         | 695.10      | 173.77                                                                                                          | 173.77           |  |
|                |                                                                   | CH <sub>4</sub>         |       |         | 0.03        | 0.007                                                                                                           | 0.007            |  |
|                |                                                                   | N <sub>2</sub> O        |       |         | 0.006       | 0.001                                                                                                           | 0.001            |  |
|                |                                                                   | CO <sub>2</sub> e       |       |         | 697.48      | 0.25 0.09 0.01 0.25 0.09 0.01 0.05 0.05 0.05 0.05 0.08 0.93 0.002 0.07 173.77 0.007 0.001 174.37                | 174.37           |  |
|                |                                                                   | Total HAPs <sup>b</sup> |       |         | 6.71E-03    | 1.68E-03                                                                                                        | 1.68E-03         |  |

|        |                                                                       |                                                                               |       |                  |          | ONLY                   |          |
|--------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|-------|------------------|----------|------------------------|----------|
|        | Emission Point                                                        | Regulated Air                                                                 | РТ    | PTE <sup>a</sup> |          | PTE AFTER MODIFICATION |          |
| Number | Name (Current / Proposed)                                             | Pollutant Name                                                                | lb/hr | tons/yr          | lb/hr    | tons/yr                | tons/yr  |
|        | PM                                                                    |                                                                               |       | 0.25             | 0.06     | 0.06                   |          |
|        |                                                                       | PM <sub>10</sub> PM <sub>2.5</sub> CO NOx SO <sub>2</sub> VOC CO <sub>2</sub> |       |                  | 0.25     | 0.06                   | 0.06     |
|        |                                                                       | PM <sub>2.5</sub>                                                             |       |                  | 0.25     | 0.06                   | 0.06     |
|        | N/A / Sycamore Diesel Emergency Generator 2<br>(AOS1) (762 hp engine) | со                                                                            |       |                  | 4.38     | 1.10                   | 1.10     |
|        |                                                                       | NOx                                                                           |       |                  | 7.52     | 1.88                   | 1.88     |
| 049-60 |                                                                       | SO <sub>2</sub>                                                               |       |                  | 0.008    | 0.002                  | 0.002    |
| (AOS1) |                                                                       | VOC                                                                           |       |                  | 0.50     | 0.13                   | 0.13     |
|        |                                                                       | CO <sub>2</sub>                                                               |       |                  | 869.73   | 217.43                 | 217.43   |
|        |                                                                       | CH <sub>4</sub>                                                               |       |                  | 0.04     | 0.009                  | 0.009    |
|        |                                                                       | N <sub>2</sub> O                                                              |       |                  | 0.007    | 0.002                  | 0.002    |
|        |                                                                       | CO <sub>2</sub> e                                                             |       |                  | 872.71   | 218.18                 | 218.18   |
|        |                                                                       | Total HAPs <sup>b</sup>                                                       |       |                  | 8.39E-03 | 2.10E-03               | 2.10E-03 |

|        |                                                                         |                         |       |         |             | ONLY        |                  |
|--------|-------------------------------------------------------------------------|-------------------------|-------|---------|-------------|-------------|------------------|
|        | Emission Point                                                          | Regulated Air           | PT    | E a     | PTE AFTER M | ODIFICATION | CHANGE IN<br>PTE |
| Number | Name (Current / Proposed)                                               | Pollutant Name          | lb/hr | tons/yr | lb/hr       | tons/yr     | tons/yr          |
|        | PM                                                                      |                         |       | 0.02    | 0.004       | 0.004       |                  |
|        |                                                                         | PM <sub>10</sub>        |       |         | 0.02        | 0.004       | 0.004            |
|        | N/A / Sycamore Propane Emergency Generator 1<br>(AOS1) (84.7 hp engine) | PM <sub>2.5</sub>       |       |         | 0.02        | 0.004       | 0.004            |
|        |                                                                         | СО                      |       |         | 16.77       | 4.19        | 4.19             |
|        |                                                                         | NOx                     |       |         | 1.14        | 0.29        | 0.29             |
| 049-61 |                                                                         | SO <sub>2</sub>         |       |         | 0.01        | 0.003       | 0.003            |
| (AOS1) |                                                                         | VOC                     |       |         | 0.25        | 0.06        | 0.06             |
|        |                                                                         | CO <sub>2</sub>         |       |         | 123.27      | 30.82       | 30.82            |
|        |                                                                         | CH <sub>4</sub>         |       |         | 0.006       | 0.001       | 0.001            |
|        |                                                                         | N <sub>2</sub> O        |       |         | 0.001       | 0.0003      | 0.0003           |
|        |                                                                         | CO <sub>2</sub> e       |       |         | 123.77      | 30.94       | 30.94            |
|        |                                                                         | Total HAPs <sup>b</sup> |       |         | 2.89E-02    | 7.22E-03    | 7.22E-03         |

|        |                                                                         |                         |       |                |             | ONLI        |               |
|--------|-------------------------------------------------------------------------|-------------------------|-------|----------------|-------------|-------------|---------------|
|        | Emission Point                                                          | Regulated Air           | PT    | E <sup>a</sup> | PTE AFTER M | ODIFICATION | CHANGE IN PTE |
| Number | Name (Current / Proposed)                                               | Pollutant Name          | lb/hr | tons/yr        | lb/hr       | tons/yr     | tons/yr       |
|        | PM                                                                      |                         |       | 0.02           | 0.004       | 0.004       |               |
|        | N/A / Sycamore Propane Emergency Generator 2<br>(AOS1) (84.7 hp engine) | PM <sub>10</sub>        |       |                | 0.02        | 0.004       | 0.004         |
|        |                                                                         | PM <sub>2.5</sub>       |       |                | 0.02        | 0.004       | 0.004         |
|        |                                                                         | СО                      |       |                | 16.77       | 4.19        | 4.19          |
|        |                                                                         | NOx                     |       |                | 1.14        | 0.29        | 0.29          |
| 049-62 |                                                                         | SO <sub>2</sub>         |       |                | 0.01        | 0.003       | 0.003         |
| (AOS1) |                                                                         | VOC                     |       |                | 0.25        | 0.06        | 0.06          |
|        |                                                                         | CO <sub>2</sub>         |       |                | 123.27      | 30.82       | 30.82         |
|        |                                                                         | CH <sub>4</sub>         |       |                | 0.006       | 0.001       | 0.001         |
|        |                                                                         | N <sub>2</sub> O        |       |                | 0.001       | 0.0003      | 0.0003        |
|        |                                                                         | CO <sub>2</sub> e       |       |                | 123.77      | 30.94       | 30.94         |
|        |                                                                         | Total HAPs <sup>b</sup> |       |                | 2.89E-02    | 7.22E-03    | 7.22E-03      |

<sup>&</sup>lt;sup>a</sup> The values in the "PTE" column represent potential emissions prior to the proposed facility changes and updates.

<sup>&</sup>lt;sup>b</sup> See Appendix G for individual HAPs.

# APPENDIX D PROCESS FLOW DIAGRAMS OF THE DESIGN OF AOS1 IN CLASS II AIR QUALITY PERMIT #77414

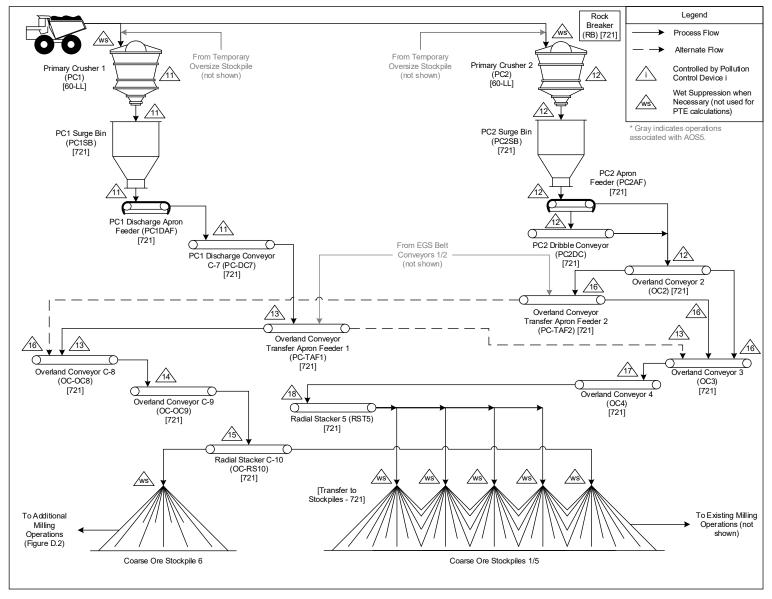



Figure D.1 Primary Crushing and Overland Conveying Operations (AOS1 – Design in Permit #77414)

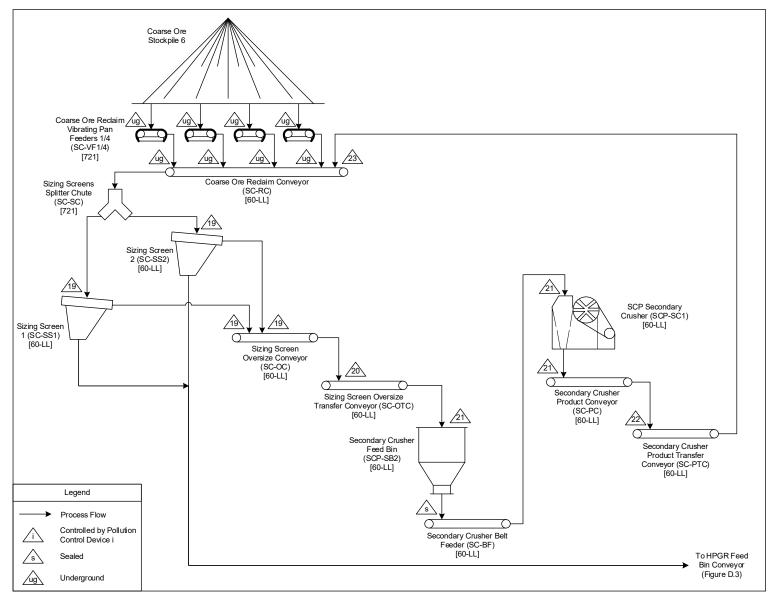



Figure D.2 Additional Milling Operations - Part 1 (AOS1 – Design in Permit #77414)

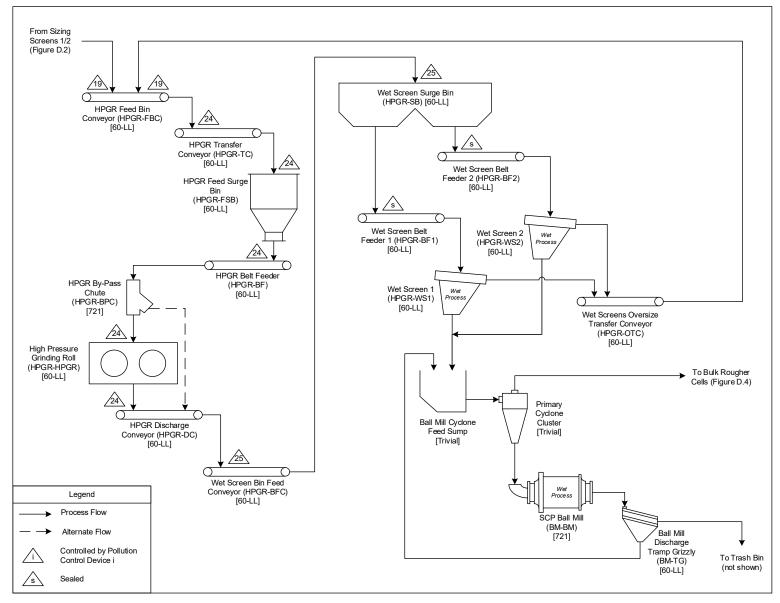



Figure D.3 Additional Milling Operations - Part 2 (AOS1 – Design in Permit #77414)

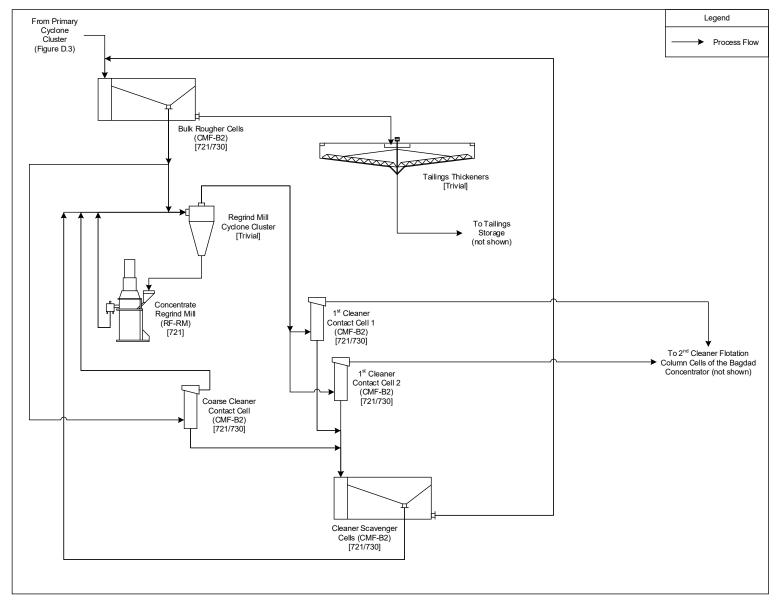



Figure D.4 Additional Bulk Flotation Operations (AOS1 – Design in Permit #77414)

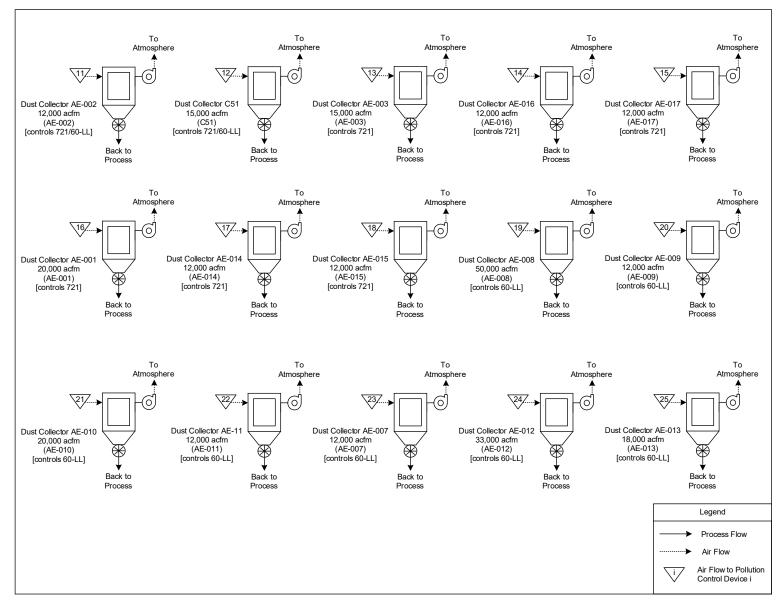



Figure D.5 Pollution Control Devices (AOS1 – Design in Permit #77414)

# APPENDIX E PROCESS FLOW DIAGRAMS OF THE PROPOSED UPDATED DESIGN OF AOS1

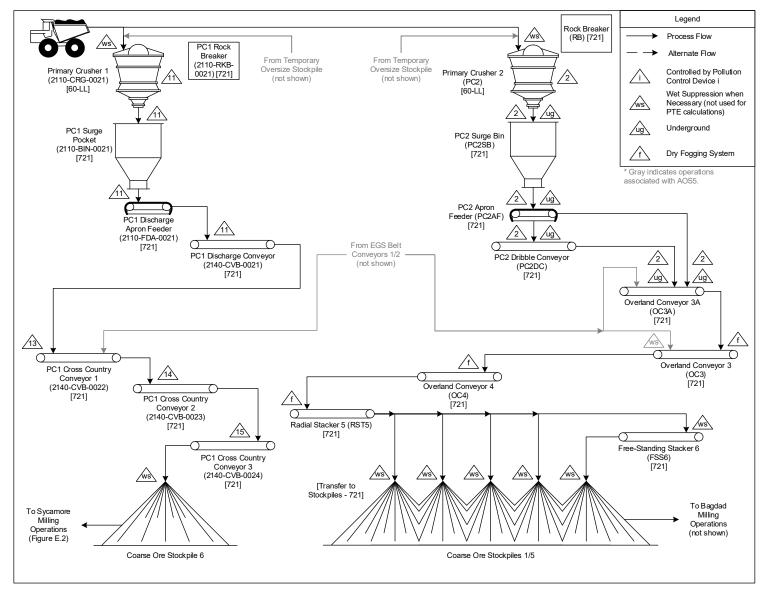



Figure E.1 Primary Crushing and Overland Conveying Operations (AOS1 – Proposed Updated Design)

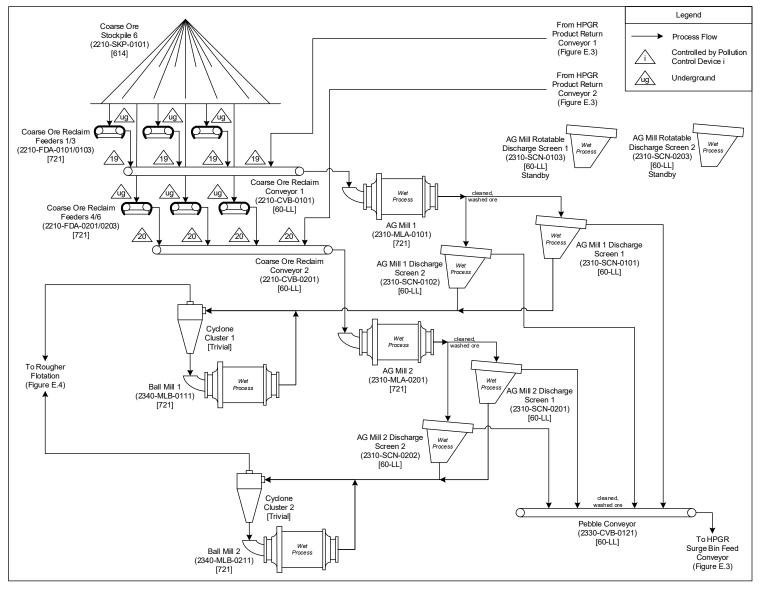



Figure E.2 Sycamore Milling Operations 1 (AOS1 – Proposed Updated Design)

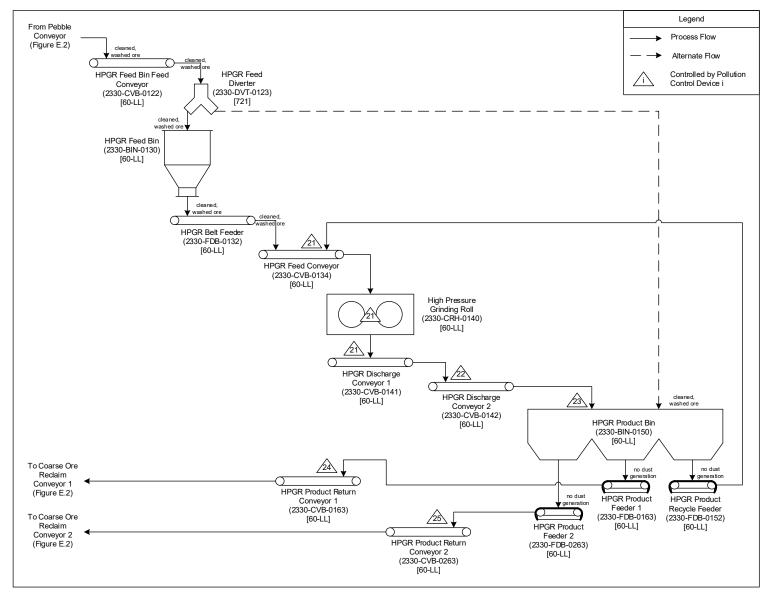



Figure E.3 Sycamore Milling Operations 2 (AOS1 – Proposed Updated Design)

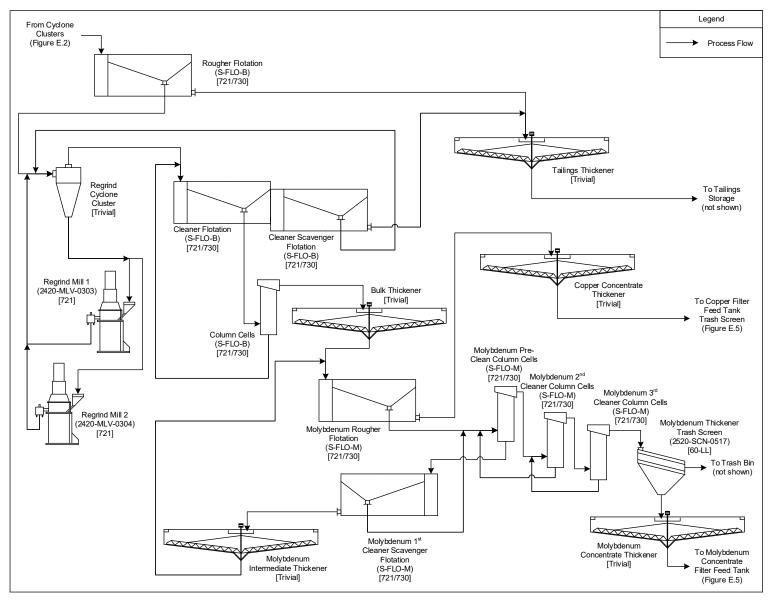



Figure E.4 Sycamore Flotation Operations (AOS1 – Proposed Updated Design)

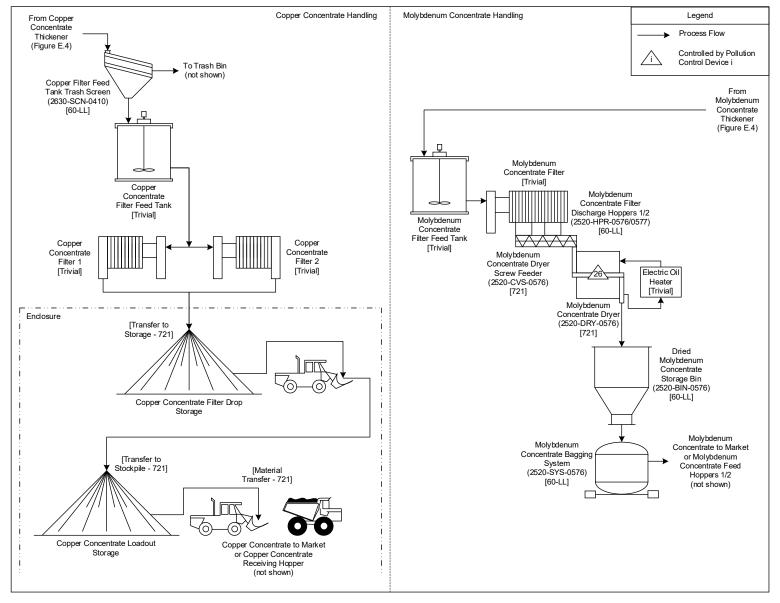



Figure E.5 Sycamore Concentrate Handling Operations (AOS1 – Proposed Updated Design)

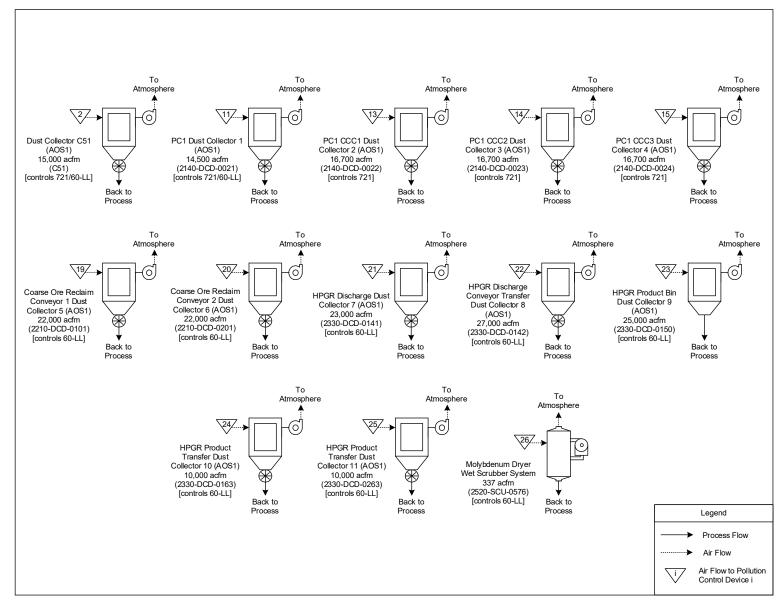



Figure E.6 Pollution Control Devices (AOS1 – Proposed Updated Design)

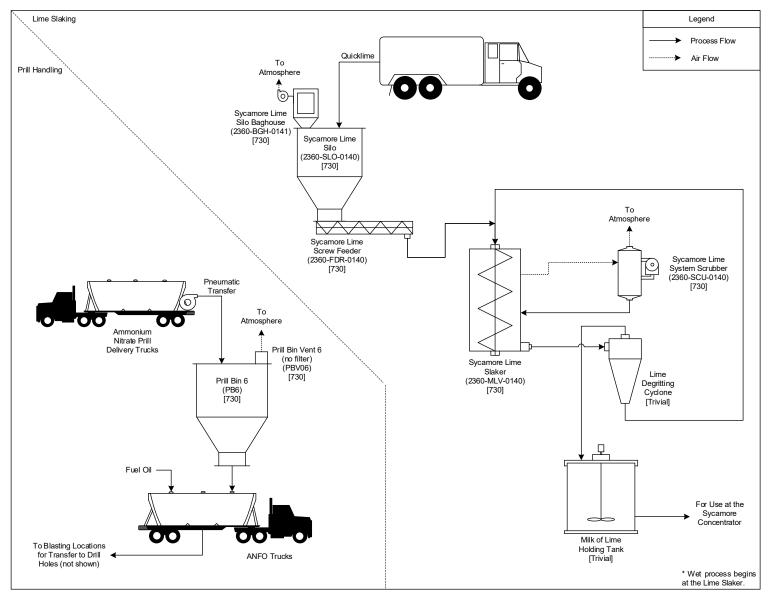



Figure E.7 Sycamore Prill Handling and Lime Slaking Operations (AOS1 – Proposed Updated Design)

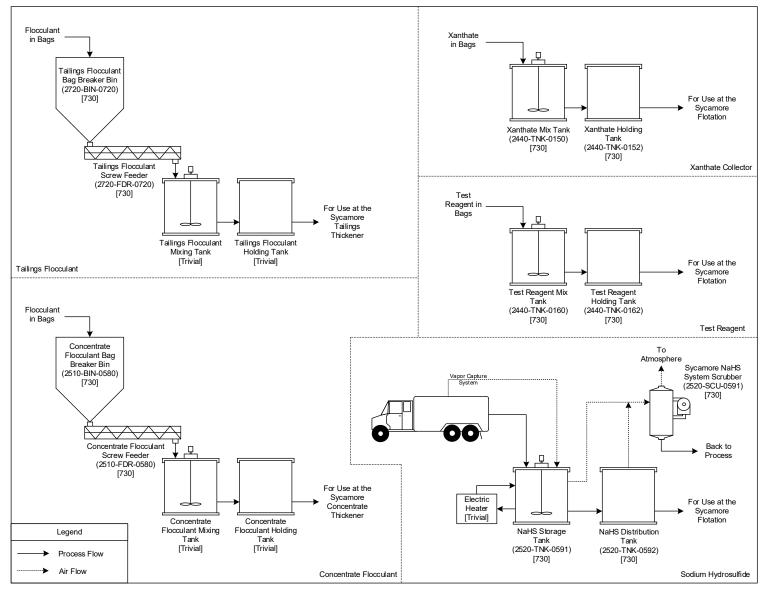



Figure E.8 Sycamore Reagent Delivery and Handling Operations (AOS1 – Proposed Updated Design)

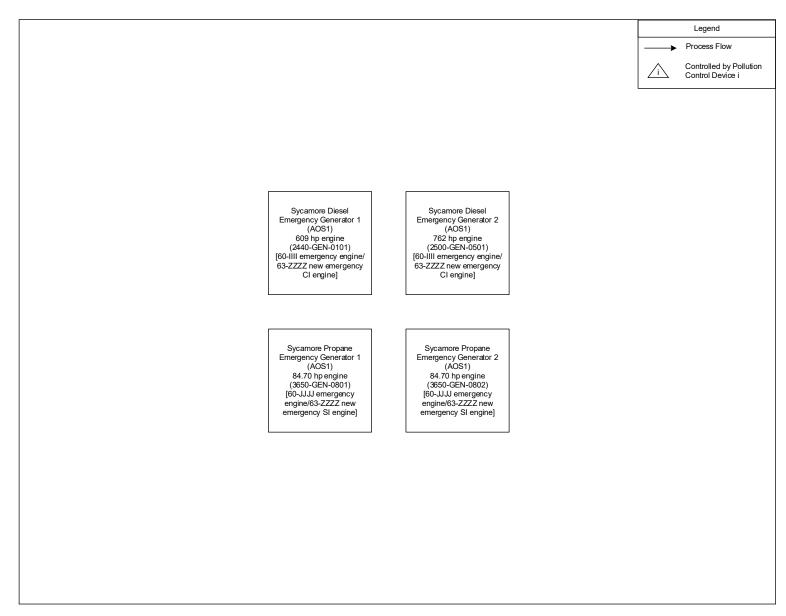



Figure E.9 Sycamore Emergency ICE (AOS1 – Proposed Updated Design)

# APPENDIX F CALCULATION METHODOLOGY

# F.1 INTRODUCTION

The methodology used to calculate the emission rates presented in Sections 5 and 10 and Appendices C and F of this application is explained in the following sections, including identification of process rates, emission factors, and control efficiencies. Emissions are calculated using the following general equations:

$$E_{A} = PR_{A} \times EF \times \left(1 - \frac{CE}{100}\right) \times \left(\frac{1 \text{ ton}}{2,000 \text{ lb}}\right)$$

$$E_{H} = PR_{H} \times EF \times \left(1 - \frac{CE}{100}\right)$$

where:

E<sub>A</sub> = calculated emissions on an annual basis (tons of pollutant/yr);

E<sub>H</sub> = calculated emissions on an hourly basis (lb of pollutant/hr);

PR<sub>A</sub> = annual process rate associated with the emission unit (activity/yr);

PR<sub>H</sub> = hourly process rate associated with the emission unit (activity/hr);

EF = emission factor (lb of pollutant/activity); and

CE = control efficiency (%).

# F.2 PROCESSES CONTROLLED BY DUST COLLECTORS WITH OUTLET GRAIN LOADING EMISSION FACTORS

# F.2.1 Process Rates

The annual and hourly process rates for the processes controlled by dust collectors with outlet grain loading emission factors are based on the hours of operation and the exhaust flow rate of the dust collectors in units of dscfm. When necessary, the exhaust flow rate of the dust collectors in units of cfm is assumed equal to dscfm. The exhaust flow rate in units of dscfm will always be less than the exhaust flow rate in units of acfm due to the ambient pressure of the FMBI facility and the expected dust collectors exhaust temperature. Therefore, assuming dscfm is equal to cfm is a worst-case estimate in regard to emission calculations. The exhaust flow rates, and process rates of the processes controlled by dust collectors with outlet grain loading emission factors are presented in Table F.1.

#### F.2.2 Emission Factors

PM and  $PM_{10}$  emissions from the processes controlled by dust collectors with outlet grain loading emission factors are based on voluntary emission limitations (see Section 6) converted to units of lb/dscf.  $PM_{2.5}$  emissions are assumed equal to  $PM_{10}$  emissions as a worst-case emission estimate.

HAP emissions from the processes controlled by dust collectors with outlet grain loading emission factors are calculated by multiplying the concentration of HAPs in the associated process material by the PM<sub>10</sub> emission factor. It is assumed that the concentration of HAPs in the associated process

material is equivalent to the concentration of HAPs in the PM<sub>10</sub> emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for the processes controlled by dust collectors with outlet grain loading emission factors are presented in Table F.1.

### F.2.3 Control Efficiencies

The control methods and corresponding control efficiencies for the processes controlled by dust collectors with outlet grain loading emission factors are presented in Table F.29.

# F.3 PROCESSES CONTROLLED BY SCRUBBERS WITH LB/HR EMISSION FACTORS

# F.3.1 Process Rates

The annual and hourly process rates for the processes controlled by scrubbers with lb/hr emission factors are based on the hours of operation. The process rates are presented in Table F.2.

#### F.3.2 Emission Factors

# F.3.2.1 Molybdenum Dryer Wet Scrubber System

PM emissions from the Molybdenum Dryer Wet Scrubber System are assumed to have a maximum rate equal to the emission standard of 40 CFR 60 Subpart LL (see Section 7) converted to units of lb/hr using an exhaust flow rate of 337 acfm. The exhaust flow rate of the scrubber in units of acfm is assumed equal to dscfm as a worst-case emission estimate. PM<sub>10</sub> and PM<sub>2.5</sub> emissions are assumed equal to PM emissions as a worst-case emission estimate.

Particulate based HAP emissions from the Molybdenum Dryer Wet Scrubber System are calculated by multiplying the concentration of HAPs in the molybdenum concentrate by the  $PM_{10}$  emission factor. It is assumed that the concentration of HAPs in the molybdenum concentrate is equivalent to the concentration of HAPs in the  $PM_{10}$  emitted. The HAP concentrations of the molybdenum concentrate is presented in Table F.28.

VOC emissions from the Molybdenum Dryer Wet Scrubber System are calculated using emission factors developed from performance test results of a scrubber controlling a similar drying process but scaled to the process rate at the FMBI facility and with an added 20% safety factor. VOC-based HAP emissions are calculated by applying diesel vapor mass fractions to the VOC emission factor. Diesel is similar to the primary organic used in the flotation equipment and which would remain in the molybdenum concentrate.

The emission factors for the Molybdenum Dryer Wet Scrubber System are presented in Table F.2.

# F.3.2.2 Sycamore NaHS System Scrubber

H<sub>2</sub>S emissions from the Sycamore NaHS System Scrubber are calculated using the following emission factor expression:

$$\mathsf{EF} = (\mathsf{FR}) \left( \frac{60 \; \mathsf{min}}{\mathsf{hour}} \right) \; (\mathsf{OC}) \; \left( \frac{28.3168 \; \mathsf{L} \; \mathsf{H}_2 \mathsf{S}}{\mathsf{ft}^3 \; \mathsf{H}_2 \mathsf{S}} \right) \; \left( \frac{\mathsf{1}}{\mathsf{MV}} \right) \; (\mathsf{MM}) \; \left( \frac{\mathsf{1} \; \mathsf{1b} \; \mathsf{H}_2 \mathsf{S}}{\mathsf{453.59237} \; \mathsf{g} \; \mathsf{H}_2 \mathsf{S}} \right)$$

where:

EF = emission factor (lb/hr)

FR = exhaust flow rate of the Sycamore NaHS System Scrubber (735 ft<sup>3</sup>/min)

OC =  $H_2S$  outlet concentration (10 ppm<sub>v</sub>, maximum concentration expected by the

manufacturer)

MV = molar volume of H<sub>2</sub>S at 25°C and 1 atm (24.45 L/mol, assume H<sub>2</sub>S is similar

to an ideal gas)

MM = molar mass of  $H_2S$  (34.0809 g/mol)

The emission factors for the Sycamore NaHS System Scrubber are presented in Table F.2.

# F.3.3 Control Efficiencies

The control methods and corresponding control efficiencies for the processes controlled by scrubbers with lb/hr emission factors are presented in Table F.29.

# F.4 DRILLING

#### F.4.1 Process Rates

The annual and hourly process rates for drilling are based on the number of holes necessary for the quantity of blasts described in Section F.5.1. The process rates for drilling and a description of how they were determined are presented in Table F.3.

# F.4.2 Emission Factors

PM emissions from drilling are calculated using the emission factor from Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources, Fifth Edition (AP-42) Table 11.9-4 (10/98) for total suspended particulates (TSP) from drilling of overburden at western surface coal mines. The TSP emission factor is assumed to be applicable for PM. PM<sub>10</sub> and PM<sub>2.5</sub> emissions from drilling are not listed in AP-42 Table 11.9-4. PM<sub>10</sub> and PM<sub>2.5</sub> emissions are assumed equal to 60% and 11.1%, respectively, of PM emissions based on the ratio determined using the emission factors in AP-42 Table 11.9-2-2 and Figure 11.19-4 (08/04) for tertiary crushing (controlled).

HAP emissions from drilling are calculated by multiplying the concentration of HAPs in the associated process material by the PM<sub>10</sub> emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the PM<sub>10</sub> emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for drilling are presented in Table F.4.

# F.4.3 Control Efficiencies

The control methods and corresponding control efficiencies for drilling are presented in Table F.29.

# F.5 BLASTING

#### F.5.1 Process Rates

The annual process rate for blasting is based on the number of blasts necessary to achieve the maximum mining rate. The hourly process rate is based on a maximum of one blast being able to occur per hour. The process rates for blasting are presented in Table F.3.

# F.5.2 Emission Factors

PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from blasting are calculated using the following emission factor expression from AP-42 Table 11.9-1 (10/98) for blasting at western surface coal mines:

$$EF_h = (k)(0.000014)(A_{max}^{1.5})$$

$$EF_a = (k)(0.000014)(A_{avg}^{1.5})$$

where:

EF<sub>h</sub> = emission factor on an hourly basis (lb/blast);

EF<sub>a</sub> = emission factor on an annual basis (lb/blast);

k = particle size multiplier (1 for TSP, assumed to be equivalent to PM, 0.52 for

 $PM_{10}$ , 0.03 for  $PM_{2.5}$ );

A<sub>max</sub> = maximum horizontal area of a blast (200,000 square feet [ft²] maximum for the

design of AOS1 in Class II Air Quality Permit #77414, 497,956  $ft^2$  for the

proposed updated design of AOS1); and

 $A_{avg}$  = average horizontal area of the blasts (93,000 ft<sup>2</sup> average for the design of

AOS1 in Class II Air Quality Permit #77414, 414,963 ft<sup>2</sup> for the proposed

updated design of AOS1).

Particulate based HAP emissions from blasting are calculated by multiplying the concentration of HAPs in the associated process material by the PM<sub>10</sub> emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the PM<sub>10</sub> emitted. The HAP concentrations of the various process material are presented in Table F.28.

CO emissions from blasting are calculated using an emission factor from the article titled *Factors Affecting ANFO Fumes Production* by The National Institute for Occupational Safety and Health (NIOSH) (2001). The emission factor is based on the data points in Figure 2 for ANFO with a 6% fuel oil content. NO<sub>X</sub> emissions are calculated using the average emission factor from the journal article titled *NO<sub>X</sub> Emissions from Blasting Operations in Open-Cut Coal Mining* from Atmospheric Environment 42 (2008), which presents the results of a more successful technique used to measure NO<sub>X</sub> emissions from blasting. SO<sub>2</sub> emissions are calculated assuming all the sulfur in the ANFO is converted to SO<sub>2</sub>

emissions. The sulfur content of the diesel fuel is a maximum of 0.0015% while the sulfur content of the animal fat used in the ANFO emulsions is estimated at a worst-case value of 500 ppm based on a 03/2003 EPA document that states biofuels reduce  $SO_2$  emissions more than No. 2 diesel.  $CO_2$ ,  $CH_4$ , and  $N_2O$  emissions are calculated using the emission factors from 40 CFR 98 Tables C-1 and C-2 for distillate fuel oil No. 2 and rendered animal fat.

Supplementary HAP emissions from blasting are calculated using emission factors from AP-42 Tables 1.3-8 and 1.3-10 (05/10) for distillate fuel oil combustion. The formaldehyde emission factor is assumed to be equal to the high-end value of the formaldehyde range as a worst-case emission estimate. Additionally, it is assumed that HAP emissions from diesel combustion are an upper limit for HAP emissions from animal fat combustion.

The following parameters are used to express the blasting emission factors in units of lb/blast:

- A diesel fuel density of 7.05 lb/gal (AP-42 Table 1.3-12);
- An animal fat density of 7.34 lb/gal (A Demonstration of Fat and Grease as an Industrial Boiler Fuel);
- Maximum annual and hourly usage of ammonium nitrate prill, ammonium nitrate solution, diesel fuel, and animal fat (planned mining process rates with a 94% ammonium nitrate and 6% fuel oil blasting mixture);
- The ammonium nitrate prill contains 99.8% ammonium nitrate;
- The ammonium nitrate solution contains 78% ammonium nitrate;
- The solution used to make ANFO emulsions contains 78.5% diesel and 21.5% animal fat;
- A diesel heating value of 137,000 Btu/gal; and
- An animal fat heating value of 0.125 MMBtu/gal.

The emission factors for blasting are presented in Tables F.5 and F.6. Because the inputs and parameters used to calculate the emission factors vary on an annual and hourly basis, two sets of emission factors are developed for both the design of AOS1 in Class II Air Quality Permit #77414 and the proposed updated design of AOS1.

#### F.5.3 Control Efficiencies

The control methods and corresponding control efficiencies for blasting are presented in Table F.29.

# F.6 HAUL TRUCK AND OTHER VEHICLE TRAVEL ON UNPAVED ROADS

# F.6.1 Process Rates

The annual and hourly process rates for haul truck and other vehicle travel on unpaved roads are based on the miles traveled by the various vehicles to support the mining and processing operations. The annual and hourly process rates for haul truck and other vehicle travel on unpaved roads are presented in Tables F.7 and F.8.

# F.6.2 Emission Factors

PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from haul truck and other vehicle travel on unpaved roads are calculated using the following equations from AP-42 Section 13.2.2 (11/06):

$$EF_h = (k) \left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b$$

$$EF_a = (k) \left(\frac{s}{12}\right)^a \left(\frac{W}{3}\right)^b \left(\frac{(365-p)}{365}\right)$$

where:

EF<sub>h</sub> = emission factor on an hourly basis (lb per vehicle miles traveled [VMT]);

EF<sub>a</sub> = emission factor on an annual basis (lb/VMT);

k = particle size multiplier (4.9 for PM, 1.5 for PM<sub>10</sub>, 0.15 for PM<sub>2.5</sub>);

a = constant (0.7 for PM, 0.9 for PM<sub>10</sub> and PM<sub>2.5</sub>);

b = constant (0.45 for PM,  $PM_{10}$ , and  $PM_{2.5}$ );

s = surface material silt content (7.0%, site-specific historic value);

W = mean weight of the haul trucks and other vehicles traveling the unpaved roads

(see Tables F.7 and F.8); and

p = number of days per year with precipitation greater than 0.01 inch (45 day/yr, based on 1925-2012 data from the Western Region Climate Center, Bagdad

Station).

HAP emissions from haul truck and other vehicle travel on unpaved roads are calculated by multiplying the concentration of HAPs in the associated process material by the PM<sub>10</sub> emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the PM<sub>10</sub> emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for vehicle travel on unpaved roads are presented in Tables F.9 and F.10.

#### F.6.3 Control Efficiencies

The control methods and corresponding control efficiencies for haul truck and other vehicle travel on unpaved roads are presented in Table F.29.

# F.7 DOZER OPERATIONS

# F.7.1 Process Rates

The annual and hourly process rates for dozer operations are based on the total operating hours of the dozer fleet. The process rates are calculated by multiplying the annual and hourly operating hours for

each dozer by the quantity of dozers. The annual and hourly process rates for dozer operations are presented in Tables F.11 and F.12.

# F.7.2 Emission Factors

PM, PM $_{10}$ , and PM $_{2.5}$  emissions from dozer operations are calculated using the following equation from AP-42 Table 11.9-1 (10/98) for bulldozing overburden:

EF= (k) 
$$\left(\frac{s^a}{M^b}\right)$$

where:

b

EF = emission factor (lb/hr);

k = particle size multiplier (5.7 for PM, 0.75 for PM<sub>10</sub>, 0.5985 for PM<sub>2.5</sub>);

a = constant (1.2 for PM and  $PM_{2.5}$ , 1.5 for  $PM_{10}$ );

= constant (1.3 for PM and  $PM_{2.5}$ , 1.4 for  $PM_{10}$ );

s = material silt content (4.0%, estimated value based on similar copper mines);

and

M = material moisture content (2.564%, assumed equivalent to the mined

material).

HAP emissions from dozer operations are calculated by multiplying the concentration of HAPs in the associated process material by the PM<sub>10</sub> emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the PM<sub>10</sub> emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for dozer operations are presented in Table F.13.

# F.7.3 Control Efficiencies

The control methods and corresponding control efficiencies for dozer operations are presented in Table F.29.

# F.8 ROAD GRADER OPERATIONS

# F.8.1 Process Rates

The annual and hourly process rates for road grader operations are based on the total vehicle miles traveled by the grader fleet. The annual and hourly miles traveled are determined using the quantity of graders, average speed, and annual and hourly operating hours for each grader. The annual and hourly process rates for road grader operations are presented in Tables F.10 and F.11.

#### F.8.2 Emission Factors

PM,  $PM_{10}$ , and  $PM_{2.5}$  emissions from road grader operations are calculated using the following equation from AP-42 Table 11.9-1 (10/98) for grading:

$$EF=(k)(a)(S^b)$$

where:

EF = emission factor (lb/VMT);

k = particle size multiplier (1 for PM, 0.60 for  $PM_{10}$ , 0.031 for  $PM_{2.5}$ );

a = constant (0.040 for PM and  $PM_{2.5}$ , 0.051 for  $PM_{10}$ );

b = constant (2.5 for PM and  $PM_{2.5}$ , 2.0 for  $PM_{10}$ ); and

S = mean vehicle speed (6 miles per hour [mph], site-specific estimated value).

HAP emissions from road grader operations are calculated by multiplying the concentration of HAPs in the associated process material by the  $PM_{10}$  emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the  $PM_{10}$  emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for road grader operations are presented in Table F.14.

### F.8.3 Control Efficiencies

The control methods and corresponding control efficiencies for road grader operations are presented in Table F.29.

# F.9 MATERIAL TRANSFER POINTS

# F.9.1 Process Rates

The annual and hourly process rates for material transfer points are based on the amount of material transferred and can be determined using equipment capacities and hours of operations, delivery rates, or maximum expected throughputs. The annual and hourly process rates for material transfer points and a description of how they were determined are presented in Table F.15.

# F.9.2 Emission Factors

The type and moisture content of the material processed by the transfer points is presented in Table F.16 along with identification of which of the following emission factors are used to calculate emissions.

# F.9.2.1 Material Transfer of Mined Material, Concentrates, and Flocculant

PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions from the material transfer points associated with mined material, concentrates, and flocculant are calculated using the following emission factor expression from AP-42 Section 13.2.4.3 (11/06) for aggregate drop processes:

EF = (k)(0.0032) 
$$\left(\frac{\left(\frac{U}{5}\right)^{1.3}}{\left(\frac{M}{2}\right)^{1.4}}\right)$$

where:

EF = emission factor (lb/ton);

k = particle size multiplier (0.74 for PM, 0.35 for PM<sub>10</sub>, 0.053 for PM<sub>2.5</sub>);

U = mean wind speed; and

The mean ambient wind speed at the FMBI facility is 7.10 mph based on 2018-2019 data from the Townsite Meteorological Monitor. This wind speed is used for unprotected material transfer points subject to ambient winds.

The lowest wind speed able to be used in the aggregate drop process equation and retain an A rating is 1.3 mph. This wind speed is used for protected material transfer points such as those located indoors or underground or shielded from the ambient wind by enclosures, chutes, curtains, or seals.

M = material moisture content.

For each material transfer point, the type of material transferred, the moisture content of the material transferred, and the classification of the transfer as being either protected or unprotected is identified in Table F.16.

HAP emissions from the material transfer points associated with mined material, concentrates, and flocculant are calculated by multiplying the concentration of HAPs in the associated process material by the PM<sub>10</sub> emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the PM<sub>10</sub> emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for the material transfer points associated with mined material, concentrates, and flocculant are presented in Table F.17.

# F.9.2.2 Material Transfer of Lime

PM emissions from the material transfer points associated with lime are calculated using the emission factor from AP-42 Table 11.17-4 (02/98) for lime product loading, enclosed truck.  $PM_{10}$  and  $PM_{2.5}$  emissions are estimated to be 35% and 5.3%, respectively, of PM emissions based on the particle size fractions in AP-42 Section 13.2.4.3 (11/06) for aggregate drop processes.

The emission factors for the material transfer points associated with lime are presented in Table F.18.

#### F.9.2.3 Material Transfer of Ammonium Nitrate Prill

PM emissions from the material transfer points associated with ammonium nitrate prill are calculated using the emission factor from AP-42 Table 8.3-2 (07/93) for ammonium nitrate bulk loading operations.

PM<sub>10</sub> and PM<sub>2.5</sub> emissions are estimated to be 35% and 5.3%, respectively, of PM emissions based on the particle size fractions in AP-42 Section 13.2.4.3 (11/06) for aggregate drop processes.

The emission factors for the material transfer points associated with ammonium nitrate prill are presented in Table F.19.

### F.9.3 Control Efficiencies

The control methods and corresponding control efficiencies for material transfer points are presented in Table F.29.

# F.10 WIND EROSION OF CONTINUOUSLY ACTIVE STOCKPILES

# F.10.1 Process Rates

The annual and hourly process rates for wind erosion of continuously active stockpiles are based on the acreage of the storage area. The annual and hourly process rates for the continuously active stockpiles are presented in Table F.20.

# F.10.2 Emission Factors

PM, PM<sub>10</sub>, and PM<sub>2.5</sub> emissions due to wind erosion of continuously active stockpiles are calculated using the following emission factor expressions derived from the 4<sup>th</sup> Edition of AP-42 Section 11.2.3 (05/83) for wind erosion of active storage piles:

$$EF_{annual} = (k)(1.7) \left(\frac{s}{1.5}\right) \left(\frac{365-p}{235}\right) \left(\frac{f}{15}\right) (a)$$

$$EF_{hourly} = (k)(1.7) \left(\frac{s}{1.5}\right) \left(\frac{365-p}{235}\right) \left(\frac{f}{15}\right) \left(\frac{1}{h}\right)$$

where:

EF<sub>annual</sub> = emission factor on an annual basis (lb/acre-yr);

EF<sub>hourly</sub> = emission factor on an hourly basis (lb/acre-hr);

k = particle size multiplier (1 for PM, 0.5 for PM<sub>10</sub>, 0.075 for PM<sub>2.5</sub> from AP-42 Section 13.2.5 (11/06));

s = silt content of surface material (see Table F.20);

p = number of days per year with precipitation greater than 0.01 inch (45 day/yr, based on 1925-2012 data from the Western Region Climate Center, Bagdad Station);

f = percentage of time the mean wind speed is greater than 12 mph at the mean pile height (10.00%, based on 2018-2019 data from the Townsite Meteorological Monitor);

a = number of days per year the stockpile is used (365 day/yr); and

h = number of hours per day the stockpile is used (24 hr/day).

HAP emissions from the wind erosion of continuously active stockpiles are calculated by multiplying the concentration of HAPs in the associated process material by the  $PM_{10}$  emission factor. It is assumed that the concentration of HAPs in the associated process material is equivalent to the concentration of HAPs in the  $PM_{10}$  emitted. The HAP concentrations of the various process material are presented in Table F.28.

The emission factors for the wind erosion of continuously active stockpiles are presented in Table F.20.

# F.10.3 Control Efficiencies

The control methods and corresponding control efficiencies for the wind erosion of continuously active stockpiles are presented in Table F.29.

# F.11 LIME SLAKING

# F.11.1 Process Rates

The annual and hourly process rates for lime slaking are based on the amount of lime slaked and are determined using equipment capacities and hours of operation. The annual and hourly process rates for lime slaking and a description of how they were determined are presented in Table F.15.

#### F.11.2 Emission Factors

PM emissions from the Sycamore Lime Slaker are calculated using manufacturer's information from a stack test performed on a similar slaker. The stack test results in units of lb of PM per hour were converted to units of lb of PM per ton of lime to account for the difference in the capacity of the slaker tested versus the Sycamore Lime Slaker. Additionally, a 20% safety factor was added to account for any differences in the configuration and/or location of the slaker. PM<sub>10</sub> and PM<sub>2.5</sub> emission factors are assumed to equal the PM emission factor as a worst-case emission estimate.

The emission factors for the Sycamore Lime Slaker are presented in Table F.21.

#### F.11.3 Control Efficiencies

The control methods and corresponding control efficiencies for the Sycamore Lime Slaker are presented in Table F.29.

# F.12 SYCAMORE BULK AND MOLYBDENUM FLOTATION EQUIPMENT

# F.12.1 Process Rates

The annual and hourly process rates for the Sycamore Bulk and Molybdenum Flotation Equipment are based on the quantity of concentrate processed in the bulk flotation operations. The process rates of the Sycamore Bulk and Molybdenum Flotation Equipment are presented in Table F.22.

# F.12.2 Emission Factors

VOC emissions from the Sycamore Bulk and Molybdenum Flotation Equipment are calculated using an emission factor of approximately 2.35 lb per ton of organic, based testing conducted at the Freeport-McMoRan Henderson Mill in 2009. The emission factor is converted to units of lb per ton of concentrate using organic reagent and concentrate data from 2018. HAP emissions are calculated by applying diesel vapor mass fractions to the VOC emission factor. Diesel is the primary organic used in the flotation equipment.

H<sub>2</sub>S emissions from the Sycamore Bulk and Molybdenum Flotation Equipment are calculated using an emission factor of approximately 0.0084 lb/ton, from a Freeport-McMoRan Technology Center study titled *Hydrogen Sulfide and Carbon Dioxide Emissions from Flotation Cell Operations Under Targeted Conditions* conducted by Hazen Research Inc. (02/2013). The emission factor is a conservative value based on tests conducted using a pH of 9.5. The Sycamore Molybdenum Flotation Equipment will typically operate at a pH greater than or equal to 11.

The emission factor for the Sycamore Bulk and Molybdenum Flotation Equipment is presented in Table F.22.

#### F.12.3 Control Efficiencies

The control methods and corresponding control efficiencies for the Sycamore Bulk and Molybdenum Flotation Equipment are presented in Table F.29.

# F.13 XANTHATE AND TEST REAGENT MIXING AND STORAGE TANKS

#### F.13.1 Process Rates

The annual and hourly process rates for the xanthate and test reagent mixing and storage tanks are based on xanthate or test reagent usage rates. The process rates are presented in Table F.23.

#### F.13.2 Emission Factors

VOC and HAP emissions from the xanthate and test reagent mixing and storage tanks are calculated using the following equation adapted from data presented in the *AERO Xanthate Handbook* (1972):

$$\mathsf{EF} \ = \ \left(\frac{\mathsf{L}\ \mathsf{lb}\ \mathsf{xan.}\ \mathsf{loss}}{\mathsf{100}\ \mathsf{lb}\ \mathsf{xan.}\ \mathsf{\cdot day}}\right) \left(\frac{\mathsf{2,000}\ \mathsf{lb}\ \mathsf{xan.}}{\mathsf{1}\ \mathsf{ton}\ \mathsf{xan.}}\right) \left(\frac{\mathsf{1}\ \mathsf{mol}\ \mathsf{xan.}\ \mathsf{loss}}{\mathsf{202.4}\ \mathsf{lb}\ \mathsf{xan.}\ \mathsf{loss}}\right) \left(\frac{\mathsf{3}\ \mathsf{mol}\ \mathsf{CS}_2\ \mathsf{gen.}}{\mathsf{6}\ \mathsf{mol}\ \mathsf{xan.}\ \mathsf{loss}}\right) \left(\frac{\mathsf{76.14}\ \mathsf{lb}\ \mathsf{CS}_2\ \mathsf{gen.}}{\mathsf{1}\ \mathsf{mol}\ \mathsf{CS}_2\ \mathsf{gen.}}\right) (\mathsf{T}\ \mathsf{days})$$

where:

EF = emission factor (lb CS<sub>2</sub> generated/ton xanthate or test reagent);

Exanthate decomposition rate (%, see Table F.23, from the AERO Xanthate Handbook for AERO 325 [sodium ethyl xanthate] at a 25% solution concentration and 2018 temperature data from the Townsite Meteorological Monitor, assume the test reagent generates CS<sub>2</sub> emissions at the same rate); and

T = average tank holding period (days, see Table F.23).

The emission factors for the xanthate and test reagent mixing and storage tanks are presented in Table F.23.

#### F.13.3 Control Efficiencies

The control methods and corresponding control efficiencies for the xanthate and test reagent mixing and storage tanks are presented in Table F.29.

# F.14 DIESEL EMERGENCY GENERATORS

#### F.14.1 Process Rates

The annual and hourly process rates for diesel emergency generators are based on power ratings (capacity) of the associated engines and hours of operation. The annual and hourly process rates for diesel emergency generators and a description of how they were determined are presented in Table F.24.

#### F.14.2 Emission Factors

The diesel emergency generators are presented in Table F.24 along with identification of which of the following emission factors are used to calculate emissions from the associated engines.

### F.14.2.1 Tier 2 Diesel Engines (kW > 560)

PM, CO, NO<sub>X</sub>, and VOC emissions from Tier 2 diesel engines rated greater than 560 kW are calculated using the applicable exhaust emission standards from Table 2 of Appendix I of 40 CFR 1039. PM<sub>10</sub> and PM<sub>2.5</sub> emissions are assumed to equal PM emissions as a worst-case emission estimate. The combined NO<sub>X</sub> and VOC emission standard is separated based on Table 4-6 of the EPA document titled *Exhaust and Crankcase Emission Factors for Nonroad Compression Ignition Engines in MOVES3.0.2*, which states that NO<sub>X</sub> and VOC emissions for Tier 2 engines rated greater than 560 kW are assumed to be equal to 93.75% and 6.25%, respectively, of the combined emission standard.

 $SO_2$  emissions are calculated assuming all the sulfur in the diesel fuel combusted in the engine is converted to  $SO_2$  emissions. The FMBI facility uses ultra-low sulfur diesel fuel, which has a maximum sulfur content of 0.0015%.  $CO_2$ ,  $CH_4$ , and  $N_2O$  emissions are calculated using the emission factors from 40 CFR 98 Tables C-1 and C-2 for distillate fuel oil No. 2.

HAP emissions from Tier 2 diesel engines rated greater than 560 kW are calculated using the emission factors from AP-42 Tables 3.4-3 and 3.4-4 (10/96) for uncontrolled diesel engines. These emission factors are applicable to engines rated greater than 600 hp (447.42 kW).

When necessary, a diesel heating value of 19,300 Btu/lb of diesel fuel and an average brake-specific fuel consumption value of 7,000 Btu/hp-hr are used to calculate the emission factors in units of lb/hp-hr.

The emission factors for Tier 2 diesel engines rated greater than 560 kW are presented in Table F.25.

# F.14.2.2 Tier 3 Diesel Engines ( $450 \le kW \le 560$ )

PM, CO, NOx, and VOC emissions from Tier 3 diesel engines rated greater than or equal to 450 kW, but less than or equal to 560 kW are calculated using the applicable exhaust emission standards from Table 3 of Appendix I of 40 CFR 1039. PM<sub>10</sub> and PM<sub>2.5</sub> emissions are assumed to equal PM emissions as a worst-case emission estimate. The combined NO<sub>x</sub> and VOC emission standard is separated based on Table 4-6 of the EPA document titled *Exhaust and Crankcase Emission Factors for Nonroad Compression Ignition Engines in MOVES2014b*, which states that NO<sub>x</sub> and VOC emissions for Tier 3 engines rated greater than or equal to 450 kW, but less than or equal to 560 kW are assumed to be equal to 93.33% and 6.67%, respectively, of the combined emission standard.

 $SO_2$  emissions are calculated assuming all the sulfur in the diesel fuel combusted in the engine is converted to  $SO_2$  emissions. The FMBI facility uses ultra-low sulfur diesel fuel, which has a maximum sulfur content of 0.0015%.  $CO_2$ ,  $CH_4$ , and  $N_2O$  emissions are calculated using the emission factors from 40 CFR 98 Tables C-1 and C-2 for distillate fuel oil No. 2.

HAP emissions from Tier 3 diesel engines rated greater than or equal to 450 kW, but less than or equal to 560 kW are calculated using the emission factors from AP-42 Tables 3.4-3 and 3.4-4 (10/96) for uncontrolled diesel engines. These emission factors are applicable to engines rated greater than 600 hp (447.42 kW).

When necessary, a diesel heating value of 19,300 Btu/lb of diesel fuel and an average brake-specific fuel consumption value of 7,000 Btu/hp-hr are used to calculate the emission factors in units of lb/hp-hr.

The emission factors for Tier 3 diesel engines rated greater than or equal to 450 kW, but less than or equal to 560 kW are presented in Table F.26.

# F.14.3 Control Efficiencies

The control methods and corresponding control efficiencies for the diesel emergency generators are presented in Table F.29.

# F.15 SYCAMORE PROPANE EMERGENCY GENERATORS

# F.15.1 Process Rates

The annual and hourly process rates for the Sycamore propane emergency generators are based on power ratings (capacity) of the associated engines and hours of operation. The annual and hourly process rates for the Sycamore propane emergency generators and a description of how they were determined are presented in Table F.24.

#### F.15.2 Emission Factors

PM and HAP emissions from the engines associated with the Sycamore propane emergency generators are calculated using the emission factors from AP-42 Table 3.2-3 (08/00) for 4-stroke rich burn natural gas engines. The PM emission factor is the sum of the filterable PM<sub>10</sub> emission factor and

#### Calculation Methodology

July 2023

the condensable PM emission factor. PM<sub>10</sub> and PM<sub>2.5</sub> emissions are assumed to be equal to PM emissions since both the filterable and condensable particulate matter is assumed to be less than 1 micron in diameter.

The AP-42 section for natural gas fired reciprocating engines is used to estimate emissions from the propane emergency engines because AP-42 does not have a section for propane fired reciprocating engines. However, review of EPA reference documents (see the EPA document titled *Exhaust Emission Factors for Nonroad Engine Modeling - Spark-Ignition*) shows that emissions from propane fired engines are similar or less than emissions from natural gas engines.

CO, NOx, and VOC emissions from the engines associated with the Sycamore propane emergency generators are calculated using certification values for EPA engine family PCEXB05.9ARC. The EPA engine family corresponds to the engines chosen for the Sycamore Concentrator operations.

SO<sub>2</sub> emissions from the engines associated with the Sycamore propane emergency generators are calculated assuming all the sulfur in the propane fuel is converted to SO<sub>2</sub> emissions and the sulfur content of the propane fuel is 10 gr/100 scf based on information from the Santa Barbara County Air Pollution Control District for HD-5 propane. CO<sub>2</sub>, CH<sub>4</sub>, and N<sub>2</sub>O emissions are calculated using the emission factors from 40 CFR 98 Tables C-1 and C-2 for propane combustion.

When necessary, a propane higher heating value of 2,520 Btu/scf and a brake-specific fuel consumption value of 10,500 Btu/hp-hr are used to calculate the emission factors in units of lb/hp-hr.

The emission factors for the engines associated with the Sycamore propane emergency generators are presented in Table F.27.

# F.15.3 Control Efficiencies

The control methods and corresponding control efficiencies for the Sycamore propane emergency generators are presented in Table F.29.

Table F.1 Process Rate and Emission Factor Information for Processes Controlled by Dust Collectors with Outlet Grain Loading Emission Factors

| Process          | Emission Unit                    | Exhaust<br>Flow Rate |                     | Process             | Rates                                                                                  |        | Emission<br>n (gr/dscf) |          | Emissi           | on Factors (      | lb/dscf) |               |
|------------------|----------------------------------|----------------------|---------------------|---------------------|----------------------------------------------------------------------------------------|--------|-------------------------|----------|------------------|-------------------|----------|---------------|
| Number           | Description                      | (dscfm) <sup>a</sup> | Hourly<br>(dscf/hr) | Annual<br>(dscf/yr) | Description                                                                            | PM     | PM <sub>10</sub>        | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Lead     | Total<br>HAPs |
| Affected I       | Emissions Units - Des            | sign of AOS1         | in Class II Ai      | ir Quality Perm     | nit #77414                                                                             |        |                         |          |                  |                   |          |               |
| Primary C        | rushing and Overland             | Conveying Op         | erations (to B      | agdad Concent       | rator) (AOS1)                                                                          |        |                         |          |                  |                   |          |               |
| 001-5<br>(AOS1)  | Dust Collector C51<br>(AOS1)     | 15,000               | 900,000             | 7.8840E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0135 | 0.0135                  | 1.93E-06 | 1.93E-06         | 1.93E-06          | 2.38E-11 | 5.85E-10      |
| 001-16<br>(AOS1) | Dust Collector AE-<br>001 (AOS1) | 20,000               | 1,200,000           | 1.0512E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |
| 001-17<br>(AOS1) | Dust Collector AE-<br>014 (AOS1) | 12,000               | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |
| 001-18<br>(AOS1) | Dust Collector AE-<br>015 (AOS1) | 12,000               | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |
| Primary C        | rushing and Overland             | Conveying Op         | erations (to S      | ycamore Conce       | entrator) (AOS1)                                                                       |        |                         |          |                  |                   |          |               |
| 001-12<br>(AOS1) | Dust Collector AE-<br>002 (AOS1) | 12,000               | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |
| 001-13<br>(AOS1) | Dust Collector AE-<br>003 (AOS1) | 15,000               | 900,000             | 7.8840E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |

Table F.1 Process Rate and Emission Factor Information for Processes Controlled by Dust Collectors with Outlet Grain Loading Emission Factors

| Process          | Emission Unit                    | Exhaust                        |                     | Process             | Rates                                                                                  |        | Emission<br>n (gr/dscf) |          |                  |                   |          |               |  |
|------------------|----------------------------------|--------------------------------|---------------------|---------------------|----------------------------------------------------------------------------------------|--------|-------------------------|----------|------------------|-------------------|----------|---------------|--|
| Number           | Description                      | Flow Rate (dscfm) <sup>a</sup> | Hourly<br>(dscf/hr) | Annual<br>(dscf/yr) | Description                                                                            | РМ     | PM <sub>10</sub>        | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Lead     | Total<br>HAPs |  |
| 001-14<br>(AOS1) | Dust Collector AE-<br>016 (AOS1) | 12,000                         | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |
| 001-15<br>(AOS1) | Dust Collector AE-<br>017 (AOS1) | 12,000                         | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |
| Sycamore         | Milling Operations (AC           | OS1)                           |                     |                     |                                                                                        |        |                         |          |                  |                   |          |               |  |
| 002-7<br>(AOS1)  | Dust Collector AE-<br>008 (AOS1) | 50,000                         | 3,000,000           | 2.6280E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |
| 002-8<br>(AOS1)  | Dust Collector AE-<br>009 (AOS1) | 12,000                         | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |
| 002-9<br>(AOS1)  | Dust Collector AE-<br>010 (AOS1) | 20,000                         | 1,200,000           | 1.0512E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |
| 002-10<br>(AOS1) | Dust Collector AE-<br>011 (AOS1) | 12,000                         | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |
| 002-11<br>(AOS1) | Dust Collector AE-<br>007 (AOS1) | 12,000                         | 720,000             | 6.3072E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12 | 1.13E-10      |  |

Table F.1 Process Rate and Emission Factor Information for Processes Controlled by Dust Collectors with Outlet Grain Loading Emission Factors

| Process          | Emission Unit                       | Exhaust                           |                     | Process             | Rates                                                                                  |        | Emission<br>n (gr/dscf) |          | Emissi           | on Factors (      | (lb/dscf) |               |
|------------------|-------------------------------------|-----------------------------------|---------------------|---------------------|----------------------------------------------------------------------------------------|--------|-------------------------|----------|------------------|-------------------|-----------|---------------|
| Number           | Description                         | Flow Rate<br>(dscfm) <sup>a</sup> | Hourly<br>(dscf/hr) | Annual<br>(dscf/yr) | Description                                                                            | РМ     | PM <sub>10</sub>        | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Lead      | Total<br>HAPs |
| 002-12<br>(AOS1) | Dust Collector AE-<br>012 (AOS1)    | 33,000                            | 1,980,000           | 1.7345E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12  | 1.13E-10      |
| 002-13<br>(AOS1) | Dust Collector AE-<br>013 (AOS1)    | 18,000                            | 1,080,000           | 9.4608E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0026 | 0.0026                  | 3.71E-07 | 3.71E-07         | 3.71E-07          | 4.59E-12  | 1.13E-10      |
| Affected I       | Emissions Units - Pro               | posed Updat                       | ed Design of        | AOS1                |                                                                                        |        |                         |          |                  |                   |           |               |
| Primary C        | rushing and Overland (              | Conveying Op                      | erations (to B      | agdad Concent       | rator) (AOS1)                                                                          |        |                         |          |                  |                   |           |               |
| 001-5<br>(AOS1)  | Dust Collector C51<br>(AOS1)        | 15,000                            | 900,000             | 7.8840E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0135 | 0.0135                  | 1.93E-06 | 1.93E-06         | 1.93E-06          | 2.38E-11  | 5.85E-10      |
| Primary C        | rushing and Overland (              | Conveying Op                      | erations (to S      | ycamore Conce       | entrator) (AOS1)                                                                       |        |                         |          |                  |                   |           |               |
| 001-12<br>(AOS1) | PC1 Dust Collector<br>1 (AOS1)      | 14,500                            | 870,000             | 7.6212E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07 | 3.29E-07         | 3.29E-07          | 4.06E-12  | 9.96E-11      |
| 001-13<br>(AOS1) | PC1 CCC1 Dust<br>Collector 2 (AOS1) | 16,700                            | 1,002,000           | 8.7775E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07 | 3.29E-07         | 3.29E-07          | 4.06E-12  | 9.96E-11      |
| 001-14<br>(AOS1) | PC1 CCC2 Dust<br>Collector 3 (AOS1) | 16,700                            | 1,002,000           | 8.7775E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07 | 3.29E-07         | 3.29E-07          | 4.06E-12  | 9.96E-11      |

Table F.1 Process Rate and Emission Factor Information for Processes Controlled by Dust Collectors with Outlet Grain Loading Emission Factors

| Process          | Emission Unit                                                     | Exhaust                        |                     | Process             | Rates                                                                                  |        | Emission<br>n (gr/dscf) | Emission Factors (lb/dscf) |                  |                   |          |               |  |
|------------------|-------------------------------------------------------------------|--------------------------------|---------------------|---------------------|----------------------------------------------------------------------------------------|--------|-------------------------|----------------------------|------------------|-------------------|----------|---------------|--|
| Number           | Description                                                       | Flow Rate (dscfm) <sup>a</sup> | Hourly<br>(dscf/hr) | Annual<br>(dscf/yr) | Description                                                                            | РМ     | PM <sub>10</sub>        | PM                         | PM <sub>10</sub> | PM <sub>2.5</sub> | Lead     | Total<br>HAPs |  |
| 001-15<br>(AOS1) | PC1 CCC3 Dust<br>Collector 4 (AOS1)                               | 16,700                         | 1,002,000           | 8.7775E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |
| Sycamore         | Milling Operations (AC                                            | OS1)                           |                     |                     |                                                                                        |        |                         |                            |                  |                   |          |               |  |
| 002-7<br>(AOS1)  | Coarse Ore<br>Reclaim Conveyor<br>1 Dust Collector 5<br>(AOS1)    | 22,000                         | 1,320,000           | 1.1563E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |
| 002-8<br>(AOS1)  | Coarse Ore<br>Reclaim Conveyor<br>2 Dust Collector 6<br>(AOS1)    | 22,000                         | 1,320,000           | 1.1563E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |
| 002-9<br>(AOS1)  | HPGR Discharge<br>Dust Collector 7<br>(AOS1)                      | 23,000                         | 1,380,000           | 1.2089E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |
| 002-10<br>(AOS1) | HPGR Discharge<br>Conveyor Transfer<br>Dust Collector 8<br>(AOS1) | 27,000                         | 1,620,000           | 1.4191E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |
| 002-11<br>(AOS1) | HPGR Product Bin<br>Dust Collector 9<br>(AOS1)                    | 25,000                         | 1,500,000           | 1.3140E+10          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |
| 002-12<br>(AOS1) | HPGR Product<br>Transfer Dust<br>Collector 10<br>(AOS1)           | 10,000                         | 600,000             | 5.2560E+09          | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023 | 0.0023                  | 3.29E-07                   | 3.29E-07         | 3.29E-07          | 4.06E-12 | 9.96E-11      |  |

Table F.1 Process Rate and Emission Factor Information for Processes Controlled by Dust Collectors with Outlet Grain Loading Emission Factors

| Process          | Emission Unit                                           | Exhaust<br>Flow Rate | Process Rates       |             |                                                                                        | Voluntary Emission<br>Limitation (gr/dscf) |        | Emission Factors (lb/dscf) |                   |          |               |          |  |
|------------------|---------------------------------------------------------|----------------------|---------------------|-------------|----------------------------------------------------------------------------------------|--------------------------------------------|--------|----------------------------|-------------------|----------|---------------|----------|--|
| Number           | Pr Description Flow Rate (dscfm) a Hourly Annua         |                      | Annual<br>(dscf/yr) | Description | PM                                                                                     | PM <sub>10</sub>                           | PM     | PM <sub>10</sub>           | PM <sub>2.5</sub> | Lead     | Total<br>HAPs |          |  |
| 002-13<br>(AOS1) | HPGR Product<br>Transfer Dust<br>Collector 11<br>(AOS1) | 10,000               | 600,000             | 5.2560E+09  | Assume continuous operation (60 min/hr and 8,760 hr/yr) at the full exhaust flow rate. | 0.0023                                     | 0.0023 | 3.29E-07                   | 3.29E-07          | 3.29E-07 | 4.06E-12      | 9.96E-11 |  |

<sup>&</sup>lt;sup>a</sup> When necessary, the exhaust flow rate of the pollution control device in units of dscfm is assumed to equal the design flow rate in units of acfm as a worst-case emission estimate.

Table F.2 Process Rate and Emission Factor Information for Processes Controlled by Scrubbers with Ib/hr Emission Factors

| _                 |                                         |                   | Pro               | cess Rates                                              | Emission Factors           |               |  |
|-------------------|-----------------------------------------|-------------------|-------------------|---------------------------------------------------------|----------------------------|---------------|--|
| Process<br>Number | Process/Emission Unit Description       | Hourly<br>(hr/hr) | Annual<br>(hr/yr) | Description                                             | Regulated Air<br>Pollutant | Value (lb/hr) |  |
| Affected E        | missions Units - Proposed Update        | d Design of A     | OS1               |                                                         |                            |               |  |
| Sycamore          | Concentrate Handling Operations (AC     | OS1)              |                   |                                                         |                            |               |  |
|                   |                                         |                   |                   |                                                         | PM                         | 0.063         |  |
|                   |                                         |                   |                   |                                                         | PM <sub>10</sub>           | 0.063         |  |
| 052-2             | Molybdenum Dryer Wet Scrubber           |                   | 0.700             | Assume continuous operation (60                         | PM <sub>2.5</sub>          | 0.063         |  |
| (AOS1)            | System (AOS1)                           | 1                 | 8,760             | min/hr and 8,760 hr/yr)                                 | VOC                        | 1.83          |  |
|                   |                                         |                   |                   |                                                         | Lead                       | 9.67E-06      |  |
|                   |                                         |                   |                   |                                                         | Total HAPs                 | 1.61E-01      |  |
| Sycamore          | Lime and Other Regent Operations (A     | AOS1)             |                   |                                                         |                            |               |  |
| 055-3<br>(AOS1)   | Sycamore NaHS System<br>Scrubber (AOS1) | 1                 | 8,760             | Assume continuous operation (60 min/hr and 8,760 hr/yr) | H <sub>2</sub> S           | 0.038         |  |

Table F.3 Process Rate Information for Drilling and Blasting

| Process                  | Process/Emission       |             | Hou           | rly Process Rate                                                                                                   | Annual Process Rate |        |                                                                   |  |  |  |  |
|--------------------------|------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------|---------------------|--------|-------------------------------------------------------------------|--|--|--|--|
| Number                   | Unit Description       | Value Units |               | Description                                                                                                        | Value               | Units  | Description                                                       |  |  |  |  |
| Affected E               | Emissions Units - Desi | gn of AOS1  | in Class II A | uir Quality Permit #77414                                                                                          |                     |        |                                                                   |  |  |  |  |
| Mining Operations (AOS1) |                        |             |               |                                                                                                                    |                     |        |                                                                   |  |  |  |  |
| 026-3<br>(AOS1)          | Drilling (AOS1)        | 200         | holes         | Estimated value based on the current mining process rates.                                                         | 90,000              | holes  | Maximum expected value based on the current mining process rates. |  |  |  |  |
| 026-2<br>(AOS1)          | Blasting (AOS1)        | 1           | blasts        | Because of the duration of a blast, only one blast can occur in an hour.                                           | 600                 | blasts | Maximum expected value based on the current mining process rates. |  |  |  |  |
| Affected E               | Emissions Units - Prop | osed Updat  | ed Design o   | f AOS1                                                                                                             |                     |        |                                                                   |  |  |  |  |
| Mining Op                | erations (AOS1)        |             |               |                                                                                                                    |                     |        |                                                                   |  |  |  |  |
| 026-3<br>(AOS1)          | Drilling (AOS1)        | 490         | holes         | 20% greater than the average<br>annual holes/blast and assuming<br>all drilling for a blast occurs in one<br>hour. | 106,219             | holes  | Maximum expected value based on the updated mining process rates. |  |  |  |  |
| 026-2<br>(AOS1)          | Blasting (AOS1)        | 1           | blasts        | Because of the duration of a blast,<br>only one blast can occur in an<br>hour.                                     | 260                 | blasts | Maximum expected value based on the updated mining process rates. |  |  |  |  |

Table F.4 Emission Factors for Drilling

|                   | Emissio                                                    | on Factor                          |                                                                                                                                                                                                    |
|-------------------|------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pollutant         | Design of AOS1 in<br>Class II Air Quality<br>Permit #77414 | Proposed Updated<br>Design of AOS1 | Reference                                                                                                                                                                                          |
| РМ                | 1.30 lb/ton                                                | 1.30 lb/ton                        | AP-42 Table 11.9-4 (10/98), Drilling<br>Overburden                                                                                                                                                 |
| PM <sub>10</sub>  | 0.78 lb/ton                                                | 0.78 lb/ton                        | 60% of the PM Emission Factor Based on<br>the PM <sub>30</sub> and PM <sub>10</sub> Emission Factors from<br>AP-42 Table 11.9.2-2 and Figure 11.19-4<br>(08/04), Tertiary Crushing (controlled)    |
| PM <sub>2.5</sub> | 0.14 lb/ton                                                | 0.14 lb/ton                        | 11.1% of the PM Emission Factor Based on<br>the PM <sub>30</sub> and PM <sub>2.5</sub> Emission Factors from<br>AP-42 Table 11.9.2-2 and Figure 11.19-4<br>(08/04), Tertiary Crushing (controlled) |
| Total HAPs        | 2.66E-04 lb/ton                                            | 2.80E-04 lb/ton                    | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28)                                                                                                      |

Table F.5 Emission Factors for Blasting - Design of AOS1 in Class II Air Quality Permit #77414

|                   | Hourly Emis               | ssion Factor       | Annual Emi                | ssion Factor       |                                                                                                                                                                                                                                                      |  |
|-------------------|---------------------------|--------------------|---------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Pollutant         | As Presented in Reference | Unit Conversion    | As Presented in Reference | Unit Conversion    | Reference                                                                                                                                                                                                                                            |  |
| PM                | 1,252.20 lb/blast         |                    | 397.06 lb/blast           |                    |                                                                                                                                                                                                                                                      |  |
| PM <sub>10</sub>  | 651.14 lb/blast           |                    | 206.47 lb/blast           |                    | AP-42 Table 11.9-1 (10/98), Blasting Overburden                                                                                                                                                                                                      |  |
| PM <sub>2.5</sub> | 37.57 lb/blast            |                    | 11.91 lb/blast            |                    |                                                                                                                                                                                                                                                      |  |
| со                | 17.8 L/kg                 | 4,064.40 lb/blast  | 17.8 L/kg                 | 3,048.30 lb/blast  | Factors Affecting ANFO Fumes Production from NIOSH (2001)                                                                                                                                                                                            |  |
| NOx               | 0.9 kg/metric ton         | 180.00 lb/blast    | 0.9 kg/metric ton         | 135.00 lb/blast    | NO <sub>X</sub> Emissions from Blasting Operations in Open-<br>Coal Mining from Atmospheric Environment 42 (20                                                                                                                                       |  |
| SO <sub>2</sub>   |                           | 1.23 lb/blast      |                           | 0.92 lb/blast      | Complete Sulfur Conversion Using a Diesel Sulfur Content of 15 ppm, and an Animal Fat Sulfur Content of 500 ppm (worst case assumption based on a 03/2003 EPA document that says biofuels reduce SO <sub>2</sub> emissions compared to No. 2 diesel) |  |
| CO <sub>2</sub>   | 73.96 kg/MMBtu            | 29.066.47 lb/bloct | 73.96 kg/MMBtu            | 20 540 95 lb/bloot |                                                                                                                                                                                                                                                      |  |
| CO <sub>2</sub>   | 71.06 kg/MMBtu            | 38,066.47 lb/blast | 71.06 kg/MMBtu            | 28,549.85 lb/blast |                                                                                                                                                                                                                                                      |  |
| CH₄               | 3.00E-03 kg/MMBtu         | 1.49 lb/blast      | 3.00E-03 kg/MMBtu         | 1.11 lb/blast      | 40 CFR 98 Tables C-1 and C-2 for Distillate Fuel Oil                                                                                                                                                                                                 |  |
| CH4               | 1.10E-03 kg/MMBtu         | 1.49 lb/blast      | 1.10E-03 kg/MMBtu         | 1.11 lb/blast      | No. 2 and Rendered Animal Fat                                                                                                                                                                                                                        |  |
| N.O               | 6.00E-04 kg/MMBtu         | 0.29 lb/blast      | 6.00E-04 kg/MMBtu         | 0.22 lb/blast      |                                                                                                                                                                                                                                                      |  |
| N₂O               | 1.10E-04 kg/MMBtu         | 0.29 lb/blast      | 1.10E-04 kg/MMBtu         | 0.22 lb/blast      |                                                                                                                                                                                                                                                      |  |
| Total HAPs        | varies                    | 0.34 lb/blast      | varies                    | 0.16 lb/blast      | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gal, 0.125 MMBtu/gal Animal Fat, and 7.34 lb/gal Animal Fat, PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28)                                        |  |

Table F.6 Emission Factors for Blasting - Proposed Updated Design of AOS1

|                   | Hourly Emis               | ssion Factor        | Annual Emi                | ssion Factor        |                                                                                                                                                                                                                                                      |
|-------------------|---------------------------|---------------------|---------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pollutant         | As Presented in Reference | Unit Conversion     | As Presented in Reference | Unit Conversion     | Reference                                                                                                                                                                                                                                            |
| PM                | 4,919.42 lb/blast         |                     | 3,742.33 lb/blast         |                     |                                                                                                                                                                                                                                                      |
| PM <sub>10</sub>  | 2,558.10 lb/blast         |                     | 1,946.01 lb/blast         |                     | AP-42 Table 11.9-1 (10/98), Blasting Overburden                                                                                                                                                                                                      |
| PM <sub>2.5</sub> | 147.58 lb/blast           |                     | 112.27 lb/blast           |                     |                                                                                                                                                                                                                                                      |
| СО                | 17.8 L/kg                 | 15,319.65 lb/blast  | 17.8 L/kg                 | 12,766.38 lb/blast  | Factors Affecting ANFO Fumes Production from NIOSH (2001)                                                                                                                                                                                            |
| NOx               | 0.9 kg/metric ton         | 678.46 lb/blast     | 0.9 kg/metric ton         | 565.38 lb/blast     | NO <sub>X</sub> Emissions from Blasting Operations in Open-Cut<br>Coal Mining from Atmospheric Environment 42 (2008)                                                                                                                                 |
| SO <sub>2</sub>   |                           | 4.64 lb/blast       |                           | 3.86 lb/blast       | Complete Sulfur Conversion Using a Diesel Sulfur Content of 15 ppm, and an Animal Fat Sulfur Content of 500 ppm (worst case assumption based on a 03/2003 EPA document that says biofuels reduce SO <sub>2</sub> emissions compared to No. 2 diesel) |
| CO:               | 73.96 kg/MMBtu            | 142 494 94 lb/bloot | 73.96 kg/MMBtu            | 110 F70 G7 lb/bloot |                                                                                                                                                                                                                                                      |
| CO <sub>2</sub>   | 71.06 kg/MMBtu            | 143,484.81 lb/blast | 71.06 kg/MMBtu            | 119,570.67 lb/blast |                                                                                                                                                                                                                                                      |
| CH₄               | 3.00E-03 kg/MMBtu         | 5.60 lb/blast       | 3.00E-03 kg/MMBtu         | 4.67 lb/blast       | 40 CFR 98 Tables C-1 and C-2 for Distillate Fuel Oil                                                                                                                                                                                                 |
| CH4               | 1.10E-03 kg/MMBtu         | 5.60 lb/blast       | 1.10E-03 kg/MMBtu         | 4.07 ID/DIast       | No. 2 and Rendered Animal Fat                                                                                                                                                                                                                        |
| N <sub>2</sub> O  | 6.00E-04 kg/MMBtu         | 1.11 lb/blast       | 6.00E-04 kg/MMBtu         | 0.92 lb/blast       |                                                                                                                                                                                                                                                      |
| IN2O              | 1.10E-04 kg/MMBtu         | 1.11 lb/blast       | 1.10E-04 kg/MMBtu         | 0.92 lb/blast       |                                                                                                                                                                                                                                                      |
| Total HAPs        | varies                    | 1.38 lb/blast       | varies                    | 1.08 lb/blast       | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gal, 0.125 MMBtu/gal Animal Fat, and 7.34 lb/gal Animal Fat, PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28)                                        |

Table F.7 Vehicle Travel on Unpaved Roads - Design of AOS1 in Class II Air Quality Permit #77414

| Vahiala Danawintian  | Quantity       | Veh             | icle Weight (t   | ons)    | Average        |        | es Traveled<br>MT) | Weighted Average<br>Calculation (W*VMT) |             |  |
|----------------------|----------------|-----------------|------------------|---------|----------------|--------|--------------------|-----------------------------------------|-------------|--|
| Vehicle Description  | of<br>Vehicles | Empty<br>Weight | Loaded<br>Weight | Average | Speed<br>(mph) | Hourly | Annual             | Hourly                                  | Annual      |  |
| 793B Haul Trucks     | 11             | 158             | 423              | 290.50  | 17.5           | 193    | 1,023,966          | 55,921.25                               | 297,462,171 |  |
| 793D Haul Trucks     | 23             | 158             | 423              | 290.50  | 17.5           | 403    | 2,141,020          | 116,926.25                              | 621,966,358 |  |
| 777 Haul Trucks      | 2              | 83.10           | 181.50           | 132.30  | 17.5           | 35     | 186,176            | 4,630.50                                | 24,631,041  |  |
| Water Trucks         | 4              | 98.10           | 181.50           | 139.80  | 17.5           | 70     | 87,600             | 9,786.00                                | 12,246,480  |  |
| 994 Loaders          | 2              | 2               | 13               | 213.00  | 213.00         | 8.4    | 17                 | 258                                     | 3,578.40    |  |
| 988 Loaders          | 1              | 5               | 55               | 55.00   | 55.00          | 12.2   | 12                 | 323                                     | 671.00      |  |
| PV 271 Drills        | 5              | 8               | 34               | 84.00   | 84.00          | 1.0    | 5                  | 2,143                                   | 420.00      |  |
| Low Boys             | 1              | 13              | 4.5              | 134.50  | 134.50         | 15     | 15                 | 7,761                                   | 2,017.50    |  |
| Road Compactors      | 3              | 1               | 6                | 16.00   | 16.00          | 5      | 15                 | 1,663                                   | 240.00      |  |
| Excavators/Trackhoes | 4              | 93              | .68              | 93.68   | 93.68          | 11.5   | 46                 | 19,563                                  | 4,309.28    |  |
| Backhoes             | 1              | 12              | .07              | 12.07   | 12.07          | 12.5   | 12                 | 5,295                                   | 150.28      |  |
| Cable Reel Trucks    | 3              |                 |                  | 58.26   | 17.0           | 51     | 21,689             | 2,971.26                                | 1,263,628   |  |
| Dump Trucks          | 2              |                 |                  | 58.26   | 17.5           | 35     | 14,885             | 2,039.10                                | 867,196     |  |

Table F.7 Vehicle Travel on Unpaved Roads - Design of AOS1 in Class II Air Quality Permit #77414

| Vehicle Description                 | Quantity                              | Vehi            | icle Weight (t   | ons)    | Average<br>Speed |          | es Traveled<br>MT) | Weighted Average<br>Calculation (W*VMT) |             |  |
|-------------------------------------|---------------------------------------|-----------------|------------------|---------|------------------|----------|--------------------|-----------------------------------------|-------------|--|
| venicle Description                 | Vehicles                              | Empty<br>Weight | Loaded<br>Weight | Average | (mph)            | Hourly   | Annual             | Hourly                                  | Annual      |  |
| Articulated Haul Trucks             | 2                                     | 15              | 30               | 22.50   | 17.0             | 34       | 8,907              | 765.00                                  | 200,400     |  |
| Mill Recycle Loaders                | 1                                     | 15              | 20               | 17.50   | 12.2             | 12       | 909                | 213.50                                  | 15,909      |  |
| Shipment/Delivery<br>Trucks         |                                       | 15              | 40               | 27.50   | 17.5             | 54       | 394,368            | 1,485.63                                | 10,845,120  |  |
| Small Support/<br>Employee Vehicles |                                       | 5.:             | 25               | 5.25    | 17.5             | 108      | 784,750            | 564.38                                  | 4,119,938   |  |
| Total:                              |                                       |                 |                  |         |                  | 1,116.17 | 4,701,277          | 206,689.33                              | 976,838,100 |  |
| Mean Vehicle Weighted               | Mean Vehicle Weighted Average (tons): |                 |                  |         |                  |          |                    |                                         |             |  |

Table F.8 Vehicle Travel on Unpaved Roads - Proposed Updated Design of AOS1

| Vehicle Description  | Quantity<br>of<br>Vehicles | Vehicle Weight (tons) |                  |         | Average        | Vehicle Miles Traveled<br>(VMT) |           | Weighted Average<br>Calculation (W*VMT) |               |
|----------------------|----------------------------|-----------------------|------------------|---------|----------------|---------------------------------|-----------|-----------------------------------------|---------------|
|                      |                            | Empty<br>Weight       | Loaded<br>Weight | Average | Speed<br>(mph) | Hourly                          | Annual    | Hourly                                  | Annual        |
| 793B/C Haul Trucks   | 11                         | 180.0                 | 445.0            | 312.50  | 24             | 264                             | 836,928   | 82,500.00                               | 261,539,861   |
| 793D/F Haul Trucks   | 109                        | 169.5                 | 425.5            | 297.50  | 24             | 2,616                           | 8,293,191 | 778,260.00                              | 2,467,224,386 |
| 777 Haul Trucks      | 3                          | 80                    | 101              | 90.50   | 35             | 105                             | 336,086   | 9,502.50                                | 30,415,759    |
| Water Trucks         | 8                          | 58                    | 182              | 120.00  | 20             | 160                             | 108,680   | 19,200.00                               | 13,041,600    |
| 994 Loaders          | 2                          | 267                   |                  | 267.00  | 8              | 16                              | 64,000    | 4,272.00                                | 17,088,000    |
| 988 Loaders          | 0                          | 55                    |                  | 55.00   | 12.2           | 0                               | 0         | 0                                       | 0             |
| PV 271 Drills        | 9                          | 34                    |                  | 34.00   | 1              | 9                               | 37,458    | 306.00                                  | 1,273,572     |
| Low Boys             | 1                          | 100                   |                  | 100.00  | 20             | 20                              | 102,200   | 2,000.00                                | 10,220,000    |
| Road Compactors      | 5                          | 36                    |                  | 36.00   | 7              | 35                              | 38,325    | 1,260.00                                | 1,379,700     |
| Excavators/Trackhoes | 3                          | 73                    |                  | 73.00   | 2              | 6                               | 25,200    | 438.00                                  | 1,839,600     |
| Backhoes             | 3                          | 12                    |                  | 12.00   | 10             | 30                              | 126,000   | 360.00                                  | 1,512,000     |
| Cable Reel Trucks    | 2                          | 33                    |                  | 33.00   | 8              | 16                              | 67,200    | 528.00                                  | 2,217,600     |
| Dump Trucks          | 0                          |                       |                  | 58.26   | 17.5           | 0                               | 0         | 0                                       | 0             |

Table F.8 Vehicle Travel on Unpaved Roads - Proposed Updated Design of AOS1

| Vehicle Description                   | Quantity<br>of<br>Vehicles | Vehicle Weight (tons) |                  |         | Average        | Vehicle Miles Traveled<br>(VMT) |            | Weighted Average<br>Calculation (W*VMT) |            |
|---------------------------------------|----------------------------|-----------------------|------------------|---------|----------------|---------------------------------|------------|-----------------------------------------|------------|
|                                       |                            | Empty<br>Weight       | Loaded<br>Weight | Average | Speed<br>(mph) | Hourly                          | Annual     | Hourly                                  | Annual     |
| Articulated Haul Trucks               | 2                          | 15                    | 30               | 22.50   | 17.0           | 34                              | 8,907      | 765.00                                  | 200,400    |
| Mill Recycle Loaders                  | 1                          | 15                    | 20               | 17.50   | 12.2           | 12                              | 909        | 213.50                                  | 15,909     |
| Shipment/Delivery<br>Trucks           |                            | 15                    | 40               | 27.50   | 17.5           | 97                              | 709,930    | 2,674.39                                | 19,523,081 |
| Small Support/<br>Employee Vehicles   |                            | 5.25 5.25             |                  | 5.25    | 17.5           | 1,752                           | 12,791,607 | 9,199.44                                | 67,155,937 |
| Total: 5,172.73 23,546,620            |                            |                       |                  |         |                |                                 | 911,478.84 | 2,894,647,405                           |            |
| Mean Vehicle Weighted Average (tons): |                            |                       |                  |         |                |                                 | 176.21     | 122.93                                  |            |

Table F.9 Emission Factors for Vehicle Travel on Unpaved Roads - Design of AOS1 in Class II Air Quality Permit #77414

| Dellutent         | Emissio                  | n Factor        | Defenses                                                                                      |  |  |
|-------------------|--------------------------|-----------------|-----------------------------------------------------------------------------------------------|--|--|
| Pollutant         | Hourly Basis Annual Basi |                 | Reference                                                                                     |  |  |
| PM                | 21.48 lb/VMT             | 19.83 lb/VMT    |                                                                                               |  |  |
| PM <sub>10</sub>  | 5.90 lb/VMT              | 5.45 lb/VMT     | AP-42 Section 13.2.2, Expressions 1a and 2<br>(11/06)                                         |  |  |
| PM <sub>2.5</sub> | 0.59 lb/VMT              | 0.55 lb/VMT     |                                                                                               |  |  |
| Total HAPs        | 2.02E-03 lb/VMT          | 1.86E-03 lb/VMT | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28) |  |  |

Table F.10Emission Factors for Vehicle Travel on Unpaved Roads - Proposed Updated Design of AOS1

| Dalladand         | Emissio                   | n Factor        | Defense                                                                                       |  |  |
|-------------------|---------------------------|-----------------|-----------------------------------------------------------------------------------------------|--|--|
| Pollutant         | Hourly Basis Annual Basis |                 | Reference                                                                                     |  |  |
| PM                | 21.01 lb/VMT              | 15.66 lb/VMT    |                                                                                               |  |  |
| PM <sub>10</sub>  | 5.77 lb/VMT               | 4.30 lb/VMT     | AP-42 Section 13.2.2, Expressions 1a and 2 (11/06)                                            |  |  |
| PM <sub>2.5</sub> | 0.58 lb/VMT               | 0.43 lb/VMT     |                                                                                               |  |  |
| Total HAPs        | 2.07E-03 lb/VMT           | 1.54E-03 lb/VMT | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28) |  |  |

Table F.11Process Rate Information for the Dozers and Graders - Design of AOS1 in Class II Air Quality Permit #77414

| Vahiala Dagarintian | Quantity of Average |                |        | ed Per Vehicle<br>nr) | Total Hours | Operated (hr) | Vehicle Miles Traveled (VMT) |        |
|---------------------|---------------------|----------------|--------|-----------------------|-------------|---------------|------------------------------|--------|
| Vehicle Description | Vehicles            | Speed<br>(mph) | Annual | Hourly                | Annual      | Hourly        | Annual                       | Hourly |
| Dozers              |                     |                |        |                       |             |               |                              |        |
| 834 RTD             | 5                   |                | 6,056  | 1                     | 30,278      | 5             |                              |        |
| 824 RTD             | 2                   |                | 6,056  | 1                     | 12,111      | 2             |                              |        |
| D10 Dozers          | 9                   |                | 3,962  | 1                     | 35,657      | 9             |                              |        |
|                     | Total               | for Dozers     |        |                       | 78,046      | 16            |                              |        |
| Graders             |                     |                |        |                       |             |               |                              |        |
| Graders             | 5                   | 6              | 3,953  | 1                     |             |               | 118,587                      | 30     |
|                     | Total for Graders   |                |        |                       |             |               | 118,587                      | 30     |

Table F.12Process Rate Information for the Dozers and Graders - Proposed Updated Design of AOS1

| Vehicle Description | Quantity of | Average        | Time Operate<br>(h | d Per Vehicle<br>r) | Total Hours Operated (hr) Vehicle Miles Traveled (VM |        |         | Traveled (VMT) |
|---------------------|-------------|----------------|--------------------|---------------------|------------------------------------------------------|--------|---------|----------------|
| Venicie Description | Vehicles    | Speed<br>(mph) | Annual             | Hourly              | Annual                                               | Hourly | Annual  | Hourly         |
| Dozers              |             |                |                    |                     |                                                      |        |         |                |
| Dozers              | 14          |                | 6,056              | 1                   | 84,777                                               | 14     |         |                |
| Rubber Tire Dozers  | 8           |                | 6,056              | 1                   | 48,444                                               | 8      |         |                |
|                     | Total       | for Dozers     |                    |                     | 133,221                                              | 22     |         |                |
| Graders             |             |                |                    |                     |                                                      |        |         |                |
| Graders             | 8           | 6              | 8,760              | 1                   | 70,080                                               |        | 420,480 | 48             |
|                     |             |                | 420,480            | 48                  |                                                      |        |         |                |

**Table F.13Emission Factors for Dozer Operations** 

|                   | Emissio                                                    | on Factor                          |                                                                                               |
|-------------------|------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|
| Pollutant         | Design of AOS1 in<br>Class II Air Quality<br>Permit #77414 | Proposed Updated<br>Design of AOS1 | Reference                                                                                     |
| РМ                | 8.85 lb/hr                                                 | 8.85 lb/hr                         |                                                                                               |
| PM <sub>10</sub>  | 1.61 lb/hr                                                 | 1.61 lb/hr                         | AP-42 Table 11.9-1 (10/98), Bulldozing<br>Overburden                                          |
| PM <sub>2.5</sub> | 0.93 lb/hr                                                 | 0.93 lb/hr                         |                                                                                               |
| Total HAPs        | 5.49E-04 lb/hr                                             | 5.76E-04 lb/hr                     | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28) |

**Table F.14Emission Factors for Grader Operations** 

|                   | Emissio                                                    | on Factor                          |                                                                                               |
|-------------------|------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|
| Pollutant         | Design of AOS1 in<br>Class II Air Quality<br>Permit #77414 | Proposed Updated<br>Design of AOS1 | Reference                                                                                     |
| РМ                | 3.53 lb/VMT                                                | 3.53 lb/VMT                        |                                                                                               |
| PM <sub>10</sub>  | 1.10 lb/VMT                                                | 1.10 lb/VMT                        | AP-42 Table 11.9-1 (10/98), Grading                                                           |
| PM <sub>2.5</sub> | 0.11 lb/VMT                                                | 0.11 lb/VMT                        |                                                                                               |
| Total HAPs        | 3.76E-04 lb/VMT                                            | 3.95E-04 lb/VMT                    | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (see Table F.28) |

**Table F.15Process Rate Information for Material Transfer Points and Lime Slaking Operations** 

| Process          | Process/Emission Unit                                             |                   | Hourly Process Rate                                              |                   | Annual Process Rate                                                       | Type of Material<br>Processed                                                      |  |
|------------------|-------------------------------------------------------------------|-------------------|------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|
| Number           | Description                                                       | Quantity<br>(tph) | Description                                                      | Quantity<br>(tpy) | Description                                                               |                                                                                    |  |
| Affected         | Emissions Units - Design of AO                                    | S1 in Class II /  | Air Quality Permit #77414                                        |                   |                                                                           |                                                                                    |  |
| Mining Op        | perations (AOS1)                                                  |                   |                                                                  |                   |                                                                           |                                                                                    |  |
| 021-1<br>(AOS1)  | Loading Mined Material into<br>Haul Trucks (AOS1)                 | 30,515            | Sum of unloading to crushers, leaching areas, and storage areas. | 220,314,000       | Sum of unloading to crushers, leaching areas, and storage areas.          | All Mined Material<br>(Design of AOS1 in<br>Class II Air Quality<br>Permit #77414) |  |
| 001-6<br>(AOS1)  | Unloading Ore to Primary<br>Crusher 1 (AOS1)                      | 12.865            | Equal to the maximum hourly                                      | 65,700,000        | Maximum expected value based on                                           | Mill Ore                                                                           |  |
| 001-7<br>(AOS1)  | Unloading Ore to Primary<br>Crusher 2 (AOS1)                      | 12,000            | capacities of the crushers.                                      | 03,700,000        | the current mining process rates.                                         | Willi Ole                                                                          |  |
| 045-3<br>(AOS1)  | Unloading Ore to Leaching<br>Areas (AOS1)                         | 3,433             | 20% greater than the average annual tons/year.                   | 30,076,000        | Maximum expected value based on the current mining process rates.         | Leach Ore                                                                          |  |
| 045-1<br>(AOS1)  | Unloading Overburden/Low<br>Grade Ore to Storage Areas<br>(AOS1)  | 14,217            | 20% greater than the average annual tons/year.                   | 124,538,000       | Maximum expected value based on the current mining process rates.         | Overburden/Low<br>Grade Ore                                                        |  |
| Primary C        | rushing and Overland Conveying                                    | Operations (to    | Bagdad Concentrator) (AOS1)                                      |                   |                                                                           |                                                                                    |  |
| 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to<br>Coarse Ore Stockpiles 1/4<br>(AOS1) | 7,600             | Assume equal to the maximum capacity of the transfer.            | 32,850,000        | Assume equal to half the sulfide mining rate.                             | Mill Ore                                                                           |  |
| 001-19<br>(AOS1) | Radial Stacker C-10 (AOS1) to<br>Coarse Ore Stockpile 5<br>(AOS1) | 3,965             | Assume equal to the maximum capacity of the transfer.            | 16,206,000        | Assume equal to the quantity not sent to the other Coarse Ore Stockpiles. | Mill Ore                                                                           |  |

**Table F.15Process Rate Information for Material Transfer Points and Lime Slaking Operations** 

| Process          | Process/Emission Unit                                            |                   | Hourly Process Rate                                              |                   | Annual Process Rate                                                           | Type of Material                                           |  |
|------------------|------------------------------------------------------------------|-------------------|------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|--|
| Number           | Description                                                      | Quantity<br>(tph) | Description                                                      | Quantity<br>(tpy) | Description                                                                   | Processed                                                  |  |
| Primary C        | rushing and Overland Conveying                                   | Operations (to    | Sycamore Concentrator) (AOS1)                                    |                   |                                                                               |                                                            |  |
| 001-20<br>(AOS1) | Radial Stacker C-10 (AOS1) to<br>Coarse Ore Stockpile 6          | 1,900             | Assume equal to the maximum capacity of the transfer.            | 16,644,000        | Assume equal to the maximum capacity of the transfer at continuous operation. | Mill Ore                                                   |  |
| Affected         | Emissions Units - Proposed Upo                                   | dated Design o    | of AOS1                                                          |                   |                                                                               |                                                            |  |
| Mining Op        | perations (AOS1)                                                 |                   |                                                                  |                   |                                                                               |                                                            |  |
| 021-1<br>(AOS1)  | Loading Mined Material into<br>Haul Trucks (AOS1)                | 39,352            | Sum of unloading to crushers, leaching areas, and storage areas. | 254,833,922       | Sum of unloading to crushers, leaching areas, and storage areas.              | All Mined Material<br>(Proposed Updated<br>Design of AOS1) |  |
| 001-6<br>(AOS1)  | Unloading Ore to Primary<br>Crusher 1 (AOS1)                     | 8,000             | Equal to the maximum hourly capacity of the crusher.             | 44,433,881        | Maximum expected value based on the updated mining process rates.             | Mill Ore                                                   |  |
| 001-7<br>(AOS1)  | Unloading Ore to Primary<br>Crusher 2 (AOS1)                     | 7,000             | Equal to the maximum hourly capacity of the crusher.             | 32,632,000        | Maximum expected value based on the updated mining process rates.             | Mill Ore                                                   |  |
| 045-3<br>(AOS1)  | Unloading Ore to Leaching<br>Areas (AOS1)                        | 1,264             | 20% greater than the average annual tons/year.                   | 9,230,000         | Maximum expected value based on the updated mining process rates.             | Leach Ore                                                  |  |
| 045-1<br>(AOS1)  | Unloading Overburden/Low<br>Grade Ore to Storage Areas<br>(AOS1) | 23,087            | 20% greater than the average annual tons/year.                   | 168,538,041       | Maximum expected value based on the updated mining process rates.             | Overburden/Low<br>Grade Ore                                |  |

**Table F.15Process Rate Information for Material Transfer Points and Lime Slaking Operations** 

| Process          | Process/Emission Unit                                                      |                   | Hourly Process Rate                                   |                   | Type of Material                                                              |           |
|------------------|----------------------------------------------------------------------------|-------------------|-------------------------------------------------------|-------------------|-------------------------------------------------------------------------------|-----------|
| Number           | Description                                                                | Quantity<br>(tph) | Description                                           | Quantity<br>(tpy) | Description                                                                   | Processed |
| Primary C        | rushing and Overland Conveying                                             | Operations (to    | Bagdad Concentrator) (AOS1)                           |                   |                                                                               |           |
| 001-2<br>(AOS1)  | Overland Conveyor 3A (AOS1)<br>to Overland Conveyor 3<br>(AOS1)            | 7,600             | Assume equal to the maximum capacity of the transfer. | 66,576,000        | Assume equal to the maximum capacity of the transfer at continuous operation. | Mill Ore  |
| 001-8<br>(AOS1)  | Overland Conveyor 3 (AOS1)<br>to Overland Conveyor 4<br>(AOS1)             | 7,600             | Assume equal to the maximum capacity of the transfer. | 66,576,000        | Assume equal to the maximum capacity of the transfer at continuous operation. | Mill Ore  |
| 001-9<br>(AOS1)  | Overland Conveyor 4 (AOS1)<br>to Radial Stacker 5 (AOS1)                   | 7,600             | Assume equal to the maximum capacity of the transfer. | 66,576,000        | Assume equal to the maximum capacity of the transfer at continuous operation. | Mill Ore  |
| 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to<br>Coarse Ore Stockpiles 1/4<br>(AOS1)          | 7,600             | Assume equal to the maximum capacity of the transfer. | 53,260,800        | Equal to 4/5 of the maximum capacity of the transfer at continuous operation. | Mill Ore  |
| 001-10<br>(AOS1) | Radial Stacker 5 (AOS1) to<br>Free-Standing Stacker 6<br>(AOS1)            | 7,600             | Assume equal to the maximum capacity of the transfer. | 13,315,200        | Equal to 1/5 the maximum capacity of the transfer at continuous operation.    | Mill Ore  |
| 001-3<br>(AOS1)  | Free-Standing Stacker 6<br>(AOS1) to Coarse Ore<br>Stockpile 5 (AOS1)      | 7,600             | Assume equal to the maximum capacity of the transfer. | 13,315,200        | Assume equal to the quantity not sent to the other Coarse Ore Stockpiles.     | Mill Ore  |
| Primary C        | rushing and Overland Conveying                                             | Operations (to    | Sycamore Concentrator) (AOS1)                         |                   |                                                                               |           |
| 001-20<br>(AOS1) | PC1 Cross Country Conveyor<br>3 (AOS1) to Coarse Ore<br>Stockpile 6 (AOS1) | 8,000             | Assume equal to the maximum capacity of the transfer. | 70,080,000        | Assume equal to the maximum capacity of the transfer at continuous operation. | Mill Ore  |

**Table F.15Process Rate Information for Material Transfer Points and Lime Slaking Operations** 

| Process          | Process/Emission Unit                                                                                           |                   | Hourly Process Rate                                                             |                   | Type of Material                                                                                        |                           |
|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------|---------------------------|
| Number           | Description                                                                                                     | Quantity<br>(tph) | Description                                                                     | Quantity<br>(tpy) | Description                                                                                             | Processed                 |
| Sycamore         | Concentrate Handling Operations                                                                                 | (AOS1)            |                                                                                 |                   |                                                                                                         |                           |
| 006-11<br>(AOS1) | Copper Concentrate Filters 1/2<br>(AOS1) to Copper Concentrate<br>Filter Drop Storage (AOS1)                    | 57.00             | Assume equal to the maximum rate of the copper concentrate handling operations. | 499,320           | Assume equal to the maximum rate of the copper concentrate handling operations at continuous operation. | Copper Concentrate        |
| 006-12<br>(AOS1) | Copper Concentrate Filter Drop Storage (AOS1) to Copper Concentrate Loadout Storage (AOS1) via Front-End Loader | 57.00             | Assume equal to the maximum rate of the copper concentrate handling operations. | 499,320           | Assume equal to the maximum rate of the copper concentrate handling operations at continuous operation. | Copper Concentrate        |
| 006-13<br>(AOS1) | Copper Concentrate Loadout<br>Storage (AOS1) to Trucks via<br>Front-End Loader                                  | 57.00             | Assume equal to the maximum rate of the copper concentrate handling operations. | 499,320           | Assume equal to the maximum rate of the copper concentrate handling operations at continuous operation. | Copper Concentrate        |
| 052-3<br>(AOS1)  | Molybdenum Concentrate<br>Dryer (AOS1) to Dried<br>Molybdenum Concentrate<br>Storage Bin (AOS1)                 | 2.10              | Assume equal to the maximum rate of the Molybdenum Concentrate Dryer.           | 18,396            | Assume equal to the maximum rate of the Molybdenum Concentrate Dryer at continuous operation.           | Molybdenum<br>Concentrate |
| 052-4<br>(AOS1)  | Dried Molybdenum Concentrate Storage Bin (AOS1) to Molybdenum Concentrate Bagging System (AOS1)                 | 2.10              | Assume equal to the maximum rate of the Molybdenum Concentrate Bagging System.  | 18,396            | Assume equal to the maximum rate of the Molybdenum Concentrate Bagging System at continuous operation.  | Molybdenum<br>Concentrate |
| Sycamore         | Lime and Other Regent Operation                                                                                 | ns (AOS1)         |                                                                                 |                   |                                                                                                         |                           |
| 007-6<br>(AOS1)  | Transfer of Lime to the<br>Sycamore Lime Silo (AOS1)                                                            | 25.00             | Assume equal to the maximum delivery rate.                                      | 99,514            | Assume equal to the maximum capacity of the slaker at continuous operation.                             | Lime                      |

**Table F.15Process Rate Information for Material Transfer Points and Lime Slaking Operations** 

| Process         | Process/Emission Unit                                                         |                   | Hourly Process Rate                                                              | Annual Process Rate |                                                                                                   | Type of Material          |  |
|-----------------|-------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------|---------------------------|--|
| Number          | Description                                                                   | Quantity<br>(tph) | Description                                                                      | Quantity<br>(tpy)   | Description                                                                                       | Processed                 |  |
| 007-7<br>(AOS1) | Sycamore Lime Slaker (AOS1)                                                   | 11.36             | Assume equal to the maximum capacity of the slaker                               | 99,514              | Assume equal to the maximum capacity of the slaker at continuous operation.                       | Lime                      |  |
| 055-1<br>(AOS1) | Transfer of Flocculant to<br>Tailings Flocculant Bag<br>Breaker Bin (AOS1)    | 0.83              | Assume equal to the maximum flocculant usage rate.                               | 7,227               | Assume equal to the maximum hourly usage rate at continuous operation.                            | Flocculant                |  |
| 055-2<br>(AOS1) | Transfer of Flocculant to<br>Concentrate Flocculant Bag<br>Breaker Bin (AOS1) | 0.055             | Assume equal to the maximum flocculant usage rate.                               | 482                 | Assume equal to the maximum hourly usage rate at continuous operation.                            | Flocculant                |  |
| Sycamore        | Prill Handling Operations (AOS1)                                              |                   |                                                                                  |                     |                                                                                                   |                           |  |
| 050-7<br>(AOS1) | Delivery of Ammonium Nitrate<br>Prill to Prill Bin 6 (AOS1)                   | 25.75             | Assume equal to the maximum delivery rate.                                       | 25,365              | Equal to the additional prill needed for the Sycamore Concentrator based on maximum mining rates. | Ammonium Nitrate<br>Prill |  |
| 050-8<br>(AOS1) | Prill Bin 6 to ANFO Trucks for<br>Transfer to Drill Holes                     | 50.00             | Equal to the ANFO truck capacities, the trucks can only be filled once per hour. | 25,365              | Equal to the additional prill needed for the Sycamore Concentrator based on maximum mining rates. | Ammonium Nitrate<br>Prill |  |

Table F.16Emission Factor Information for Material Transfer Points and Lime Slaking Operations

|                   |                                                             | Emission Factor             |                                                                                       |                                                 |                                                  |                        |  |  |
|-------------------|-------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------|--|--|
| Process<br>Number | Process/Emission Unit Description                           | Type of<br>Emission<br>Unit | Type of Material<br>Processed                                                         | Moisture<br>Content of<br>Material<br>Processed | Protected or<br>Unprotected<br>Transfer<br>Point | Reference              |  |  |
| Affected E        | missions Units - Design of AOS1 in Class II Air Quality F   | Permit #77414               |                                                                                       |                                                 |                                                  |                        |  |  |
| Mining Ope        | erations (AOS1)                                             |                             |                                                                                       |                                                 |                                                  |                        |  |  |
| 021-1<br>(AOS1)   | Loading Mined Material into Haul Trucks (AOS1)              | Material<br>Transfer Point  | All Mined<br>Material (Design<br>of AOS1 in Class<br>II Air Quality<br>Permit #77414) | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 001-6<br>(AOS1)   | Unloading Ore to Primary Crusher 1 (AOS1)                   | Material                    | Mill Ore                                                                              | 2.564% (site-                                   | Unprotected                                      | See Section            |  |  |
| 001-7<br>(AOS1)   | Unloading Ore to Primary Crusher 2 (AOS1)                   | Transfer Point              | Mill Ore                                                                              | specific)                                       | Onprotested                                      | F.9.2.1                |  |  |
| 045-3<br>(AOS1)   | Unloading Ore to Leaching Areas (AOS1)                      | Material<br>Transfer Point  | Leach Ore                                                                             | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 045-1<br>(AOS1)   | Unloading Overburden/Low Grade Ore to Storage Areas (AOS1)  | Material<br>Transfer Point  | Overburden/Low<br>Grade Ore                                                           | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| Primary Cr        | rushing and Overland Conveying Operations (to Bagdad Con    | centrator) (AOS1)           |                                                                                       |                                                 |                                                  |                        |  |  |
| 001-4<br>(AOS1)   | Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1) | Material<br>Transfer Point  | Mill Ore                                                                              | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 001-19<br>(AOS1)  | Radial Stacker C-10 (AOS1) to Coarse Ore Stockpile 5 (AOS1) | Material<br>Transfer Point  | Mill Ore                                                                              | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| Primary Cr        | rushing and Overland Conveying Operations (to Sycamore C    | oncentrator) (AOS           | S1)                                                                                   |                                                 |                                                  |                        |  |  |
| 001-20<br>(AOS1)  | Radial Stacker C-10 (AOS1) to Coarse Ore Stockpile 6        | Material<br>Transfer Point  | Mill Ore                                                                              | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |

Table F.16Emission Factor Information for Material Transfer Points and Lime Slaking Operations

|                   |                                                            |                             | Emission Factor                                                  |                                                 |                                                  |                        |  |  |
|-------------------|------------------------------------------------------------|-----------------------------|------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------|--|--|
| Process<br>Number | Process/Emission Unit Description                          | Type of<br>Emission<br>Unit | Type of Material<br>Processed                                    | Moisture<br>Content of<br>Material<br>Processed | Protected or<br>Unprotected<br>Transfer<br>Point | Reference              |  |  |
| Affected E        | Emissions Units - Proposed Updated Design of AOS1          |                             |                                                                  |                                                 |                                                  |                        |  |  |
| Mining Op         | erations (AOS1)                                            |                             |                                                                  |                                                 |                                                  |                        |  |  |
| 021-1<br>(AOS1)   | Loading Mined Material into Haul Trucks (AOS1)             | Material<br>Transfer Point  | All Mined<br>Material<br>(Proposed<br>Updated Design<br>of AOS1) | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 001-6<br>(AOS1)   | Unloading Ore to Primary Crusher 1 (AOS1)                  | Material<br>Transfer Point  | Mill Ore                                                         | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 001-7<br>(AOS1)   | Unloading Ore to Primary Crusher 2 (AOS1)                  | Material<br>Transfer Point  | Mill Ore                                                         | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 045-3<br>(AOS1)   | Unloading Ore to Leaching Areas (AOS1)                     | Material<br>Transfer Point  | Leach Ore                                                        | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| 045-1<br>(AOS1)   | Unloading Overburden/Low Grade Ore to Storage Areas (AOS1) | Material<br>Transfer Point  | Overburden/Low<br>Grade Ore                                      | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |  |
| Primary Cı        | rushing and Overland Conveying Operations (to Bagdad Con   | centrator) (AOS1)           |                                                                  |                                                 |                                                  |                        |  |  |
| 001-2<br>(AOS1)   | Overland Conveyor 3A (AOS1) to Overland Conveyor 3 (AOS1)  | Material<br>Transfer Point  | Mill Ore                                                         | 2.564% (site-<br>specific)                      | Protected                                        | See Section<br>F.9.2.1 |  |  |
| 001-8<br>(AOS1)   | Overland Conveyor 3 (AOS1) to Overland Conveyor 4 (AOS1)   | Material<br>Transfer Point  | Mill Ore                                                         | 2.564% (site-<br>specific)                      | Protected                                        | See Section<br>F.9.2.1 |  |  |
| 001-9<br>(AOS1)   | Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)      | Material<br>Transfer Point  | Mill Ore                                                         | 2.564% (site-<br>specific)                      | Protected                                        | See Section<br>F.9.2.1 |  |  |

Table F.16Emission Factor Information for Material Transfer Points and Lime Slaking Operations

|                   |                                                                                                                        | r                           |                               |                                                 |                                                  |                        |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------|--|
|                   |                                                                                                                        | Emission Factor             |                               |                                                 |                                                  |                        |  |
| Process<br>Number | Process/Emission Unit Description                                                                                      | Type of<br>Emission<br>Unit | Type of Material<br>Processed | Moisture<br>Content of<br>Material<br>Processed | Protected or<br>Unprotected<br>Transfer<br>Point | Reference              |  |
| 001-4<br>(AOS1)   | Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1)                                                            | Material<br>Transfer Point  | Mill Ore                      | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |
| 001-10<br>(AOS1)  | Radial Stacker 5 (AOS1) to Free-Standing Stacker 6 (AOS1)                                                              | Material<br>Transfer Point  | Mill Ore                      | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |
| 001-3<br>(AOS1)   | Free-Standing Stacker 6 (AOS1) to Coarse Ore Stockpile 5 (AOS1)                                                        | Material<br>Transfer Point  | Mill Ore                      | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |
| Primary Ci        | rushing and Overland Conveying Operations (to Sycamore Co                                                              | oncentrator) (AOS           | S1)                           |                                                 |                                                  |                        |  |
| 001-20<br>(AOS1)  | PC1 Cross Country Conveyor 3 (AOS1) to Coarse Ore<br>Stockpile 6 (AOS1)                                                | Material<br>Transfer Point  | Mill Ore                      | 2.564% (site-<br>specific)                      | Unprotected                                      | See Section<br>F.9.2.1 |  |
| Sycamore          | Concentrate Handling Operations (AOS1)                                                                                 |                             |                               |                                                 |                                                  |                        |  |
| 006-11<br>(AOS1)  | Copper Concentrate Filters 1/2 (AOS1) to Copper<br>Concentrate Filter Drop Storage (AOS1)                              | Material<br>Transfer Point  | Copper<br>Concentrate         | 9% (site-<br>specific)                          | Protected                                        | See Section<br>F.9.2.1 |  |
| 006-12<br>(AOS1)  | Copper Concentrate Filter Drop Storage (AOS1) to<br>Copper Concentrate Loadout Storage (AOS1) via Front-<br>End Loader | Material<br>Transfer Point  | Copper<br>Concentrate         | 9% (site-<br>specific)                          | Protected                                        | See Section<br>F.9.2.1 |  |
| 006-13<br>(AOS1)  | Copper Concentrate Loadout Storage (AOS1) to Trucks via Front-End Loader                                               | Material<br>Transfer Point  | Copper<br>Concentrate         | 9% (site-<br>specific)                          | Protected                                        | See Section<br>F.9.2.1 |  |
| 052-3<br>(AOS1)   | Molybdenum Concentrate Dryer (AOS1) to Dried<br>Molybdenum Concentrate Storage Bin (AOS1)                              | Material<br>Transfer Point  | Molybdenum<br>Concentrate     | 3% (site-<br>specific)                          | Unprotected                                      | See Section<br>F.9.2.1 |  |
| 052-4<br>(AOS1)   | Dried Molybdenum Concentrate Storage Bin (AOS1) to Molybdenum Concentrate Bagging System (AOS1)                        | Material<br>Transfer Point  | Molybdenum<br>Concentrate     | 3% (site-<br>specific)                          | Unprotected                                      | See Section<br>F.9.2.1 |  |

Table F.16Emission Factor Information for Material Transfer Points and Lime Slaking Operations

|                   |                                                                            | Emission Factor             |                               |                                                 |                                                  |                        |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------|------------------------|--|--|--|--|--|
| Process<br>Number | Process/Emission Unit Description                                          | Type of<br>Emission<br>Unit | Type of Material<br>Processed | Moisture<br>Content of<br>Material<br>Processed | Protected or<br>Unprotected<br>Transfer<br>Point | Reference              |  |  |  |  |  |
| Sycamore          | Sycamore Lime and Other Regent Operations (AOS1)                           |                             |                               |                                                 |                                                  |                        |  |  |  |  |  |
| 007-6<br>(AOS1)   | Transfer of Lime to the Sycamore Lime Silo (AOS1)                          | Material<br>Transfer Point  | Lime                          | N/A                                             | N/A                                              | See Section<br>F.9.2.2 |  |  |  |  |  |
| 007-7<br>(AOS1)   | Sycamore Lime Slaker (AOS1)                                                | Lime Slaking                | Lime                          | N/A                                             | N/A                                              | See Section<br>F.11.2  |  |  |  |  |  |
| 055-1<br>(AOS1)   | Transfer of Flocculant to Tailings Flocculant Bag Breaker<br>Bin (AOS1)    | Material<br>Transfer Point  | Flocculant                    | 0.25% (site-<br>specific)                       | Unprotected                                      | See Section<br>F.9.2.1 |  |  |  |  |  |
| 055-2<br>(AOS1)   | Transfer of Flocculant to Concentrate Flocculant Bag<br>Breaker Bin (AOS1) | Material<br>Transfer Point  | Flocculant                    | 0.25% (site-<br>specific)                       | Unprotected                                      | See Section<br>F.9.2.1 |  |  |  |  |  |
| Sycamore          | Prill Handling Operations (AOS1)                                           |                             |                               |                                                 |                                                  |                        |  |  |  |  |  |
| 050-7<br>(AOS1)   | Delivery of Ammonium Nitrate Prill to Prill Bin 6 (AOS1)                   | Material<br>Transfer Point  | Ammonium<br>Nitrate Prill     | N/A                                             | N/A                                              | See Section<br>F.9.2.3 |  |  |  |  |  |
| 050-8<br>(AOS1)   | Prill Bin 6 to ANFO Trucks for Transfer to Drill Holes                     | Material<br>Transfer Point  | Ammonium<br>Nitrate Prill     | N/A                                             | N/A                                              | See Section<br>F.9.2.3 |  |  |  |  |  |

Table F.17Emission Factors for the Material Transfer Points Associated with Mined Material, Concentrates, and Flocculant

|                                                                                    | Moisture    |             |       |          |                  | Emission Factors (lb/ton) |          |            |  |
|------------------------------------------------------------------------------------|-------------|-------------|-------|----------|------------------|---------------------------|----------|------------|--|
| Material                                                                           | Content (%) | Unprotected | (mph) | РМ       | PM <sub>10</sub> | PM <sub>2.5</sub>         | Lead     | Total HAPs |  |
| All Mined Material<br>(Design of AOS1 in<br>Class II Air Quality<br>Permit #77414) | 2.56        | Unprotected | 7.10  | 0.0026   | 0.0012           | 0.00019                   | 2.64E-08 | 4.26E-07   |  |
| All Mined Material<br>(Proposed Updated<br>Design of AOS1)                         | 2.56        | Unprotected | 7.10  | 0.0026   | 0.0012           | 0.00019                   | 2.82E-08 | 4.47E-07   |  |
| Mill Ore                                                                           | 2.56        | Unprotected | 7.10  | 0.0026   | 0.0012           | 0.00019                   | 1.54E-08 | 3.78E-07   |  |
| Mill Ore                                                                           | 2.56        | Protected   | 1.30  | 0.00029  | 0.00014          | 0.000021                  | 1.70E-09 | 4.16E-08   |  |
| Leach Ore                                                                          | 2.56        | Unprotected | 7.10  | 0.0026   | 0.0012           | 0.00019                   | 1.60E-08 | 2.74E-07   |  |
| Overburden/Low<br>Grade Ore                                                        | 2.56        | Unprotected | 7.10  | 0.0026   | 0.0012           | 0.00019                   | 3.48E-08 | 4.88E-07   |  |
| Copper Concentrate                                                                 | 9.00        | Protected   | 1.30  | 0.000050 | 0.000024         | 0.0000036                 | 1.73E-08 | 5.24E-08   |  |
| Molybdenum<br>Concentrate                                                          | 3.00        | Unprotected | 7.10  | 0.0021   | 0.0010           | 0.00015                   | 1.54E-07 | 1.36E-06   |  |
| Flocculant                                                                         | 0.25        | Unprotected | 7.10  | 0.069    | 0.032            | 0.0049                    |          |            |  |

**Table F.18Emission Factors for the Material Transfer Points Associated with Lime** 

| Pollutant         | Emission Factor | Reference                                                                                                                                                               |
|-------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PM                | 0.61 lb/ton     | AP-42 Table 11.17-4 (02/98), Product Loading Enclosed<br>Truck                                                                                                          |
| PM <sub>10</sub>  | 0.21 lb/ton     | 35% of the PM Emission Factor Based on the PM <sub>10</sub> Particle<br>Size Multiplier from AP-42 Section 13.2.4, Expression 1<br>(11/06) for Aggregate Drop Processes |
| PM <sub>2.5</sub> | 0.032 lb/ton    | 5.3% of the PM Emission Factor Based on the PM <sub>2.5</sub> Particle Size Multiplier from AP-42 Section 13.2.4, Expression 1 (11/06) for Aggregate Drop Processes     |

Table F.19Emission Factors for the Material Transfer Points Associated with Ammonium Nitrate Prill

| Pollutant         | Emission Factor | Reference                                                                                                                                                               |
|-------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| РМ                | 0.020 lb/ton    | AP-42 Table 8.3-2 (07/93), Bulk Loading Operations                                                                                                                      |
| PM <sub>10</sub>  | 0.0070 lb/ton   | 35% of the PM Emission Factor Based on the PM <sub>10</sub> Particle<br>Size Multiplier from AP-42 Section 13.2.4, Expression 1<br>(11/06) for Aggregate Drop Processes |
| PM <sub>2.5</sub> | 0.0011 lb/ton   | 5.3% of the PM Emission Factor Based on the PM <sub>2.5</sub> Particle Size Multiplier from AP-42 Section 13.2.4, Expression 1 (11/06) for Aggregate Drop Processes     |

**Table F.20Process Rate and Emission Factor Information for Continuously Active Stockpiles** 

| Process<br>Number        | Process/Emission Unit Description Process Rate and Emission Factor Information |                                     |                   |          |                                           |  |  |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------|-------------------------------------|-------------------|----------|-------------------------------------------|--|--|--|--|--|--|--|--|
| Affected Em              | ffected Emissions Units - Design of AOS1 in Class II Air Quality Permit #77414 |                                     |                   |          |                                           |  |  |  |  |  |  |  |  |
| Mining Operations (AOS1) |                                                                                |                                     |                   |          |                                           |  |  |  |  |  |  |  |  |
|                          |                                                                                | Hourly/Annual Process Ra            | ate               | 6.88     | acres                                     |  |  |  |  |  |  |  |  |
|                          |                                                                                | Surface Material Silt Cont          | ent               | 7.40     | %, value used at comparable copper mines. |  |  |  |  |  |  |  |  |
|                          |                                                                                |                                     | PM                | 0.32     | lb/acre-hr                                |  |  |  |  |  |  |  |  |
|                          | Wind Erosion of Coarse Ore Stockpiles                                          | Emission Factors on an Hourly Basis | PM <sub>10</sub>  | 0.16     | lb/acre-hr                                |  |  |  |  |  |  |  |  |
|                          |                                                                                |                                     | PM <sub>2.5</sub> | 0.024    | lb/acre-hr                                |  |  |  |  |  |  |  |  |
| 027-1                    |                                                                                |                                     | Lead              | 1.96E-06 | lb/acre-hr                                |  |  |  |  |  |  |  |  |
| (AOS1)                   | 1/5 (AOS1)                                                                     |                                     | Total HAPs        | 4.81E-05 | lb/acre-hr                                |  |  |  |  |  |  |  |  |
|                          |                                                                                |                                     | PM                | 2,778.90 | lb/acre-yr                                |  |  |  |  |  |  |  |  |
|                          |                                                                                |                                     | PM <sub>10</sub>  | 1,389.45 | lb/acre-yr                                |  |  |  |  |  |  |  |  |
|                          |                                                                                | Emission Factors on an Annual Basis | PM <sub>2.5</sub> | 208.42   | lb/acre-yr                                |  |  |  |  |  |  |  |  |
|                          |                                                                                |                                     | Lead              | 1.72E-02 | lb/acre-yr                                |  |  |  |  |  |  |  |  |
|                          |                                                                                |                                     | Total HAPs        | 4.21E-01 | lb/acre-yr                                |  |  |  |  |  |  |  |  |

**Table F.20Process Rate and Emission Factor Information for Continuously Active Stockpiles** 

| Process<br>Number                                                                    | Process/Emission Unit Description    | Process Rate                        | and Emission Fac  | ctor Information |                                           |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------|------------------|-------------------------------------------|--|--|--|--|--|--|
| Primary Crushing and Overland Conveying Operations (to Sycamore Concentrator) (AOS1) |                                      |                                     |                   |                  |                                           |  |  |  |  |  |  |
|                                                                                      |                                      | Hourly/Annual Process R             | ate               | 2.34             | acres                                     |  |  |  |  |  |  |
|                                                                                      |                                      | Surface Material Silt Cont          | ent               | 7.40             | %, value used at comparable copper mines. |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | РМ                | 0.32             | lb/acre-hr                                |  |  |  |  |  |  |
|                                                                                      | Wind Erosion of Coarse Ore Stockpile | Emission Factors on an Hourly Basis | PM <sub>10</sub>  | 0.16             | lb/acre-hr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | PM <sub>2.5</sub> | 0.024            | lb/acre-hr                                |  |  |  |  |  |  |
| 027-7                                                                                |                                      |                                     | Lead              | 1.96E-06         | lb/acre-hr                                |  |  |  |  |  |  |
| (AOS1)                                                                               | 6 (AOS1)                             |                                     | Total HAPs        | 4.81E-05         | lb/acre-hr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | PM                | 2,778.90         | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | PM <sub>10</sub>  | 1,389.45         | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      | Emission Factors on an Annual Basis | PM <sub>2.5</sub> | 208.42           | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | Lead              | 1.72E-02         | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | Total HAPs        | 4.21E-01         | lb/acre-yr                                |  |  |  |  |  |  |

**Table F.20Process Rate and Emission Factor Information for Continuously Active Stockpiles** 

| Process<br>Number                                                                  | Process/Emission Unit Description Process Rate and Emission Factor Information |                                     |                   |          |                                           |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------|-------------------|----------|-------------------------------------------|--|--|--|--|--|--|--|
| Affected Em                                                                        | Affected Emissions Units - Proposed Updated Design of AOS1                     |                                     |                   |          |                                           |  |  |  |  |  |  |  |
| Primary Crushing and Overland Conveying Operations (to Bagdad Concentrator) (AOS1) |                                                                                |                                     |                   |          |                                           |  |  |  |  |  |  |  |
|                                                                                    |                                                                                | Hourly/Annual Process Ra            | ate               | 6.18     | acres                                     |  |  |  |  |  |  |  |
|                                                                                    |                                                                                | Surface Material Silt Cont          | ent               | 7.40     | %, value used at comparable copper mines. |  |  |  |  |  |  |  |
|                                                                                    |                                                                                |                                     | PM                | 0.32     | lb/acre-hr                                |  |  |  |  |  |  |  |
|                                                                                    | Wind Erosion of Coarse Ore Stockpiles                                          | Emission Factors on an Hourly Basis | PM <sub>10</sub>  | 0.16     | lb/acre-hr                                |  |  |  |  |  |  |  |
|                                                                                    |                                                                                |                                     | PM <sub>2.5</sub> | 0.024    | lb/acre-hr                                |  |  |  |  |  |  |  |
| 027-1                                                                              |                                                                                |                                     | Lead              | 1.96E-06 | lb/acre-hr                                |  |  |  |  |  |  |  |
| (AOS1)                                                                             | 1/5 (AOS1)                                                                     |                                     | Total HAPs        | 4.81E-05 | lb/acre-hr                                |  |  |  |  |  |  |  |
|                                                                                    |                                                                                |                                     | PM                | 2,778.90 | lb/acre-yr                                |  |  |  |  |  |  |  |
|                                                                                    |                                                                                |                                     | PM <sub>10</sub>  | 1,389.45 | lb/acre-yr                                |  |  |  |  |  |  |  |
|                                                                                    |                                                                                | Emission Factors on an Annual Basis | PM <sub>2.5</sub> | 208.42   | lb/acre-yr                                |  |  |  |  |  |  |  |
|                                                                                    |                                                                                |                                     | Lead              | 1.72E-02 | lb/acre-yr                                |  |  |  |  |  |  |  |
|                                                                                    |                                                                                |                                     | Total HAPs        | 4.21E-01 | lb/acre-yr                                |  |  |  |  |  |  |  |

**Table F.20Process Rate and Emission Factor Information for Continuously Active Stockpiles** 

| Process<br>Number                                                                    | Process/Emission Unit Description    | Process Rate                        | and Emission Fac  | ctor Information |                                           |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------|-------------------|------------------|-------------------------------------------|--|--|--|--|--|--|
| Primary Crushing and Overland Conveying Operations (to Sycamore Concentrator) (AOS1) |                                      |                                     |                   |                  |                                           |  |  |  |  |  |  |
|                                                                                      |                                      | Hourly/Annual Process R             | ate               | 3.04             | acres                                     |  |  |  |  |  |  |
|                                                                                      |                                      | Surface Material Silt Cont          | ent               | 7.40             | %, value used at comparable copper mines. |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | РМ                | 0.32             | lb/acre-hr                                |  |  |  |  |  |  |
|                                                                                      | Wind Erosion of Coarse Ore Stockpile | Emission Factors on an Hourly Basis | PM <sub>10</sub>  | 0.16             | lb/acre-hr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | PM <sub>2.5</sub> | 0.024            | lb/acre-hr                                |  |  |  |  |  |  |
| 027-7                                                                                |                                      |                                     | Lead              | 1.96E-06         | lb/acre-hr                                |  |  |  |  |  |  |
| (AOS1)                                                                               | 6 (AOS1)                             |                                     | Total HAPs        | 4.81E-05         | lb/acre-hr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | PM                | 2,778.90         | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | PM <sub>10</sub>  | 1,389.45         | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      | Emission Factors on an Annual Basis | PM <sub>2.5</sub> | 208.42           | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | Lead              | 1.72E-02         | lb/acre-yr                                |  |  |  |  |  |  |
|                                                                                      |                                      |                                     | Total HAPs        | 4.21E-01         | lb/acre-yr                                |  |  |  |  |  |  |

Table F.20Process Rate and Emission Factor Information for Continuously Active Stockpiles

| Process<br>Number                               | Process/Emission Unit Description                                    | Process Rate                        | and Emission Fac  | tor Information |                                           |  |  |  |  |  |
|-------------------------------------------------|----------------------------------------------------------------------|-------------------------------------|-------------------|-----------------|-------------------------------------------|--|--|--|--|--|
| Sycamore Concentrate Handling Operations (AOS1) |                                                                      |                                     |                   |                 |                                           |  |  |  |  |  |
|                                                 |                                                                      | Hourly/Annual Process R             | ate               | 0.30            | acres                                     |  |  |  |  |  |
|                                                 |                                                                      | Surface Material Silt Cont          | ent               | 96.00           | %, value used at comparable copper mines. |  |  |  |  |  |
|                                                 |                                                                      |                                     | РМ                | 4.12            | lb/acre-hr                                |  |  |  |  |  |
|                                                 | Wind Erosion of Copper Concentrate<br>Filter Drop Storage (AOS1) and | Emission Factors on an Hourly Basis | PM <sub>10</sub>  | 2.06            | lb/acre-hr                                |  |  |  |  |  |
|                                                 |                                                                      |                                     | PM <sub>2.5</sub> | 0.31            | lb/acre-hr                                |  |  |  |  |  |
| 027-8                                           |                                                                      |                                     | Lead              | 1.50E-03        | lb/acre-hr                                |  |  |  |  |  |
| (AOS1)                                          | Copper Concentrate Loadout Storage (AOS1)                            |                                     | Total HAPs        | 4.55E-03        | lb/acre-hr                                |  |  |  |  |  |
|                                                 |                                                                      |                                     | PM                | 36,050.61       | lb/acre-yr                                |  |  |  |  |  |
|                                                 |                                                                      |                                     | PM <sub>10</sub>  | 18,025.30       | lb/acre-yr                                |  |  |  |  |  |
|                                                 |                                                                      | Emission Factors on an Annual Basis | PM <sub>2.5</sub> | 2,703.80        | lb/acre-yr                                |  |  |  |  |  |
|                                                 |                                                                      |                                     | Lead              | 1.32E+01        | lb/acre-yr                                |  |  |  |  |  |
|                                                 |                                                                      |                                     | Total HAPs        | 3.99E+01        | lb/acre-yr                                |  |  |  |  |  |

**Table F.21Emission Factors for the Sycamore Lime Slaker** 

| Pollutant         | Emission Factor | Reference                                                                                             |
|-------------------|-----------------|-------------------------------------------------------------------------------------------------------|
| PM                | 0.0012 lb/ton   |                                                                                                       |
| PM <sub>10</sub>  | 0.0012 lb/ton   | Manufacturer's Information with a 20% Safety Factor,<br>Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub> |
| PM <sub>2.5</sub> | 0.0012 lb/ton   |                                                                                                       |

Table F.22Process Rate and Emission Factor Information for the Sycamore Bulk and Molybdenum Flotation Equipment

| Process<br>Number | Emission Unit                                                                                                        | Process Rates |              |                                                                                                                                     | Emission Factors (lb/ton) |        |            |  |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------|------------|--|--|--|--|--|
|                   | Description                                                                                                          | Hourly (tph)  | Annual (tpy) | Description                                                                                                                         | voc                       | H₂S    | Total HAPs |  |  |  |  |  |
|                   | Affected Emissions Units - Proposed Updated Design of AOS1  Sycamore Bulk and Molybdenum Flotation Operations (AOS1) |               |              |                                                                                                                                     |                           |        |            |  |  |  |  |  |
| 044-2<br>(AOS1)   | Sycamore Bulk and<br>Molybdenum Flotation<br>Equipment                                                               | 59.10         | 517,716      | Quantity of concentrate processed in the bulk flotation operations (sum of the copper and molybdenum concentrate production rates). | 0.0046                    | 0.0084 | 4.02E-04   |  |  |  |  |  |

Table F.23Process Rate and Emission Factor Information for the Xanthate and Test Reagent Mixing and Storage Tanks

| Process<br>Number | Emission Unit                                                                                                              |                 |                 |                                                                                                                       | Xanthate/Test Test<br>Reagent Reagent |                           | Xanthate/ Test Emission Factors (lb/ton) Reagent |                        |               |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------|------------------------|---------------|--|--|
|                   | Description                                                                                                                | Hourly<br>(tph) | Annual<br>(tpy) | Description                                                                                                           | Decomposition<br>Rate (% per day)     | Holding<br>Time<br>(days) | voc                                              | Greatest<br>Single HAP | Total<br>HAPs |  |  |
| Affected          | Affected Emissions Units - Proposed Updated Design of AOS1                                                                 |                 |                 |                                                                                                                       |                                       |                           |                                                  |                        |               |  |  |
| Sycamore          | e Lime and Other Regent Open                                                                                               | ations (AOS1)   | )               |                                                                                                                       |                                       |                           |                                                  |                        |               |  |  |
| 053-2<br>(AOS1)   | Xanthate Mix Tank (AOS1), Xanthate Holding Tank (AOS1), Test Reagent Mix Tank (AOS1), and Test Reagent Holding Tank (AOS1) | 0.04            | 213.11          | Equal to the additional xanthate/test reagent needed for the Sycamore Concentrator based on maximum processing rates. | 0.779%                                | 3                         | 12.34                                            | 12.34                  | 12.34         |  |  |

**Table F.24Process Rate and Emission Factor Information for Engines** 

| Process          | Emission Unit                                                        |       | Hourly Process Rate                                                                | Annual Process Rate |                                                                                                                                                                        | Emission Factor         |  |  |
|------------------|----------------------------------------------------------------------|-------|------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|--|
| Number           | Number Description                                                   |       | Description                                                                        | hp-hr/yr            | Description                                                                                                                                                            | Reference               |  |  |
| Affected I       | Affected Emissions Units - Proposed Updated Design of AOS1           |       |                                                                                    |                     |                                                                                                                                                                        |                         |  |  |
| Sycamore         | Emergency ICE (AOS1)                                                 |       |                                                                                    |                     |                                                                                                                                                                        |                         |  |  |
| 049-59<br>(AOS1) | Sycamore Diesel<br>Emergency Generator 1<br>(AOS1) (609 hp engine)   | 609   | Equal to the rated horsepower of the Sycamore Diesel Emergency Generator 1.        | 304,500             | Based on the maximum hourly process rate of the Sycamore Diesel Emergency Generator 1 and 500 hr/yr. EPA guidance states 500 hr/yr can be used for emergency engines.  | See Section<br>F.14.2.2 |  |  |
| 049-60<br>(AOS1) | Sycamore Diesel<br>Emergency Generator 2<br>(AOS1) (762 hp engine)   | 762   | Equal to the rated horsepower of the Sycamore Diesel Emergency Generator 2.        | 381,000             | Based on the maximum hourly process rate of the Sycamore Diesel Emergency Generator 2 and 500 hr/yr. EPA guidance states 500 hr/yr can be used for emergency engines.  | See Section<br>F.14.2.1 |  |  |
| 049-61<br>(AOS1) | Sycamore Propane<br>Emergency Generator 1<br>(AOS1) (84.7 hp engine) | 84.70 | Equal to the rated horsepower of the<br>Sycamore Propane Emergency<br>Generator 1. | 42,350              | Based on the maximum hourly process rate of the Sycamore Propane Emergency Generator 1 and 500 hr/yr. EPA guidance states 500 hr/yr can be used for emergency engines. | See Section<br>F.15.2   |  |  |
| 049-62<br>(AOS1) | Sycamore Propane<br>Emergency Generator 2<br>(AOS1) (84.7 hp engine) | 84.70 | Equal to the rated horsepower of the Sycamore Propane Emergency Generator 2.       | 42,350              | Based on the maximum hourly process rate of the Sycamore Propane Emergency Generator 2 and 500 hr/yr. EPA guidance states 500 hr/yr can be used for emergency engines. | See Section<br>F.15.2   |  |  |

Table F.25Emission Factors for Tier 2 Diesel Engines (kW > 560)

| <b>-</b>          | Emission Factor           |                    |                                                                                                               |  |
|-------------------|---------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|--|
| Pollutant         | As Presented in Reference | Unit Conversion    | Reference                                                                                                     |  |
| PM                | 0.20 g/kW-hr              | 0.00033 lb/hp-hr   |                                                                                                               |  |
| PM <sub>10</sub>  | 0.20 g/kW-hr              | 0.00033 lb/hp-hr   |                                                                                                               |  |
| PM <sub>2.5</sub> | 0.20 g/kW-hr              | 0.00033 lb/hp-hr   | Tier 2 Emission Standards from 40 CFR 1039 Appendix I Table 2                                                 |  |
| СО                | 3.50 g/kW-hr              | 0.0058 lb/hp-hr    | for Engines Rated kW > 225, Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub>                                     |  |
| NO <sub>X</sub>   | 0.40 // //                | 0.010 lb/hp-hr     |                                                                                                               |  |
| VOC               | - 6.40 g/kW-hr            | 0.00066 lb/hp-hr   |                                                                                                               |  |
| SO <sub>2</sub>   |                           | 0.000011 lb/hp-hr  | Complete Sulfur Conversion Using a Diesel Sulfur Content of 15 ppm, 7,000 Btu/hp-hr, and 19,300 Btu/lb diesel |  |
| CO <sub>2</sub>   | 73.96 kg/MMBtu            | 1.14 lb/hp-hr      |                                                                                                               |  |
| CH <sub>4</sub>   | 3.00E-03 kg/MMBtu         | 0.000046 lb/hp-hr  | 40 CFR 98 Tables C-1 and C-2 for Distillate Fuel Oil No. 2 and 7,000 Btu/hp-hr                                |  |
| N₂O               | 6.00E-04 kg/MMBtu         | 0.0000093 lb/hp-hr |                                                                                                               |  |
| Total HAPs        | 1.57E-03 lb/MMBtu         | 1.10E-05 lb/hp-hr  | AP-42 Tables 3.4-3 and 3.4-4 (10/96) and 7,000 Btu/hp-hr                                                      |  |

Table F.26Emission Factors for Tier 3 Diesel Engines (450 ≤ kW ≤ 560)

| <b>-</b>          | Emissio                                   | n Factor           |                                                                                                               |
|-------------------|-------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|
| Pollutant         | As Presented in Reference Unit Conversion |                    | Reference                                                                                                     |
| PM                | 0.20 g/kW-hr                              | 0.00033 lb/hp-hr   |                                                                                                               |
| PM <sub>10</sub>  | 0.20 g/kW-hr                              | 0.00033 lb/hp-hr   |                                                                                                               |
| PM <sub>2.5</sub> | 0.20 g/kW-hr                              | 0.00033 lb/hp-hr   | Tier 3 Emission Standards from 40 CFR 1039 Appendix I Table 3                                                 |
| СО                | 3.50 g/kW-hr                              | 0.0058 lb/hp-hr    | for Engines Rated 450 ≤ kW < 560, Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub>                               |
| NO <sub>X</sub>   | 4.00 11-101                               | 0.0061 lb/hp-hr    |                                                                                                               |
| VOC               | 4.00 g/kW-hr                              | 0.00044 lb/hp-hr   |                                                                                                               |
| SO <sub>2</sub>   |                                           | 0.000011 lb/hp-hr  | Complete Sulfur Conversion Using a Diesel Sulfur Content of 15 ppm, 7,000 Btu/hp-hr, and 19,300 Btu/lb diesel |
| CO <sub>2</sub>   | 73.96 kg/MMBtu                            | 1.14 lb/hp-hr      |                                                                                                               |
| CH <sub>4</sub>   | 3.00E-03 kg/MMBtu                         | 0.000046 lb/hp-hr  | 40 CFR 98 Tables C-1 and C-2 for Distillate Fuel Oil No. 2 and 7,000 Btu/hp-hr                                |
| N <sub>2</sub> O  | 6.00E-04 kg/MMBtu                         | 0.0000093 lb/hp-hr |                                                                                                               |
| Total HAPs        | 1.57E-03 lb/MMBtu                         | 1.10E-05 lb/hp-hr  | AP-42 Tables 3.4-3 and 3.4-4 (10/96) and 7,000 Btu/hp-hr                                                      |

**Table F.27Emission Factors for the Engines Associated with the Sycamore Propane Emergency Generators** 

| D.II days         | Emission Factor  As Presented in Reference Unit Conversion |                   |                                                                                                                   |
|-------------------|------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|
| Pollutant         |                                                            |                   | Reference                                                                                                         |
| PM                | 0.019 lb/MMBtu                                             | 0.00020 lb/hp-hr  |                                                                                                                   |
| PM <sub>10</sub>  | 0.019 lb/MMBtu                                             | 0.00020 lb/hp-hr  | AP-42 Table 3.2-3 (08/00), 4-Stroke Rich Burn, 10,500 Btu/hp-hr,<br>Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub> |
| PM <sub>2.5</sub> | 0.019 lb/MMBtu                                             | 0.00020 lb/hp-hr  |                                                                                                                   |
| со                | 120.40 g/kW-hr                                             | 0.20 lb/hp-hr     |                                                                                                                   |
| NO <sub>X</sub>   | 8.20 g/kW-hr                                               | 0.013 lb/hp-hr    | Certification Values for EPA Engine Family PCEXB05.9ARC                                                           |
| VOC               | 1.80 g/kW-hr                                               | 0.0030 lb/hp-hr   |                                                                                                                   |
| SO <sub>2</sub>   |                                                            | 0.00012 lb/hp-hr  | Complete Sulfur Conversion Using a Propane Sulfur Content of 10 gr/100 scf, 2,520 Btu/scf, and 10,500 Btu/hp-hr   |
| CO <sub>2</sub>   | 62.87 kg/MMBtu                                             | 1.46 lb/hp-hr     |                                                                                                                   |
| CH <sub>4</sub>   | 3.00E-03 kg/MMBtu                                          | 0.000069 lb/hp-hr | 40 CFR 98 Tables C-1 and C-2 for Propane and 10,500 Btu/hp-hr                                                     |
| N <sub>2</sub> O  | 6.00E-04 kg/MMBtu                                          | 0.000014 lb/hp-hr |                                                                                                                   |
| Total HAPs        | 3.25E-02 lb/MMBtu                                          | 3.41E-04 lb/hp-hr | AP-42 Table 3.2-3 (08/00), 4-Stroke Rich Burn, and 10,500<br>Btu/hp-hr                                            |

**Table F.28Metal HAP Content of the Process Material** 

|           | HAP Concentrations (ppm)     |          |           |                       |                           |                                                               |                                       |  |
|-----------|------------------------------|----------|-----------|-----------------------|---------------------------|---------------------------------------------------------------|---------------------------------------|--|
| НАР       |                              |          |           |                       | Bagdad                    |                                                               | All Mined Material (weighted average) |  |
|           | Overburden/<br>Low Grade Ore | Mill Ore | Leach Ore | Copper<br>Concentrate | Molybdenum<br>Concentrate | Design of AOS1<br>in Class II Air<br>Quality Permit<br>#77414 | Proposed<br>Updated Design<br>of AOS1 |  |
| Antimony  | 6.60                         | 0.91     | 0         | 482.50                | 482.50                    | 4.00                                                          | 4.64                                  |  |
| Arsenic   | 14.75                        | 14.98    | 1.20      | 521.67                | 156.92                    | 12.97                                                         | 14.33                                 |  |
| Beryllium | 1.20                         | 1.05     | 2.76      | 10.00                 | 10.00                     | 1.37                                                          | 1.21                                  |  |
| Cadmium   | 0.47                         | 0.77     | 0         | 37.50                 | 37.50                     | 0.50                                                          | 0.54                                  |  |
| Chromium  | 35.32                        | 30.08    | 4.80      | 20.83                 | 20.83                     | 29.59                                                         | 32.63                                 |  |
| Cobalt    | 16.34                        | 12.91    | 8.60      | 99.17                 | 99.17                     | 14.26                                                         | 15.02                                 |  |
| Lead      | 27.87                        | 12.35    | 12.80     | 730.00                | 153.33                    | 21.18                                                         | 22.63                                 |  |
| Manganese | 262.49                       | 209.18   | 182.60    | 44.17                 | 44.17                     | 235.69                                                        | 243.47                                |  |
| Mercury   | 0.18                         | 0.44     | 0         | 6.69                  | 6.69                      | 0.23                                                          | 0.25                                  |  |
| Nickel    | 23.91                        | 17.64    | 7.00      | 95.00                 | 95.00                     | 19.73                                                         | 21.40                                 |  |
| Selenium  | 2.22                         | 2.78     | 0         | 165.00                | 255.00                    | 2.08                                                          | 2.31                                  |  |
| Total     | 391.35                       | 303.09   | 219.76    | 2,212.53              | 1,361.11                  | 341.61                                                        | 358.44                                |  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                                               | Control Method                                                   | Control<br>Efficiency | Reference/Explanation                                                                                                                     |  |  |  |
|-------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Affected E        | Affected Emissions Units - Design of AOS1 in Class II Air Quality Permit #77414 |                                                                  |                       |                                                                                                                                           |  |  |  |
| Mining Ope        | Mining Operations (AOS1)                                                        |                                                                  |                       |                                                                                                                                           |  |  |  |
| 026-3<br>(AOS1)   | Drilling (AOS1)                                                                 | Best Operating Practices                                         |                       |                                                                                                                                           |  |  |  |
| 026-2<br>(AOS1)   | Blasting (AOS1)                                                                 | Best Operating Practices                                         |                       |                                                                                                                                           |  |  |  |
| 022-1<br>(AOS1)   | Haul Truck Travel Inside the Pit (AOS1)                                         | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |  |  |  |
| 022-2<br>(AOS1)   | Haul Truck Travel Outside the Pit<br>(AOS1)                                     | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |  |  |  |
| 023-3<br>(AOS1)   | Other Vehicle Travel (AOS1)                                                     | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |  |  |  |
| 023-1<br>(AOS1)   | Dozer Operation (AOS1)                                                          | Best Operating Practices                                         |                       |                                                                                                                                           |  |  |  |
| 023-2<br>(AOS1)   | Road Grader Operation (AOS1)                                                    | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |  |  |  |
| 021-1<br>(AOS1)   | Loading Mined Material into Haul Trucks (AOS1)                                  | Best Operating Practices                                         |                       |                                                                                                                                           |  |  |  |
| 001-6<br>(AOS1)   | Unloading Ore to Primary Crusher 1<br>(AOS1)                                    | Water Spray/Wet Suppression<br>When Necessary                    |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                              | Control Method                                | Control<br>Efficiency | Reference/Explanation                                                                                                                     |
|-------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 001-7<br>(AOS1)   | Unloading Ore to Primary Crusher 2<br>(AOS1)                   |                                               |                       |                                                                                                                                           |
| 045-3<br>(AOS1)   | Unloading Ore to Leaching Areas (AOS1)                         | Best Operating Practices                      |                       |                                                                                                                                           |
| 045-1<br>(AOS1)   | Unloading Overburden/Low Grade Ore to Storage Areas (AOS1)     | Best Operating Practices                      |                       |                                                                                                                                           |
| Primary Cru       | shing and Overland Conveying Operations                        | (to Bagdad Concentrator) (AOS1)               | )                     |                                                                                                                                           |
| 001-5<br>(AOS1)   | Dust Collector C51 (AOS1)                                      | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-16<br>(AOS1)  | Dust Collector AE-001 (AOS1)                                   | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-17<br>(AOS1)  | Dust Collector AE-014 (AOS1)                                   | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-18<br>(AOS1)  | Dust Collector AE-015 (AOS1)                                   | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-4<br>(AOS1)   | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Water Spray/Wet Suppression<br>When Necessary |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-19<br>(AOS1)  | Radial Stacker C-10 (AOS1) to Coarse<br>Ore Stockpile 5 (AOS1) | Water Spray/Wet Suppression<br>When Necessary |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 027-1<br>(AOS1)   | Wind Erosion of Coarse Ore Stockpiles<br>1/5 (AOS1)            | Best Operating Practices                      |                       |                                                                                                                                           |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                                                    | Control Method                                | Control<br>Efficiency | Reference/Explanation                                                                                                                     |  |  |
|-------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Primary Cru       | Primary Crushing and Overland Conveying Operations (to Sycamore Concentrator) (AOS1) |                                               |                       |                                                                                                                                           |  |  |
| 001-12<br>(AOS1)  | Dust Collector AE-002 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 001-13<br>(AOS1)  | Dust Collector AE-003 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 001-14<br>(AOS1)  | Dust Collector AE-016 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 001-15<br>(AOS1)  | Dust Collector AE-017 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 001-20<br>(AOS1)  | Radial Stacker C-10 (AOS1) to Coarse<br>Ore Stockpile 6                              | Water Spray/Wet Suppression<br>When Necessary |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 027-7<br>(AOS1)   | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)                                        | Best Operating Practices                      |                       |                                                                                                                                           |  |  |
| Sycamore I        | Milling Operations (AOS1)                                                            |                                               |                       |                                                                                                                                           |  |  |
| 002-7<br>(AOS1)   | Dust Collector AE-008 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-8<br>(AOS1)   | Dust Collector AE-009 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-9<br>(AOS1)   | Dust Collector AE-010 (AOS1)                                                         | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description           | Control Method                                                   | Control<br>Efficiency | Reference/Explanation                                                                                                                     |
|-------------------|---------------------------------------------|------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 002-10<br>(AOS1)  | Dust Collector AE-011 (AOS1)                | Dust Collector                                                   |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 002-11<br>(AOS1)  | Dust Collector AE-007 (AOS1)                | Dust Collector                                                   | 1                     | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 002-12<br>(AOS1)  | Dust Collector AE-012 (AOS1)                | Dust Collector                                                   |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 002-13<br>(AOS1)  | Dust Collector AE-013 (AOS1)                | Dust Collector                                                   | 1                     | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| Affected E        | missions Units - Proposed Updated Desi      | gn of AOS1                                                       |                       |                                                                                                                                           |
| Mining Ope        | rations (AOS1)                              |                                                                  |                       |                                                                                                                                           |
| 026-3<br>(AOS1)   | Drilling (AOS1)                             | Best Operating Practices                                         | -1                    |                                                                                                                                           |
| 026-2<br>(AOS1)   | Blasting (AOS1)                             | Best Operating Practices                                         |                       |                                                                                                                                           |
| 022-1<br>(AOS1)   | Haul Truck Travel Inside the Pit (AOS1)     | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |
| 022-2<br>(AOS1)   | Haul Truck Travel Outside the Pit<br>(AOS1) | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |
| 023-3<br>(AOS1)   | Other Vehicle Travel (AOS1)                 | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                            | Control Method                                                   | Control<br>Efficiency | Reference/Explanation                                                                                                                     |
|-------------------|--------------------------------------------------------------|------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 023-1<br>(AOS1)   | Dozer Operation (AOS1)                                       | Best Operating Practices                                         |                       |                                                                                                                                           |
| 023-2<br>(AOS1)   | Road Grader Operation (AOS1)                                 | Unpaved Road Watering<br>and/or Chemical Dust<br>Suppression Use | 90%                   | Control of Open Fugitive Dust Sources (09/88),<br>pages 5-9 through 5-14                                                                  |
| 021-1<br>(AOS1)   | Loading Mined Material into Haul Trucks (AOS1)               | Best Operating Practices                                         |                       |                                                                                                                                           |
| 001-6<br>(AOS1)   | Unloading Ore to Primary Crusher 1<br>(AOS1)                 | Water Spray/Wet Suppression<br>When Necessary                    |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-7<br>(AOS1)   | Unloading Ore to Primary Crusher 2<br>(AOS1)                 | Water Spray/Wet Suppression<br>When Necessary                    |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 045-3<br>(AOS1)   | Unloading Ore to Leaching Areas (AOS1)                       | Best Operating Practices                                         |                       |                                                                                                                                           |
| 045-1<br>(AOS1)   | Unloading Overburden/Low Grade Ore to Storage Areas (AOS1)   | Best Operating Practices                                         |                       |                                                                                                                                           |
| Primary Cru       | ushing and Overland Conveying Operations                     | (to Bagdad Concentrator) (AOS1)                                  |                       |                                                                                                                                           |
| 001-5<br>(AOS1)   | Dust Collector C51 (AOS1)                                    | Dust Collector                                                   |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-2<br>(AOS1)   | Overland Conveyor 3A (AOS1) to<br>Overland Conveyor 3 (AOS1) | Dry Fogging System                                               | 90%                   | Manufacturer's Information (Dust Solutions Incorporated)                                                                                  |
| 001-8<br>(AOS1)   | Overland Conveyor 3 (AOS1) to<br>Overland Conveyor 4 (AOS1)  | Dry Fogging System                                               | 90%                   | Manufacturer's Information (Dust Solutions Incorporated)                                                                                  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                                    | Control Method                                | Control<br>Efficiency | Reference/Explanation                                                                                                                     |
|-------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 001-9<br>(AOS1)   | Overland Conveyor 4 (AOS1) to Radial<br>Stacker 5 (AOS1)             | Dry Fogging System                            | 90%                   | Manufacturer's Information (Dust Solutions Incorporated)                                                                                  |
| 001-4<br>(AOS1)   | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1)       | Water Spray/Wet Suppression<br>When Necessary |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-10<br>(AOS1)  | Radial Stacker 5 (AOS1) to Free-<br>Standing Stacker 6 (AOS1)        | Water Spray/Wet Suppression<br>When Necessary |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-3<br>(AOS1)   | Free-Standing Stacker 6 (AOS1) to<br>Coarse Ore Stockpile 5 (AOS1)   | Water Spray/Wet Suppression<br>When Necessary | Ŧ                     | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 027-1<br>(AOS1)   | Wind Erosion of Coarse Ore Stockpiles<br>1/5 (AOS1)                  | Best Operating Practices                      |                       | -                                                                                                                                         |
| Primary Cru       | ushing and Overland Conveying Operations                             | (to Sycamore Concentrator) (AOS               | S1)                   |                                                                                                                                           |
| 001-12<br>(AOS1)  | PC1 Dust Collector 1 (AOS1)                                          | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-13<br>(AOS1)  | PC1 CCC1 Dust Collector 2 (AOS1)                                     | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-14<br>(AOS1)  | PC1 CCC2 Dust Collector 3 (AOS1)                                     | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-15<br>(AOS1)  | PC1 CCC3 Dust Collector 4 (AOS1)                                     | Dust Collector                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 001-20<br>(AOS1)  | PC1 Cross Country Conveyor 3 (AOS1) to Coarse Ore Stockpile 6 (AOS1) | Water Spray/Wet Suppression<br>When Necessary |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                           | Control Method           | Control<br>Efficiency | Reference/Explanation                                                                                                                     |  |  |
|-------------------|-------------------------------------------------------------|--------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 027-7<br>(AOS1)   | Wind Erosion of Coarse Ore Stockpile 6<br>(AOS1)            | Best Operating Practices |                       |                                                                                                                                           |  |  |
| Sycamore I        | Milling Operations (AOS1)                                   |                          |                       |                                                                                                                                           |  |  |
| 002-7<br>(AOS1)   | Coarse Ore Reclaim Conveyor 1 Dust<br>Collector 5 (AOS1)    | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-8<br>(AOS1)   | Coarse Ore Reclaim Conveyor 2 Dust<br>Collector 6 (AOS1)    | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-9<br>(AOS1)   | HPGR Discharge Dust Collector 7 (AOS1)                      | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-10<br>(AOS1)  | HPGR Discharge Conveyor Transfer<br>Dust Collector 8 (AOS1) | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-11<br>(AOS1)  | HPGR Product Bin Dust Collector 9 (AOS1)                    | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-12<br>(AOS1)  | HPGR Product Transfer Dust Collector<br>10 (AOS1)           | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| 002-13<br>(AOS1)  | HPGR Product Transfer Dust Collector<br>11 (AOS1)           | Dust Collector           |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |
| Sycamore I        | Sycamore Bulk and Molybdenum Flotation Operations (AOS1)    |                          |                       |                                                                                                                                           |  |  |
| 044-2<br>(AOS1)   | Sycamore Bulk and Molybdenum<br>Flotation Equipment         |                          |                       |                                                                                                                                           |  |  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                                                                                 | Control Method                          | Control<br>Efficiency | Reference/Explanation                                                                                                                     |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sycamore          | Sycamore Concentrate Handling Operations (AOS1)                                                                   |                                         |                       |                                                                                                                                           |  |  |  |  |  |
| 006-11<br>(AOS1)  | Copper Concentrate Filters 1/2 (AOS1)<br>to Copper Concentrate Filter Drop<br>Storage (AOS1)                      | Best Operating Practices                |                       |                                                                                                                                           |  |  |  |  |  |
| 006-12<br>(AOS1)  | Copper Concentrate Filter Drop Storage (AOS1) to Copper Concentrate Loadout Storage (AOS1) via Front-End Loader   | Best Operating Practices                |                       |                                                                                                                                           |  |  |  |  |  |
| 006-13<br>(AOS1)  | Copper Concentrate Loadout Storage (AOS1) to Trucks via Front-End Loader                                          | Best Operating Practices                |                       |                                                                                                                                           |  |  |  |  |  |
| 027-8<br>(AOS1)   | Wind Erosion of Copper Concentrate<br>Filter Drop Storage (AOS1) and Copper<br>Concentrate Loadout Storage (AOS1) | 3-Sided Enclosure                       | 75%                   | South Coast Air Quality Management District<br>Document on Fugitive Dust Mitigation Measures                                              |  |  |  |  |  |
| 052-2<br>(AOS1)   | Molybdenum Dryer Wet Scrubber<br>System (AOS1)                                                                    | Scrubber                                |                       | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |  |  |  |  |  |
| 052-3<br>(AOS1)   | Molybdenum Concentrate Dryer (AOS1)<br>to Dried Molybdenum Concentrate<br>Storage Bin (AOS1)                      | Best Operating Practices                |                       |                                                                                                                                           |  |  |  |  |  |
| 052-4<br>(AOS1)   | Dried Molybdenum Concentrate Storage<br>Bin (AOS1) to Molybdenum Concentrate<br>Bagging System (AOS1)             | Best Operating Practices                |                       |                                                                                                                                           |  |  |  |  |  |
| Sycamore I        | Lime and Other Regent Operations (AOS1)                                                                           |                                         |                       |                                                                                                                                           |  |  |  |  |  |
| 007-6<br>(AOS1)   | Transfer of Lime to the Sycamore Lime Silo (AOS1)                                                                 | Sycamore Lime Silo<br>Baghouse (AOS1)   | 99%                   | Minimum value from AP-42 Table B.2-3 (09/90)                                                                                              |  |  |  |  |  |
| 007-7<br>(AOS1)   | Sycamore Lime Slaker (AOS1)                                                                                       | Sycamore Lime System<br>Scrubber (AOS1) |                       | Control Efficiency Incorporated into Emission Factor                                                                                      |  |  |  |  |  |

Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                                                                                                   | Control Method           | Control<br>Efficiency | Reference/Explanation |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------|-----------------------|
| 055-1<br>(AOS1)   | Transfer of Flocculant to Tailings<br>Flocculant Bag Breaker Bin (AOS1)                                                             | Best Operating Practices |                       |                       |
| 055-2<br>(AOS1)   | Transfer of Flocculant to Concentrate Flocculant Bag Breaker Bin (AOS1)                                                             | Best Operating Practices |                       |                       |
| 053-2<br>(AOS1)   | Xanthate Mix Tank (AOS1), Xanthate<br>Holding Tank (AOS1), Test Reagent Mix<br>Tank (AOS1), and Test Reagent Holding<br>Tank (AOS1) |                          |                       |                       |
| 055-3<br>(AOS1)   | Sycamore NaHS System Scrubber (AOS1)                                                                                                |                          |                       |                       |
| Sycamore          | Prill Handling Operations (AOS1)                                                                                                    |                          |                       |                       |
| 050-7<br>(AOS1)   | Delivery of Ammonium Nitrate Prill to<br>Prill Bin 6 (AOS1)                                                                         | Best Operating Practices |                       |                       |
| 050-8<br>(AOS1)   | Prill Bin 6 to ANFO Trucks for Transfer to Drill Holes                                                                              | Best Operating Practices |                       |                       |
| Sycamore I        | Emergency ICE (AOS1)                                                                                                                |                          |                       |                       |
| 049-59<br>(AOS1)  | Sycamore Diesel Emergency Generator 1 (AOS1) (609 hp engine)                                                                        | Best Operating Practices |                       |                       |
| 049-60<br>(AOS1)  | Sycamore Diesel Emergency Generator 2 (AOS1) (762 hp engine)                                                                        | Best Operating Practices |                       |                       |
| 049-61<br>(AOS1)  | Sycamore Propane Emergency<br>Generator 1 (AOS1) (84.7 hp engine)                                                                   | Best Operating Practices |                       |                       |

### Calculation Methodology

July 2023

### Table F.29Control Methods and Corresponding Control Efficiencies for All Emission Units

| Process<br>Number | Process/Emission Unit Description                                 | Control Method           | Control<br>Efficiency | Reference/Explanation |
|-------------------|-------------------------------------------------------------------|--------------------------|-----------------------|-----------------------|
| 049-62<br>(AOS1)  | Sycamore Propane Emergency<br>Generator 2 (AOS1) (84.7 hp engine) | Best Operating Practices |                       |                       |

# APPENDIX G EMISSION INVENTORY TABLES FOR POTENTIAL EMISSION CALCULATIONS

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

| Process     | Process/Emission Unit Description - Design of     | Process/Emission Unit Description - Proposed | Input Inf           | ormation                      |       |                                                                                                                                                          |  |  |  |  |
|-------------|---------------------------------------------------|----------------------------------------------|---------------------|-------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Number      | ber AOS1 in Class II Air Quality Permit #77414    | Updated Design of AOS1                       | Permitted<br>Design | Proposed<br>Updated<br>Design | Units | Information Description                                                                                                                                  |  |  |  |  |
| General Fac | eneral Facility Information                       |                                              |                     |                               |       |                                                                                                                                                          |  |  |  |  |
|             |                                                   |                                              | 45                  | 45                            | days  | Number of days with precipitation ≥ 0.01 inches (from 1925 – 2012 from the Western Region Climate Center, Bagdad Station)                                |  |  |  |  |
|             | Meteorological Information                        | Meteorological Information                   | 7.10                | 7.10                          | mph   | Mean ambient wind speed at the FMBI facility (based on 2018-2019 data from the Townsite Meteorological Monitor)                                          |  |  |  |  |
|             |                                                   |                                              | 10.00               | 10.00                         | %     | Percentage of time with mean wind speed greater than 12 mph at mean stockpile heights (based on 2018-2019 data from the Townsite Meteorological Monitor) |  |  |  |  |
|             |                                                   |                                              | 7.00                | 7.00                          | %     | Silt content of unpaved roads                                                                                                                            |  |  |  |  |
|             |                                                   |                                              | 4.00                | 4.00                          | %     | Silt content of material being bulldozed (estimated value based on similar copper mines)                                                                 |  |  |  |  |
|             | Silt Content Information                          | Silt Content Information                     | 7.40                | 7.40                          | %     | Silt content of the material in Coarse Ore Stockpiles 1/5 (AOS1)                                                                                         |  |  |  |  |
|             |                                                   |                                              | 7.40                | 7.40                          | %     | Silt content of the material in Coarse Ore Stockpile 6 (AOS1)                                                                                            |  |  |  |  |
|             |                                                   |                                              | 96                  | 96                            | %     | Silt content of the copper concentrate in the Copper Concentrate Filter Drop Loadout Storage (AOS1)                                                      |  |  |  |  |
|             |                                                   |                                              | 2.564               | 2.564                         | %     | Moisture content of the mined material (site-specific)                                                                                                   |  |  |  |  |
|             | Moisture Content Information                      | Moisture Content Information                 |                     | 3.00                          | %     | Moisture content of the Sycamore molybdenum concentrate post-dryer (site-specific)                                                                       |  |  |  |  |
|             |                                                   |                                              | 9.00                | 9.00                          | %     | Moisture content of the copper concentrate (site-specific)                                                                                               |  |  |  |  |
|             |                                                   |                                              |                     | 0.10                          | %     | Moisture content of flocculant (minimum expected value)                                                                                                  |  |  |  |  |
|             |                                                   |                                              | 6.60                | 6.60                          | ppm   | Concentration of antimony                                                                                                                                |  |  |  |  |
|             |                                                   |                                              | 14.75               | 14.75                         | ppm   | Concentration of arsenic                                                                                                                                 |  |  |  |  |
|             |                                                   |                                              | 1.20                | 1.20                          | ppm   | Concentration of beryllium                                                                                                                               |  |  |  |  |
|             |                                                   |                                              | 0.47                | 0.47                          | ppm   | Concentration of cadmium                                                                                                                                 |  |  |  |  |
|             | Metal HAP Content of the Overburden/Low Grade Ore | Overburden/Low Grade Ore HAP Information     | 35.32               | 35.32                         | ppm   | Concentration of chromium                                                                                                                                |  |  |  |  |
|             |                                                   | 2                                            | 16.34               | 16.34                         | ppm   | Concentration of cobalt                                                                                                                                  |  |  |  |  |
|             |                                                   |                                              | 27.87               | 27.87                         | ppm   | Concentration of lead                                                                                                                                    |  |  |  |  |
|             |                                                   |                                              | 262.49              | 262.49                        | ppm   | Concentration of manganese                                                                                                                               |  |  |  |  |
|             |                                                   |                                              | 0.18                | 0.18                          | ppm   | Concentration of mercury                                                                                                                                 |  |  |  |  |
|             |                                                   |                                              | 23.91               | 23.91                         | ppm   | Concentration of nickel                                                                                                                                  |  |  |  |  |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                   |                                                                                             |                                                                        | Input Inf           | ormation                      |       |                            |
|-------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------------------|-------|----------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed<br>Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units | Information Description    |
| (cont'd)          | Metal HAP Content of the Overburden/Low Grade Ore (cont'd)                                  | Overburden/Low Grade Ore HAP Information (cont'd)                      | 2.22                | 2.22                          | ppm   | Concentration of selenium  |
|                   |                                                                                             |                                                                        | 0.91                | 0.91                          | ppm   | Concentration of antimony  |
|                   |                                                                                             |                                                                        | 14.98               | 14.98                         | ppm   | Concentration of arsenic   |
|                   |                                                                                             |                                                                        | 1.05                | 1.05                          | ppm   | Concentration of beryllium |
|                   |                                                                                             |                                                                        | 0.77                | 0.77                          | ppm   | Concentration of cadmium   |
|                   |                                                                                             |                                                                        | 30.08               | 30.08                         | ppm   | Concentration of chromium  |
|                   | Metal HAP Content of the Mill Ore                                                           | Mill Ore HAP Information                                               | 12.91               | 12.91                         | ppm   | Concentration of cobalt    |
|                   |                                                                                             |                                                                        | 12.35               | 12.35                         | ppm   | Concentration of lead      |
|                   |                                                                                             |                                                                        | 209.18              | 209.18                        | ppm   | Concentration of manganese |
|                   |                                                                                             |                                                                        | 0.44                | 0.44                          | ppm   | Concentration of mercury   |
|                   |                                                                                             |                                                                        | 17.64               | 17.64                         | ppm   | Concentration of nickel    |
|                   |                                                                                             |                                                                        | 2.78                | 2.78                          | ppm   | Concentration of selenium  |
|                   |                                                                                             |                                                                        | 0                   | 0                             | ppm   | Concentration of antimony  |
|                   |                                                                                             |                                                                        | 1.20                | 1.20                          | ppm   | Concentration of arsenic   |
|                   |                                                                                             |                                                                        | 2.76                | 2.76                          | ppm   | Concentration of beryllium |
|                   |                                                                                             |                                                                        | 0                   | 0                             | ppm   | Concentration of cadmium   |
|                   |                                                                                             |                                                                        | 4.80                | 4.80                          | ppm   | Concentration of chromium  |
|                   | Metal HAP Content of the Leach Ore                                                          | Leach Ore HAP Information                                              | 8.60                | 8.60                          | ppm   | Concentration of cobalt    |
|                   |                                                                                             |                                                                        | 12.80               | 12.80                         | ppm   | Concentration of lead      |
|                   |                                                                                             |                                                                        | 182.60              | 182.60                        | ppm   | Concentration of manganese |
|                   |                                                                                             |                                                                        | 0                   | 0                             | ppm   | Concentration of mercury   |
|                   |                                                                                             |                                                                        | 7.00                | 7.00                          | ppm   | Concentration of nickel    |
|                   |                                                                                             |                                                                        | 0                   | 0                             | ppm   | Concentration of selenium  |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

| _                 |                                                                                             |                                                                        | Input Info          | ormation                      |       |                            |
|-------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------------------|-------|----------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed<br>Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units | Information Description    |
|                   |                                                                                             |                                                                        | 482.50              | 482.50                        | ppm   | Concentration of antimony  |
|                   |                                                                                             |                                                                        | 521.67              | 521.67                        | ppm   | Concentration of arsenic   |
|                   |                                                                                             |                                                                        | 10.00               | 10.00                         | ppm   | Concentration of beryllium |
|                   |                                                                                             |                                                                        | 37.50               | 37.50                         | ppm   | Concentration of cadmium   |
|                   |                                                                                             |                                                                        | 20.83               | 20.83                         | ppm   | Concentration of chromium  |
|                   | Metal HAP Content of the Copper Concentrate                                                 | Copper Concentrate HAP Information                                     | 99.17               | 99.17                         | ppm   | Concentration of cobalt    |
|                   |                                                                                             |                                                                        | 730.00              | 730.00                        | ppm   | Concentration of lead      |
|                   |                                                                                             |                                                                        | 44.17               | 44.17                         | ppm   | Concentration of manganese |
|                   |                                                                                             |                                                                        | 6.69                | 6.69                          | ppm   | Concentration of mercury   |
|                   |                                                                                             |                                                                        | 95.00               | 95.00                         | ppm   | Concentration of nickel    |
|                   |                                                                                             |                                                                        | 165.00              | 165.00                        | ppm   | Concentration of selenium  |
|                   |                                                                                             |                                                                        | 482.50              | 482.50                        | ppm   | Concentration of antimony  |
|                   |                                                                                             |                                                                        | 156.92              | 156.92                        | ppm   | Concentration of arsenic   |
|                   |                                                                                             |                                                                        | 10.00               | 10.00                         | ppm   | Concentration of beryllium |
|                   |                                                                                             |                                                                        | 37.50               | 37.50                         | ppm   | Concentration of cadmium   |
|                   |                                                                                             |                                                                        | 20.83               | 20.83                         | ppm   | Concentration of chromium  |
|                   | Metal HAP Content of the Bagdad Molybdenum<br>Concentrate                                   | Bagdad Molybdenum Concentrate HAP Information                          | 99.17               | 99.17                         | ppm   | Concentration of cobalt    |
|                   |                                                                                             |                                                                        | 153.33              | 153.33                        | ppm   | Concentration of lead      |
|                   |                                                                                             |                                                                        | 44.17               | 44.17                         | ppm   | Concentration of manganese |
|                   |                                                                                             |                                                                        | 6.69                | 6.69                          | ppm   | Concentration of mercury   |
|                   |                                                                                             |                                                                        | 95.00               | 95.00                         | ppm   | Concentration of nickel    |
|                   |                                                                                             |                                                                        | 255.00              | 255.00                        | ppm   | Concentration of selenium  |
|                   | Metal HAP Content of All Mined Material                                                     | Metal HAP Content of All Mined Material                                | 4.00                | 4.64                          | ppm   | Concentration of antimony  |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                   |                                                                                             |                                                                        | Input Infe          | ormation                      |             |                                                                                                                                                                                                                                              |
|-------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed<br>Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units       | Information Description                                                                                                                                                                                                                      |
|                   |                                                                                             |                                                                        | 12.97               | 14.33                         | ppm         | Concentration of arsenic                                                                                                                                                                                                                     |
|                   |                                                                                             |                                                                        | 1.37                | 1.21                          | ppm         | Concentration of beryllium                                                                                                                                                                                                                   |
|                   |                                                                                             |                                                                        | 0.50                | 0.54                          | ppm         | Concentration of cadmium                                                                                                                                                                                                                     |
|                   |                                                                                             |                                                                        | 29.59               | 32.63                         | ppm         | Concentration of chromium                                                                                                                                                                                                                    |
| (cont'd)          | Metal HAP Content of All Mined Material (cont'd)                                            | Metal HAP Content of All Mined Material (cont'd)                       | 14.26               | 15.02                         | ppm         | Concentration of cobalt                                                                                                                                                                                                                      |
| (conta)           | modified Solicition will be matched (contra)                                                | Wetarra Content of All Million Material (Conta)                        | 21.18               | 22.63                         | ppm         | Concentration of lead                                                                                                                                                                                                                        |
|                   |                                                                                             |                                                                        | 235.69              | 243.47                        | ppm         | Concentration of manganese                                                                                                                                                                                                                   |
|                   |                                                                                             |                                                                        | 0.23                | 0.25                          | ppm         | Concentration of mercury                                                                                                                                                                                                                     |
|                   |                                                                                             |                                                                        | 19.73               | 21.40                         | ppm         | Concentration of nickel                                                                                                                                                                                                                      |
|                   |                                                                                             |                                                                        | 2.08                | 2.31                          | ppm         | Concentration of selenium                                                                                                                                                                                                                    |
| Mining Oper       | rations (AOS1)                                                                              |                                                                        |                     |                               |             |                                                                                                                                                                                                                                              |
| 026-3             | Drilling (AOS1)                                                                             | Drilling (AOS1)                                                        | 90,000              | 106,219                       | holes/year  | Annual quantity of holes drilled (maximum expected value based on the mining process rates)                                                                                                                                                  |
| (AOS1)            | Dinning (AOS1)                                                                              | Drilling (AOST)                                                        | 200                 | 490                           | holes/hour  | Hourly quantity of holes drilled (estimated at 200 holes/blast for the permitted design and 20% greater than the average annual holes/blast for the proposed design)                                                                         |
|                   |                                                                                             |                                                                        | 600                 | 260                           | blasts/year | Annual quantity of blasts (maximum expected value based on the mining process rates)                                                                                                                                                         |
|                   |                                                                                             |                                                                        | 1                   | 1                             | blasts/hour | Hourly quantity of blasts                                                                                                                                                                                                                    |
|                   |                                                                                             |                                                                        | 55,800,000          | 107,890,420                   | ft²         | Annual total area of all blasts (permitted design = average of 93,000 ft²/blast, proposed design = average blast size tonnage from the based on the mining process rates converted to ft² using a 50 ft bench height and 105 lb/ft³ density) |
|                   |                                                                                             |                                                                        | 200,000             | 497,956                       | ft²         | Hourly total area of all blasts (estimated at 200,000 ft2 for the permitted design and 20% greater than the average blast size)                                                                                                              |
| 026-2<br>(AOS1)   | Blasting (AOS1)                                                                             | Blasting (AOS1)                                                        | 1,984               | 3,600                         | tons/year   | Annual quantity of diesel used in traditional ANFO (assume 6% of ANFO is FO and FO in traditional ANFO is typically 68.5% of all FO used)                                                                                                    |
| (AOS1)            |                                                                                             |                                                                        | 7.5                 | 7.5                           | lb/gal      | Density of diesel fuel (based on lb and gallon information - see 04/18/2016 email)                                                                                                                                                           |
|                   |                                                                                             |                                                                        | 912                 | 1,656                         | tons/year   | Annual quantity of Mixed Fuel used in ANFO emulsions (assume mixed fuel is 31.5% of all FO used)                                                                                                                                             |
|                   |                                                                                             |                                                                        | 2.03                | 7.64                          | tons/hour   | Hourly quantity of Mixed Fuel used in ANFO emulsions (based on the annual quantity and scaled using the number of holes drilled)                                                                                                             |
|                   |                                                                                             |                                                                        | 78.5                | 78.5                          | %           | Percent of diesel fuel in the Mixed Fuel (from James Rogers at Southwest Energy)                                                                                                                                                             |
|                   |                                                                                             |                                                                        | 21.5                | 21.5                          | %           | Percent of animal fat in the Mixed Fuel (from James Rogers at Southwest Energy)                                                                                                                                                              |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                             |                                                                                             |                                                                        | Input Inf           | ormation                      |              |                                                                                                                                       |
|-----------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Number           | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed<br>Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units        | Information Description                                                                                                               |
|                             |                                                                                             |                                                                        | 7.34                | 7.34                          | lb/gal       | Density of animal fat (based on A Demonstration of Fat and Grease as an Industrial Boiler Fuel)                                       |
|                             |                                                                                             |                                                                        | 2,700               | 4,900                         | tons/year    | Annual total quantity of diesel fuel used during blasting (sum of diesel information sources)                                         |
|                             |                                                                                             |                                                                        | 720,000             | 1,306,667                     | gallons/year | Annual total quantity of diesel fuel used during blasting (calculated based on diesel fuel information sources and density)           |
|                             |                                                                                             |                                                                        | 1,600               | 6,031                         | gallons/hour | Hourly total quantity of diesel fuel used during blasting (based on the annual quantity and scaled using the number of holes drilled) |
|                             |                                                                                             |                                                                        | 31,219              | 56,584                        | tons/year    | Annual quantity of ammonium nitrate prill used (assume 6% of ANFO is AN and AN in traditional ANFO is typically 68.5% of all AN used) |
| 000.0                       |                                                                                             |                                                                        | 99.8                | 99.8                          | %            | Percent of Ammonium Nitrate in the ammonium nitrate prill                                                                             |
| 026-2<br>(AOS1)<br>(cont'd) | Blasting (AOS1) (cont'd)                                                                    | Blasting (AOS1) (cont'd)                                               | 14,286              | 26,020                        | tons/year    | Annual quantity of ammonium nitrate solution used (assume AN solution is 31.5% of all AN used)                                        |
| (00.11.4)                   |                                                                                             |                                                                        | 78                  | 78                            | %            | Percent of Ammonium Nitrate in the ammonium nitrate solution                                                                          |
|                             |                                                                                             |                                                                        | 42,300              | 76,767                        | tons/year    | Annual total quantity of ammonium nitrate used during blasting (sum of ammonium nitrate information sources)                          |
|                             |                                                                                             |                                                                        | 45,000              | 81,667                        | tons/year    | Annual total quantity of ANFO used (maximum expected value based on the mining process rates)                                         |
|                             |                                                                                             |                                                                        | 100                 | 377                           | tons/hour    | Hourly total quantity of ANFO used (based on the annual quantity and scaled using the number of holes drilled)                        |
|                             |                                                                                             |                                                                        | 94                  | 94                            | %            | Percent of Ammonium Nitrate in ANFO (assumed typical value)                                                                           |
|                             |                                                                                             |                                                                        | 6                   | 6                             | %            | Percent of Fuel Oil in ANFO (assumed typical value)                                                                                   |
|                             | Vehicle Travel on Unpaved Roads (AOS1)                                                      | Vehicle Travel on Unpaved Roads (AOS1)                                 | 207.78              | 122.93                        | tons         | Mean vehicle weight on an annual basis (calculated value)                                                                             |
|                             | verlide travel of oripaved Roads (AOST)                                                     | venicie mavei on onpaveu Roads (AOST)                                  | 185.18              | 176.21                        | tons         | Mean vehicle weight on an hourly basis (calculated value)                                                                             |
| 022-1                       | Haul Truck Travel Inside the Pit (AOS1)                                                     | Haul Truck Travel Inside the Pit (AOS1)                                | 2,513,372           | 7,099,653                     | VMT/year     | Annual quantity of total miles traveled (assume 75% inside the pit)                                                                   |
| (AOS1)                      | Hauf Huck Haver hiside the Fit (AOST)                                                       | Hauf Huck Haver Inside the Fit (AOST)                                  | 472.50              | 2,238.75                      | VMT/hour     | Hourly quantity of total miles traveled (assume 75% inside the pit)                                                                   |
| 022-2                       | Haul Truck Traval Quitaida the Dit (AQC1)                                                   | Haul Truck Travel Outside the Dit (AOS1)                               | 837,791             | 2,366,551                     | VMT/year     | Annual quantity of total miles traveled (assume 25% outside the pit)                                                                  |
| (AOS1)                      | Haul Truck Travel Outside the Pit (AOS1)                                                    | Haul Truck Travel Outside the Pit (AOS1)                               | 157.50              | 746.25                        | VMT/hour     | Hourly quantity of total miles traveled (assume 25% outside the pit)                                                                  |
| 023-3                       | Other Vehicle Travel (AOS1)                                                                 | Other Vehicle Travel (AOS1)                                            | 1,350,115           | 14,080,416                    | VMT/year     | Annual quantity of total miles traveled                                                                                               |
| (AOS1)                      | Outer vertice fraver (AOST)                                                                 | Other verlicle Haver (AOST)                                            | 486.17              | 2,187.73                      | VMT/hour     | Hourly quantity of total miles traveled                                                                                               |
| 023-1                       | Dozer Operation (AOS1)                                                                      | Dozer Operation (AOS1)                                                 | 78,046              | 133,221                       | hours/year   | Annual hours of operation (maximum expected value based on the mining process rates)                                                  |
| (AOS1)                      | Dozei Operation (AOS1)                                                                      | Dozei Operation (AOST)                                                 | 16                  | 22.00                         | hours/hour   | Hourly hours of operation (quantity of dozers and operation 60 min/hr)                                                                |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

| Process         | Process/Emission Unit Description - Design of              | Process/Emission Unit Description - Proposed                  | Input Inf           | ormation                      |            |                                                                                                              |
|-----------------|------------------------------------------------------------|---------------------------------------------------------------|---------------------|-------------------------------|------------|--------------------------------------------------------------------------------------------------------------|
| Number          | AOS1 in Class II Air Quality Permit #77414                 | Updated Design of AOS1                                        | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                                                      |
|                 |                                                            |                                                               | 118,587             | 420,480                       | VMT/year   | Annual quantity of total miles traveled (maximum expected value based on the mining process rates)           |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                               | Road Grader Operation (AOS1)                                  | 30                  | 48.00                         | VMT/hour   | Hourly quantity of total miles traveled (maximum expected value based on the mining process rates)           |
|                 |                                                            |                                                               | 6                   | 6                             | mph        | Mean speed (estimated value)                                                                                 |
| 021-1           | Loading Mined Material into Haul Trucks (AOS1)             | Loading Mined Material into Haul Trucks (AOS1)                | 220,314,000         | 254,833,922                   | tons/year  | Annual quantity of material mined (sum of unloading to crushers, leaching areas, and storage areas)          |
| (AOS1)          | zeading miner material macrical master (1001)              | Loading minor material months (1001)                          | 30,515              | 39,352                        | tons/hour  | Hourly quantity of material mined (sum of unloading to crushers, leaching areas, and storage areas)          |
|                 |                                                            |                                                               | 32,850,000          | 44,433,881                    | tons/year  | Annual quantity of material unloaded (maximum value based on the overall expected mining rates)              |
| 001-6<br>(AOS1) | Unloading Ore to Primary Crusher 1 (AOS1)                  | Unloading Ore to Primary Crusher 1 (AOS1)                     | 5,865               | 8,000                         | tons/hour  | Hourly quantity of material unloaded (equal to the maximum hourly capacity of the crusher)                   |
|                 |                                                            |                                                               | 14.91               | 17.44                         | %          | Percent of all material mined that is processed by Primary Crusher 1 (annual basis)                          |
|                 |                                                            | Unloading Ore to Primary Crusher 2 (AOS1)                     | 32,850,000          | 32,632,000                    | tons/year  | Annual quantity of material unloaded (maximum value based on the overall expected mining rates)              |
| 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)                  |                                                               | 7,000               | 7,000                         | tons/hour  | Hourly quantity of material unloaded (equal to the maximum hourly capacity of the crusher)                   |
|                 |                                                            |                                                               | 14.91               | 12.81                         | %          | Percent of all material mined that is processed by Primary Crusher 2 (annual basis)                          |
|                 |                                                            |                                                               | 30,076,000          | 9,230,000                     | tons/year  | Annual quantity of material unloaded (maximum value based on the overall expected mining rates)              |
| 045-3<br>(AOS1) | Unloading Ore to Leaching Areas (AOS1)                     | Unloading Ore to Leaching Areas (AOS1)                        | 3,433               | 1,264                         | tons/hour  | Hourly quantity of material unloaded (assume continuous operation with a 20% increase over the average rate) |
|                 |                                                            |                                                               | 13.65               | 3.62                          | %          | Percent of all material mined that is leach ore (annual basis)                                               |
|                 |                                                            |                                                               | 124,538,000         | 168,538,041                   | tons/year  | Annual quantity of material unloaded (maximum value based on the overall expected mining rates)              |
| 045-1<br>(AOS1) | Unloading Overburden/Low Grade Ore to Storage Areas (AOS1) | Unloading Overburden/Low Grade Ore to Storage<br>Areas (AOS1) | 14,217              | 23,087                        | tons/hour  | Hourly quantity of material unloaded (assume continuous operation with a 20% increase over the average rate) |
|                 |                                                            |                                                               | 56.53               | 66.14                         | %          | Percent of all material mined that is overburden/low grade ore (annual basis)                                |
| Primary Crus    | shing and Overland Conveying Operations (to Bagda          | ad Concentrator) (AOS1)                                       |                     |                               |            |                                                                                                              |
|                 |                                                            |                                                               | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                      |
|                 |                                                            |                                                               | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                      |
| 001-5<br>(AOS1) | Dust Collector C51 (AOS1)                                  | Dust Collector C51 (AOS1)                                     | 15,000              | 15,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                          |
|                 |                                                            |                                                               | 0.0135              | 0.0135                        | gr/dscf    | PM Emission Limit                                                                                            |
|                 |                                                            |                                                               | 0.0135              | 0.0135                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                              |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                   |                                                                                             |                                                                        | Input Inf           | ormation                      |            |                                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed<br>Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                                                                                                                                                                 |
|                   |                                                                                             |                                                                        | 8,760               |                               | hours/year | Annual hours of operation (assume continuous operation)                                                                                                                                                                 |
|                   |                                                                                             |                                                                        | 1                   |                               | hours/hour | Hourly hours of operation (assume continuous operation)                                                                                                                                                                 |
|                   |                                                                                             |                                                                        | 20,000              |                               | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                                                                                                                     |
| 001-16<br>(AOS1)  | Dust Collector AE-001 (AOS1)                                                                | Overland Conveyor 3A (AOS1) to Overland Conveyor 3 (AOS1)              | 0.0026              |                               | gr/dscf    | PM Emission Limit                                                                                                                                                                                                       |
|                   |                                                                                             |                                                                        | 0.0026              |                               | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                                                                                                                         |
|                   |                                                                                             |                                                                        | -                   | 66,576,000                    | tons/year  | Annual quantity of ore transferred (assume equal to the maximum capacity of the transfer at continuous operation)                                                                                                       |
|                   |                                                                                             |                                                                        | -                   | 7,600                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                                                                                                                               |
|                   |                                                                                             |                                                                        | 8,760               |                               | hours/year | Annual hours of operation (assume continuous operation)                                                                                                                                                                 |
|                   |                                                                                             |                                                                        | 1                   |                               | hours/hour | Hourly hours of operation (assume continuous operation)                                                                                                                                                                 |
|                   | Dust Collector AE-014 (AOS1)                                                                | Overland Conveyor 3 (AOS1) to Overland Conveyor 4 (AOS1)               | 12,000              |                               | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                                                                                                                     |
| 001-17<br>(AOS1)  |                                                                                             |                                                                        | 0.0026              |                               | gr/dscf    | PM Emission Limit                                                                                                                                                                                                       |
|                   |                                                                                             |                                                                        | 0.0026              |                               | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                                                                                                                         |
|                   |                                                                                             |                                                                        |                     | 66,576,000                    | tons/year  | Annual quantity of ore transferred (assume equal to the maximum capacity of the transfer at continuous operation)                                                                                                       |
|                   |                                                                                             |                                                                        | -                   | 7,600                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                                                                                                                               |
|                   |                                                                                             |                                                                        | 8,760               |                               | hours/year | Annual hours of operation (assume continuous operation)                                                                                                                                                                 |
|                   |                                                                                             |                                                                        | 1                   |                               | hours/hour | Hourly hours of operation (assume continuous operation)                                                                                                                                                                 |
|                   |                                                                                             |                                                                        | 12,000              |                               | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                                                                                                                     |
| 001-18<br>(AOS1)  | Dust Collector AE-015 (AOS1)                                                                | Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)                  | 0.0026              |                               | gr/dscf    | PM Emission Limit                                                                                                                                                                                                       |
|                   |                                                                                             |                                                                        | 0.0026              |                               | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                                                                                                                         |
|                   |                                                                                             |                                                                        | -                   | 66,576,000                    | tons/year  | Annual quantity of ore transferred (assume equal to the maximum capacity of the transfer at continuous operation)                                                                                                       |
|                   |                                                                                             |                                                                        |                     | 7,600                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                                                                                                                               |
| 001-4<br>(AOS1)   |                                                                                             | Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (AOS1)            | 32,850,000          | 53,260,800                    | tons/year  | Annual quantity of ore transferred (assume equal to half the sulfide mining rate (for the permitted design) and 4/5 the maximum capacity of the transfer for the proposed updated design, both at continuous operation) |
| (1.55.)           | (AOS1)                                                                                      | (AUS1)                                                                 | 7,600               | 7,600                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                                                                                                                               |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

| _                 |                                                                                             |                                                                        | Input Infe          | ormation                      |            |                                                                                                                       |
|-------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------|-------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed<br>Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                                                               |
| 001-10            | _                                                                                           | Radial Stacker 5 (AOS1) to Free-Standing Stacker 6                     |                     | 13,315,200                    | tons/year  | Annual quantity of ore transferred (assume equal to 1/5 the maximum capacity of the transfer at continuous operation) |
| (AOS1)            | _                                                                                           | (AOS1)                                                                 |                     | 7,600                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                             |
| 001-19            | Radial Stacker C-10 (AOS1) to Coarse Ore Stockpile 5                                        | Free-Standing Stacker 6 (AOS1) to Coarse Ore                           | 16,206,000          | 13,315,200                    | tons/year  | Annual quantity of ore transferred (assume equal to the quantity not sent to the other Coarse Ore Stockpiles)         |
| (AOS1)            | (AOS1)                                                                                      | Stockpile 5 (AOS1)                                                     | 3,965               | 7,600                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                             |
|                   |                                                                                             |                                                                        | 6.88                | 6.18                          | acres      | Area of Coarse Ore Stockpiles 1/5 (AOS1)                                                                              |
| 027-1<br>(AOS1)   | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1)                                            | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1)                       | 365                 | 365                           | days/year  | Annual days of operation                                                                                              |
|                   |                                                                                             |                                                                        | 24                  | 24                            | hours/day  | Daily hours of operation                                                                                              |
| Primary Cru       | shing and Overland Conveying Operations (to Sycan                                           | nore Concentrator) (AOS1)                                              |                     |                               |            |                                                                                                                       |
|                   |                                                                                             | PC1 Dust Collector 1 (AOS1)                                            | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                               |
|                   | Dust Collector AE-002 (AOS1)                                                                |                                                                        | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                               |
| 001-12<br>(AOS1)  |                                                                                             |                                                                        | 12,000              | 14,500                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                   |
|                   |                                                                                             |                                                                        | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                                                     |
|                   |                                                                                             |                                                                        | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                       |
|                   |                                                                                             |                                                                        | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                               |
|                   |                                                                                             |                                                                        | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                               |
| 001-13<br>(AOS1)  | Dust Collector AE-003 (AOS1)                                                                | PC1 CCC1 Dust Collector 2 (AOS1)                                       | 15,000              | 16,700                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                   |
|                   |                                                                                             |                                                                        | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                                                     |
|                   |                                                                                             |                                                                        | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                       |
|                   |                                                                                             |                                                                        | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                               |
|                   |                                                                                             |                                                                        | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                               |
| 001-14<br>(AOS1)  | Dust Collector AE-016 (AOS1)                                                                | PC1 CCC2 Dust Collector 3 (AOS1)                                       | 12,000              | 16,700                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                   |
|                   |                                                                                             |                                                                        | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                                                     |
|                   |                                                                                             |                                                                        | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                       |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                  | Input Information                                     |                                                       |                     |                               |            |                                                                                                                   |
|------------------|-------------------------------------------------------|-------------------------------------------------------|---------------------|-------------------------------|------------|-------------------------------------------------------------------------------------------------------------------|
| Process          | Process/Emission Unit Description - Design of         | Process/Emission Unit Description - Proposed          | Input Info          | 1                             | Units      | Information Description                                                                                           |
| Number           | AOS1 in Class II Air Quality Permit #77414            | Updated Design of AOS1                                | Permitted<br>Design | Proposed<br>Updated<br>Design | Offics     | information Description                                                                                           |
|                  |                                                       |                                                       | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                           |
|                  |                                                       |                                                       | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                           |
| 001-15<br>(AOS1) | Dust Collector AE-017 (AOS1)                          | PC1 CCC3 Dust Collector 4 (AOS1)                      | 12,000              | 16,700                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                               |
|                  |                                                       |                                                       | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                                                 |
|                  |                                                       |                                                       | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                   |
| 001-20           | Radial Stacker C-10 (AOS1) to Coarse Ore Stockpile 6  | PC1 Cross Country Conveyor 3 (AOS1) to Coarse Ore     | 16,644,000          | 70,080,000                    | tons/year  | Annual quantity of ore transferred (assume equal to the maximum capacity of the transfer at continuous operation) |
| (AOS1)           | Tradial Stacker C-10 (AOS1) to Coalse Ore Stockpile o | Stockpile 6 (AOS1)                                    | 1,900               | 8,000                         | tons/hour  | Hourly quantity of ore transferred (assume equal to the maximum capacity of the transfer)                         |
|                  |                                                       |                                                       | 2.34                | 3.04                          | acres      | Area of Coarse Ore Stockpile 6 (AOS1)                                                                             |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)         | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)         | 365                 | 365                           | days/year  | Annual days of operation                                                                                          |
|                  |                                                       |                                                       | 24                  | 24                            | hours/day  | Daily hours of operation                                                                                          |
| Sycamore M       | lilling Operations (AOS1)                             |                                                       |                     |                               |            |                                                                                                                   |
|                  |                                                       |                                                       | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                           |
|                  |                                                       |                                                       | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                           |
| 002-7<br>(AOS1)  | Dust Collector AE-008 (AOS1)                          | Coarse Ore Reclaim Conveyor 1 Dust Collector 5 (AOS1) | 50,000              | 22,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                               |
|                  |                                                       |                                                       | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                                                 |
|                  |                                                       |                                                       | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                   |
|                  |                                                       |                                                       | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                           |
|                  |                                                       |                                                       | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                           |
| 002-8<br>(AOS1)  | Dust Collector AE-009 (AOS1)                          | Coarse Ore Reclaim Conveyor 2 Dust Collector 6 (AOS1) | 12,000              | 22,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                               |
|                  |                                                       | . ,                                                   | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                                                 |
|                  |                                                       |                                                       | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                                                   |
| 002-9            | Dust Collector AE-010 (AOS1)                          | HPGR Discharge Dust Collector 7 (AOS1)                | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                           |
| (AOS1)           | 2001 001100101 /12 010 (1001)                         | S. Coloniaryo Basi Gollostol 7 (AGG1)                 | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                           |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

| _                           |                                                                                             |                                                                     | Input Inf           | ormation                      |            |                                                                                     |
|-----------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|-------------------------------|------------|-------------------------------------------------------------------------------------|
| Process<br>Number           | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                             |
| 000.0                       |                                                                                             |                                                                     | 20,000              | 23,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate) |
| 002-9<br>(AOS1)<br>(cont'd) | Dust Collector AE-010 (AOS1) (cont'd)                                                       | HPGR Discharge Dust Collector 7 (AOS1) (cont'd)                     | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                   |
| (conta)                     |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                     |
|                             |                                                                                             |                                                                     | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                             |
|                             |                                                                                             |                                                                     | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                             |
| 002-10<br>(AOS1)            | Dust Collector AE-011 (AOS1)                                                                | HPGR Discharge Conveyor Transfer Dust Collector 8 (AOS1)            | 12,000              | 27,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate) |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                   |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                     |
|                             | Dust Collector AE-007 (AOS1)                                                                |                                                                     | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                             |
|                             |                                                                                             |                                                                     | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                             |
| 002-11<br>(AOS1)            |                                                                                             | HPGR Product Bin Dust Collector 9 (AOS1)                            | 12,000              | 25,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate) |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                   |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                     |
|                             |                                                                                             |                                                                     | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                             |
|                             |                                                                                             |                                                                     | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                             |
| 002-12<br>(AOS1)            | Dust Collector AE-012 (AOS1)                                                                | HPGR Product Transfer Dust Collector 10 (AOS1)                      | 33,000              | 10,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate) |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                   |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                     |
|                             |                                                                                             |                                                                     | 8,760               | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                             |
|                             |                                                                                             |                                                                     | 1                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                             |
| 002-13<br>(AOS1)            |                                                                                             | HPGR Product Transfer Dust Collector 11 (AOS1)                      | 18,000              | 10,000                        | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate) |
|                             |                                                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM Emission Limit                                                                   |
|                             | Dust Collector AE-013 (AOS1) HI                                                             |                                                                     | 0.0026              | 0.0023                        | gr/dscf    | PM <sub>10</sub> Emission Limit                                                     |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                   |                                                                                             |                                                                                                                   | Input Inf           | ormation                      |            |                                                                                                                                                                                                      |
|-------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed Updated Design of AOS1                                               | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                                                                                                                                              |
| Sycamore B        | ulk and Molybdenum Flotation Operations (AOS1)                                              |                                                                                                                   |                     |                               |            |                                                                                                                                                                                                      |
| 044-2             |                                                                                             | Consessed Bully and Malyhelder on Flatation Francisco                                                             |                     | 517,716                       | tons/year  | Annual quantity of concentrate processed in the Sycamore Bulk and Molybdenum Flotation Operations (assume equal to the maximum capacity of the concentrate production rates at continuous operation) |
| (AOS1)            | -                                                                                           | Sycamore Bulk and Molybdenum Flotation Equipment                                                                  |                     | 59.10                         | tons/hour  | Hourly quantity of concentrate processed in the Sycamore Bulk and Molybdenum Flotation Operations (assume equal to the maximum capacity of the concentrate production rates)                         |
| Sycamore C        | concentrate Handling Operations (AOS1)                                                      |                                                                                                                   |                     |                               |            |                                                                                                                                                                                                      |
| 006-11            |                                                                                             | Copper Concentrate Filters 1/2 (AOS1) to Copper                                                                   |                     | 499,320                       | tons/year  | Annual quantity of copper concentrate transferred (assume equal to the maximum rate of the copper concentrate handling operations at continuous operation)                                           |
| (AOS1)            | <del>-</del>                                                                                | Concentrate Filter Drop Storage (AOS1)                                                                            |                     | 57                            | tons/hour  | Hourly quantity of copper concentrate transferred (assume equal to the maximum rate of the copper concentrate handling operations)                                                                   |
| 006-12            | _                                                                                           | Copper Concentrate Filter Drop Storage (AOS1) to Copper Concentrate Loadout Storage (AOS1) via Front-             |                     | 499,320                       | tons/year  | Annual quantity of copper concentrate transferred (assume equal to the maximum rate of the copper concentrate handling operations at continuous operation)                                           |
| (AOS1)            |                                                                                             | End Loader                                                                                                        |                     | 57                            | tons/hour  | Hourly quantity of copper concentrate transferred (assume equal to the maximum rate of the copper concentrate handling operations)                                                                   |
| 006-13            |                                                                                             | Copper Concentrate Loadout Storage (AOS1) to                                                                      |                     | 499,320                       | tons/year  | Annual quantity of copper concentrate transferred (assume equal to the maximum rate of the copper concentrate handling operations at continuous operation)                                           |
| (AOS1)            | -                                                                                           | Trucks via Front-End Loader                                                                                       |                     | 57                            | tons/hour  | Hourly quantity of copper concentrate transferred (assume equal to the maximum rate of the copper concentrate handling operations)                                                                   |
|                   |                                                                                             | Wind Family of Owner Owner to the Filtra Page                                                                     | -                   | 0.30                          | acres      | Area of all Copper Concentrate Storage                                                                                                                                                               |
| 027-8<br>(AOS1)   |                                                                                             | Wind Erosion of Copper Concentrate Filter Drop<br>Storage (AOS1) and Copper Concentrate Loadout<br>Storage (AOS1) |                     | 365                           | days/year  | Annual days of operation                                                                                                                                                                             |
|                   |                                                                                             | g-( ·/                                                                                                            |                     | 24                            | hours/day  | Daily hours of operation                                                                                                                                                                             |
|                   |                                                                                             |                                                                                                                   |                     | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                                                                                                              |
|                   |                                                                                             |                                                                                                                   |                     | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                                                                                                              |
| 052-2             | _                                                                                           | Molybdenum Dryer Wet Scrubber System (AOS1)                                                                       |                     | 337                           | dscfm      | Exhaust flow rate (assume dscfm is equal to acfm as a worst-case emission estimate)                                                                                                                  |
| (AOS1)            | <del>-</del>                                                                                | World Wet octubber Oystelli (AOOT)                                                                                |                     | 0.063                         | lb/hr      | PM Emission Rate (assume a maximum equal to the NSPS Subpart LL emission standard)                                                                                                                   |
|                   |                                                                                             |                                                                                                                   |                     | 0.063                         | lb/hr      | PM <sub>10</sub> Emission Rate (assume a maximum equal to the NSPS Subpart LL emission standard)                                                                                                     |
|                   |                                                                                             |                                                                                                                   |                     | 1.83                          | lb/hr      | VOC Emission Rate                                                                                                                                                                                    |
| 052-3             |                                                                                             | Molybdenum Concentrate Dryer (AOS1) to Dried                                                                      |                     | 18,396                        | tons/year  | Annual quantity of molybdenum concentrate transferred (assume equal to the maximum rate of the Molybdenum Concentrate Dryer at continuous operation)                                                 |
| (AOS1)            | <u>.</u>                                                                                    | Molybdenum Concentrate Storage Bin (AOS1)                                                                         |                     | 2.10                          | tons/hour  | Hourly quantity of molybdenum concentrate transferred (assume equal to the maximum rate of the Molybdenum Concentrate Dryer)                                                                         |
| 052-4             |                                                                                             | Dried Molybdenum Concentrate Storage Bin (AOS1) to                                                                |                     | 18,396                        | tons/year  | Annual quantity of molybdenum concentrate transferred (assume equal to the maximum rate of the Molybdenum Concentrate Bagging System at continuous operation)                                        |
| (AOS1)            |                                                                                             | Molybdenum Concentrate Bagging System (AOS1)                                                                      | -                   | 2.10                          | tons/hour  | Hourly quantity of molybdenum concentrate transferred (assume equal to the maximum rate of the Molybdenum Concentrate Bagging System)                                                                |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                  |                                               | Table G.1 Emission invo                                                                        |                     |                               |            |                                                                                                                                                                      |
|------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|-------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process          | Process/Emission Unit Description - Design of | Process/Emission Unit Description - Proposed                                                   | Input Inf           | ormation                      |            |                                                                                                                                                                      |
| Number           | AOS1 in Class II Air Quality Permit #77414    | Updated Design of AOS1                                                                         | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                                                                                                              |
| Sycamore L       | ime and Other Regent Operations (AOS1)        |                                                                                                |                     |                               |            |                                                                                                                                                                      |
| 007-6            | _                                             | Transfer of Lime to the Sycamore Lime Silo (AOS1)                                              |                     | 99,514                        | tons/year  | Annual quantity of lime transferred (assume equal to the maximum capacity of the slaker at continuous operation)                                                     |
| (AOS1)           |                                               | Hansier of Emile to the Gyotamore Emile one (Neerly                                            |                     | 25                            | tons/hour  | Hourly quantity of lime transferred (based on a delivery rate of 25 tons)                                                                                            |
| 007-7            | _                                             | Sycamore Lime Slaker (AOS1)                                                                    |                     | 99,514                        | tons/year  | Annual quantity of lime transferred (assume equal to the maximum capacity of the slaker at continuous operation)                                                     |
| (AOS1)           |                                               | 5,5 5 ( .5 (                                                                                   |                     | 11.36                         | tons/hour  | Hourly quantity of lime transferred (assume equal to the maximum capacity of the slaker)                                                                             |
| 055-1            | _                                             | Transfer of Flocculant to Tailings Flocculant Bag                                              |                     | 7,227                         | tons/year  | Annual quantity of flocculant transferred (assume equal to the maximum hourly usage rate at continuous operation)                                                    |
| (AOS1)           |                                               | Breaker Bin (AOS1)                                                                             |                     | 0.83                          | tons/hour  | Hourly quantity of flocculant transferred (assume equal to the maximum flocculant usage rate)                                                                        |
| 055-2            |                                               | Transfer of Flocculant to Concentrate Flocculant Bag                                           |                     | 482                           | tons/year  | Annual quantity of flocculant transferred (assume equal to the maximum hourly usage rate at continuous operation)                                                    |
| (AOS1)           | _                                             | Breaker Bin (AOS1)                                                                             |                     | 0.06                          | tons/hour  | Hourly quantity of flocculant transferred (assume equal to the maximum flocculant usage rate)                                                                        |
| 053-2            |                                               | Xanthate Mix Tank (AOS1), Xanthate Holding Tank (AOS1), Test Reagent Mix Tank (AOS1), and Test |                     | 213                           | tons/year  | Annual quantity of xanthate/test reagent used (equal to the additional xanthate/test reagent needed for the Sycamore Concentrator based on maximum processing rates) |
| (AOS1)           | -                                             | Reagent Holding Tank (AOS1)                                                                    | -                   | 0.04                          | tons/hour  | Hourly quantity of xanthate/test reagent used (equal to the additional xanthate/test reagent needed for the Sycamore Concentrator based on maximum processing rates) |
|                  |                                               |                                                                                                |                     | 8,760                         | hours/year | Annual hours of operation (assume continuous operation)                                                                                                              |
| 055-3<br>(AOS1)  | -                                             | Sycamore NaHS System Scrubber (AOS1)                                                           |                     | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                                                                              |
|                  |                                               |                                                                                                |                     | 735                           | dscfm      | Exhaust flow rate                                                                                                                                                    |
| Sycamore P       | rill Handling Operations (AOS1)               |                                                                                                |                     |                               |            |                                                                                                                                                                      |
| 050-7            | _                                             | Delivery of Ammonium Nitrate Prill to Prill Bin 6 (AOS1)                                       |                     | 25,365                        | tons/year  | Annual quantity of ammonium nitrate prill transferred (equal to the additional prill needed for the<br>Sycamore Concentrator based on maximum mining rates)          |
| (AOS1)           |                                               |                                                                                                |                     | 25.75                         | tons/hour  | Hourly quantity of ammonium nitrate prill transferred (assume equal to the maximum delivery rate)                                                                    |
| 050-8            |                                               | Drill Din 6 to ANEO Trucke for Transfer to Drill Holes                                         | -                   | 25,365                        | tons/year  | Annual quantity of ammonium nitrate prill transferred (equal to the additional prill needed for the<br>Sycamore Concentrator based on maximum mining rates)          |
| (AOS1)           | <del>-</del>                                  | Prill Bin 6 to ANFO Trucks for Transfer to Drill Holes                                         | -                   | 50                            | tons/hour  | Hourly quantity of ammonium nitrate prill transferred (assume equal to the ANFO truck capacities, the trucks can only be filled once per hour)                       |
| Sycamore E       | mergency ICE (AOS1)                           |                                                                                                |                     |                               |            |                                                                                                                                                                      |
|                  |                                               | Div. 15                                                                                        |                     | 500                           | hours/year | Annual hours of operation (EPA guidance states 500 hours for emergency engines)                                                                                      |
| 049-59<br>(AOS1) | -                                             | Sycamore Diesel Emergency Generator 1 (AOS1) (609 hp engine)                                   |                     | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                                                                                                              |
|                  |                                               |                                                                                                |                     | 609                           | hp         | Rated horsepower of the engine                                                                                                                                       |

Table G.1 Emission Inventory Inputs - Potential Emission Calculations

|                   |                                                                                             |                                                                     | Input Inf           | ormation                      |            |                                                                                 |
|-------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|-------------------------------|------------|---------------------------------------------------------------------------------|
| Process<br>Number | Process/Emission Unit Description - Design of<br>AOS1 in Class II Air Quality Permit #77414 | Process/Emission Unit Description - Proposed Updated Design of AOS1 | Permitted<br>Design | Proposed<br>Updated<br>Design | Units      | Information Description                                                         |
|                   |                                                                                             |                                                                     | -                   | 500                           | hours/year | Annual hours of operation (EPA guidance states 500 hours for emergency engines) |
| 049-60<br>(AOS1)  | -                                                                                           | Sycamore Diesel Emergency Generator 2 (AOS1) (762 hp engine)        |                     | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                         |
|                   |                                                                                             |                                                                     | -                   | 762                           | hp         | Rated horsepower of the engine                                                  |
|                   |                                                                                             |                                                                     | -                   | 500                           | hours/year | Annual hours of operation (EPA guidance states 500 hours for emergency engines) |
| 049-61<br>(AOS1)  | -                                                                                           | Sycamore Propane Emergency Generator 1 (AOS1) (84.7 hp engine)      | -                   | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                         |
|                   |                                                                                             |                                                                     | -                   | 84.70                         | hp         | Rated horsepower of the engine                                                  |
|                   |                                                                                             |                                                                     | -                   | 500                           | hours/year | Annual hours of operation (EPA guidance states 500 hours for emergency engines) |
| 049-62<br>(AOS1)  |                                                                                             | Sycamore Propane Emergency Generator 2 (AOS1) (84.7 hp engine)      |                     | 1                             | hours/hour | Hourly hours of operation (assume continuous operation)                         |
|                   |                                                                                             |                                                                     | -                   | 84.70                         | hp         | Rated horsepower of the engine                                                  |

|                  |                                                       |          |                  |                   |         | Tabl       | e G.2 Parti | culate Matte             | er Emission               | Factors - P | otential Em   | ission Calc  | ulations      |                  |             |            |             |                                                                            |
|------------------|-------------------------------------------------------|----------|------------------|-------------------|---------|------------|-------------|--------------------------|---------------------------|-------------|---------------|--------------|---------------|------------------|-------------|------------|-------------|----------------------------------------------------------------------------|
| Process          |                                                       |          | Emissi           | on Factors        |         | Process    |             |                          |                           | Pa          | rticulate Mat | tter Emissio | n Factor Inpu | ıts <sup>a</sup> |             |            |             |                                                                            |
| Code             | Process Description                                   | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Units   | Rate Units | k<br>(PM)   | k<br>(PM <sub>10</sub> ) | k<br>(PM <sub>2.5</sub> ) | U<br>(mph)  | M<br>(%)      | s<br>(%)     | S<br>(mph)    | f<br>(%)         | p<br>(days) | A<br>(ft²) | W<br>(tons) | Reference                                                                  |
| ollution C       | ontrol Devices                                        |          |                  |                   |         |            | (1 111)     | (1 11110)                | (1 M 2.5)                 | (mpn)       | (70)          | (70)         | (mpn)         | (70)             | (uuys)      | (11.)      | (10113)     |                                                                            |
| C51<br>(AOS1)    | Dust Collector C51 (AOS1)                             | 1.93E-06 | 1.93E-06         | 1.93E-06          | lb/dscf | dscf       | -           | -                        |                           |             |               |              |               | -                |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-001<br>(AOS1) | Dust Collector AE-001 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       |             |                          |                           |             |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-014<br>(AOS1) | Dust Collector AE-014 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              | -             |                  | -           |            | -           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-015<br>(AOS1) | Dust Collector AE-015 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              | -             |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-002<br>(AOS1) | Dust Collector AE-002 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              | -             | -                |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-003<br>(AOS1) | Dust Collector AE-003 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              | -             |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-016<br>(AOS1) | Dust Collector AE-016 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-017<br>(AOS1) | Dust Collector AE-017 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-008<br>(AOS1) | Dust Collector AE-008 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-009<br>(AOS1) | Dust Collector AE-009 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  |             | -          |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-010<br>(AOS1) | Dust Collector AE-010 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  | -           |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-011<br>(AOS1) | Dust Collector AE-011 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           | -             |              |               |                  | -           | -          |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-007<br>(AOS1) | Dust Collector AE-007 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              | -             |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-012<br>(AOS1) | Dust Collector AE-012 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| AE-013<br>(AOS1) | Dust Collector AE-013 (AOS1)                          | 3.71E-07 | 3.71E-07         | 3.71E-07          | lb/dscf | dscf       | -           | -                        | -                         | -           |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| SDC1<br>(AOS1)   | PC1 Dust Collector 1 (AOS1)                           | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf | dscf       | -           | -                        |                           |             |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| SDC2<br>(AOS1)   | PC1 CCC1 Dust Collector 2 (AOS1)                      | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf | dscf       | -           | -                        |                           |             |               |              |               |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| SDC3<br>(AOS1)   | PC1 CCC2 Dust Collector 3 (AOS1)                      | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf | dscf       | -           | -                        |                           |             |               |              | -             |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| SDC4<br>(AOS1)   | PC1 CCC3 Dust Collector 4 (AOS1)                      | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf | dscf       | -           | -                        |                           |             |               |              | -             |                  |             |            |             | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |
| SDC5<br>(AOS1)   | Coarse Ore Reclaim Conveyor 1 Dust Collector 5 (AOS1) | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf | dscf       |             |                          |                           |             |               |              |               |                  |             |            | -           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub> |

Table G.2 Particulate Matter Emission Factors - Potential Emission Calculations

|                       |                                                          |          | Emissio          | n Factors         |          |                       |           |                          |                           | Pa         | rticulate Mat | ter Emission | Factor Inpu | ıts <sup>a</sup> |             |           |             |                                                                                                                                                                   |
|-----------------------|----------------------------------------------------------|----------|------------------|-------------------|----------|-----------------------|-----------|--------------------------|---------------------------|------------|---------------|--------------|-------------|------------------|-------------|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Code       | Process Description                                      | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Units    | Process<br>Rate Units | k<br>(PM) | k<br>(PM <sub>10</sub> ) | k<br>(PM <sub>2.5</sub> ) | U<br>(mph) | M<br>(%)      | s<br>(%)     | S<br>(mph)  | f<br>(%)         | p<br>(days) | A (5.2)   | W<br>(tons) | Reference                                                                                                                                                         |
| SDC6<br>(AOS1)        | Coarse Ore Reclaim Conveyor 2 Dust Collector 6<br>(AOS1) | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf  | dscf                  | (PW)      | (PM <sub>10</sub> )      | (PW12.5)                  |            |               |              | <br>        |                  | (uays)      | (ft²)<br> | (tons)      | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub>                                                                                        |
| SDC7<br>(AOS1)        | HPGR Discharge Dust Collector 7 (AOS1)                   | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf  | dscf                  | -         | 1                        | -                         |            |               |              |             |                  |             |           | 1           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub>                                                                                        |
| SDC8<br>(AOS1)        | HPGR Discharge Conveyor Transfer Dust Collector 8 (AOS1) | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf  | dscf                  |           | 1                        | -                         |            |               |              |             |                  |             |           | 1           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub>                                                                                        |
| SDC9<br>(AOS1)        | HPGR Product Bin Dust Collector 9 (AOS1)                 | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf  | dscf                  | -         | 1                        |                           |            |               |              |             |                  |             |           | 1           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub>                                                                                        |
| SDC10<br>(AOS1)       | HPGR Product Transfer Dust Collector 10 (AOS1)           | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf  | dscf                  | -         | ı                        |                           |            |               |              |             |                  |             |           | ı           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub>                                                                                        |
| SDC11<br>(AOS1)       | HPGR Product Transfer Dust Collector 11 (AOS1)           | 3.29E-07 | 3.29E-07         | 3.29E-07          | lb/dscf  | dscf                  | -         | ı                        |                           |            |               |              |             |                  |             |           | 1           | Voluntary Emission Limitations, Assume PM <sub>2.5</sub> =PM <sub>10</sub>                                                                                        |
| MDWSS<br>(AOS1)       | Molybdenum Dryer Wet Scrubber System (AOS1)              | 0.063    | 0.063            | 0.063             | lb/hr    | hours                 | -         | 1                        |                           |            |               |              |             |                  |             |           | -           | Assume a maximum equal to the 40 CFR 60 Subpart LL Emission Standard, Assume PM <sub>2.5</sub> =PM <sub>10</sub> =PM                                              |
| Drilling and          | Blasting Operations                                      | •        |                  |                   |          |                       |           |                          | •                         |            |               |              |             |                  |             |           |             |                                                                                                                                                                   |
| Drilling<br>(AOS1-C)  | Drilling (AOS1) (AOS1-C)                                 | 1.30     | 0.78             | 0.14              | lb/hole  | holes                 | 1         | 0.60                     | 0.11                      | -          | -             |              |             |                  |             |           | -           | AP-42 Table 11.9-4 (10/98), Drilling Overburden and particle size fractions from AP-42 Table 11.19.2-2 and Figure 11.19-4 (08/04), Tertiary Crushing (controlled) |
| Drilling<br>(AOS1)    | Drilling (AOS1)                                          | 1.30     | 0.78             | 0.14              | lb/hole  | holes                 | 1         | 0.60                     | 0.11                      | -          |               |              |             |                  |             |           | -           | AP-42 Table 11.9-4 (10/98), Drilling Overburden and particle size fractions from AP-42 Table 11.19.2-2 and Figure 11.19-4 (08/04), Tertiary Crushing (controlled) |
| ABlasting<br>(AOS1-C) | Blasting (AOS1) (annual basis) (AOS1-C)                  | 397.06   | 206.47           | 11.91             | lb/blast | blasts                | 1         | 0.52                     | 0.03                      |            |               |              |             |                  |             | 93,000    | 1           | AP-42 Table 11.9-1 (10/98), Blasting Overburden                                                                                                                   |
| HBlasting<br>(AOS1-C) | Blasting (AOS1) (hourly basis) (AOS1-C)                  | 1,252.20 | 651.14           | 37.57             | lb/blast | blasts                | 1         | 0.52                     | 0.03                      |            |               |              |             |                  |             | 200,000   | 1           | AP-42 Table 11.9-1 (10/98), Blasting Overburden                                                                                                                   |
| ABlasting<br>(AOS1)   | Blasting (AOS1) (annual basis)                           | 3,742.33 | 1,946.01         | 112.27            | lb/blast | blasts                | 1         | 0.52                     | 0.03                      | -          |               | -            | -           | -                |             | 414,963   | -           | AP-42 Table 11.9-1 (10/98), Blasting Overburden                                                                                                                   |
| HBlasting<br>(AOS1)   | Blasting (AOS1) (hourly basis)                           | 4,919.42 | 2,558.10         | 147.58            | lb/blast | blasts                | 1         | 0.52                     | 0.03                      |            |               |              |             |                  |             | 497,956   | 1           | AP-42 Table 11.9-1 (10/98), Blasting Overburden                                                                                                                   |
| Vehicle Ope           | rations                                                  |          |                  |                   |          |                       |           |                          |                           |            |               |              |             |                  |             |           |             |                                                                                                                                                                   |
| ATravel<br>(AOS1-C)   | Vehicle Travel on Unpaved Roads (annual basis) (AOS1-C)  | 19.83    | 5.45             | 0.55              | lb/VMT   | VMT                   | 4.9       | 1.5                      | 0.15                      | -          | -             | 7.0          |             |                  | 45          |           | 207.78      | AP-42 Section 13.2.2, Expressions 1a and 2 (11/06)                                                                                                                |
| HTravel<br>(AOS1-C)   | Vehicle Travel on Unpaved Roads (hourly basis) (AOS1-C)  | 21.48    | 5.90             | 0.59              | lb/VMT   | VMT                   | 4.9       | 1.5                      | 0.15                      | -          | -             | 7.0          |             |                  |             |           | 185.18      | AP-42 Section 13.2.2, Expression 1a (11/06)                                                                                                                       |
| ATravel<br>(AOS1)     | Vehicle Travel on Unpaved Roads (annual basis) (AOS1)    | 15.66    | 4.30             | 0.43              | lb/VMT   | VMT                   | 4.9       | 1.5                      | 0.15                      | -          | -             | 7.0          |             |                  | 45          |           | 122.93      | AP-42 Section 13.2.2, Expressions 1a and 2 (11/06)                                                                                                                |
| HTravel<br>(AOS1)     | Vehicle Travel on Unpaved Roads (hourly basis) (AOS1)    | 21.01    | 5.77             | 0.58              | lb/VMT   | VMT                   | 4.9       | 1.5                      | 0.15                      | -          | -             | 7.0          |             |                  |             |           | 176.21      | AP-42 Section 13.2.2, Expression 1a (11/06)                                                                                                                       |
| Dozer<br>(AOS1-C)     | Dozer Operation (AOS1) (AOS1-C)                          | 8.85     | 1.61             | 0.93              | lb/hr    | hours                 | 5.7       | 0.75                     | 0.60                      | -          | 2.564         | 4.0          |             |                  |             |           | -           | AP-42 Table 11.9-1 (10/98), Bulldozing Overburden                                                                                                                 |
| Dozer<br>(AOS1)       | Dozer Operation (AOS1)                                   | 8.85     | 1.61             | 0.93              | lb/hr    | hours                 | 5.7       | 0.75                     | 0.60                      | -          | 2.564         | 4.0          |             |                  |             |           | 1           | AP-42 Table 11.9-1 (10/98), Bulldozing Overburden                                                                                                                 |

Table G.2 Particulate Matter Emission Factors - Potential Emission Calculations

|                          |                                                                                                                                       |          | Emissis          | on Factors        |            |                       |      |                     |                      |       | otentiai Emi |     | n Factor Inpu | .to 8 |        |       |        |                                                                                                                                         |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------------------|------------|-----------------------|------|---------------------|----------------------|-------|--------------|-----|---------------|-------|--------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Code          | Process Description                                                                                                                   |          |                  | 1                 |            | Process<br>Rate Units | k    | k                   | k                    | U     | M            | s s | S             | f f   | р      | Α     | w      | Reference                                                                                                                               |
|                          |                                                                                                                                       | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Units      |                       | (PM) | (PM <sub>10</sub> ) | (PM <sub>2.5</sub> ) | (mph) | (%)          | (%) | (mph)         | (%)   | (days) | (ft²) | (tons) |                                                                                                                                         |
| Grader<br>(AOS1-C)       | Road Grader Operation (AOS1) (AOS1-C)                                                                                                 | 3.53     | 1.10             | 0.11              | lb/VMT     | VMT                   | 1    | 0.60                | 0.031                | -     | -            | -   | 6.0           |       |        | 1     |        | AP-42 Table 11.9-1 (10/98), Grading                                                                                                     |
| Grader<br>(AOS1)         | Road Grader Operation (AOS1)                                                                                                          | 3.53     | 1.10             | 0.11              | lb/VMT     | VMT                   | 1    | 0.60                | 0.031                | -     | -            | -   | 6.0           |       |        | -     |        | AP-42 Table 11.9-1 (10/98), Grading                                                                                                     |
| Material Tra             | ansfer Operations                                                                                                                     | •        |                  |                   |            | •                     |      |                     |                      |       |              |     | •             | •     | •      |       |        |                                                                                                                                         |
| Ore1TrUnpr<br>t (AOS1-C) | Material Transfer of the Combination of All Mined<br>Material (unprotected) (Design of AOS1 in Class II Air<br>Quality Permit #77414) | 0.0026   | 0.0012           | 0.00019           | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 2.564        |     |               |       |        | -     |        | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| Ore1TrUnpr<br>t (AOS1)   | Material Transfer of the Combination of All Mined<br>Material (unprotected) (Proposed Updated Design of<br>AOS1)                      | 0.0026   | 0.0012           | 0.00019           | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 2.564        |     |               |       |        | 1     | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| Ore2TrUnpr<br>t          | Material Transfer of Mill Ore (unprotected)                                                                                           | 0.0026   | 0.0012           | 0.00019           | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 2.564        |     |               |       |        | 1     | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| Ore2TrPrt                | Material Transfer of Mill Ore (protected)                                                                                             | 0.00029  | 0.00014          | 0.000021          | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 1.3   | 2.564        |     |               |       |        |       | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| Ore3TrUnpr<br>t          | Material Transfer of Leach Ore (unprotected)                                                                                          | 0.0026   | 0.0012           | 0.00019           | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 2.564        |     |               |       |        | -     | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| Ore4TrUnpr<br>t          | Material Transfer of Overburden/Low Grade Ore (unprotected)                                                                           | 0.0026   | 0.0012           | 0.00019           | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 2.564        |     |               |       |        |       | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| CCTrPrt                  | Material Transfer of Copper Concentrate (protected)                                                                                   | 0.000050 | 0.000024         | 0.0000036         | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 1.3   | 9.00         |     |               |       |        |       | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| MC4TrPrt                 | Material Transfer of Sycamore Molybdenum<br>Concentrate Post-Dryer (protected)                                                        | 0.0021   | 0.0010           | 0.00015           | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 3.00         | -   |               |       |        |       | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| LimeLd                   | Lime Loading                                                                                                                          | 0.61     | 0.21             | 0.032             | lb/ton     | tons                  | 1    | 0.35                | 0.053                | -     | -            | -   |               |       |        |       | -      | AP-42 Table 11.17-4 (02/98) for product loading enclosed truck, particle size fractions from AP-42 Section 13.2.4, Expression 1 (11/06) |
| FITrUnprt                | Material Transfer of Flocculant (unprotected)                                                                                         | 0.069    | 0.032            | 0.0049            | lb/ton     | tons                  | 0.74 | 0.35                | 0.053                | 7.10  | 0.25         |     |               |       | -      | -     | -      | AP-42 Section 13.2.4, Expression 1 (11/06)                                                                                              |
| PBL                      | Material Transfer of Prill                                                                                                            | 0.020    | 0.0070           | 0.0011            | lb/ton     | tons                  | 1    | 0.35                | 0.053                | -     | -            | -   |               |       |        | -     | -      | AP-42 Table 8.3-2 (07/93), Bulk Loading Operations, particle size fractions from AP-42 Section 13.2.4, Expression 1 (11/06)             |
| Lime Slakin              | ng Operations                                                                                                                         |          |                  |                   |            |                       |      |                     |                      |       |              |     |               |       |        |       |        |                                                                                                                                         |
| SLS<br>(AOS1)            | Sycamore Lime Slaker (AOS1)                                                                                                           | 0.0012   | 0.0012           | 0.0012            | lb/ton     | tons                  | 1    | 1                   | 1                    | -     | -            | -   | -             |       |        | -     |        | Manufacturer's Information from a similar slaker with a 20% Safety Factor, Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub>                |
| Wind Erosio              | on                                                                                                                                    |          |                  | •                 |            | •                     |      |                     | •                    |       |              |     |               |       |        |       |        |                                                                                                                                         |
| AWindCOS<br>1/5 (AOS1)   | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1) (annual basis)                                                                       | 2,778.90 | 1,389.45         | 208.42            | lb/acre-yr | acre-yr               | 1    | 0.50                | 0.075                |       |              | 7.4 |               | 10.0  | 45     | -     |        | 4th Edition of AP-42 Section 11.2.3, particle size fractions from AP-42 Section 13.2.5 (11/06)                                          |
| HWindCOS<br>1/5 (AOS1)   | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1) (hourly basis)                                                                       | 0.32     | 0.16             | 0.024             | lb/acre-hr | acre-yr               | 1    | 0.50                | 0.075                | -     | -            | 7.4 |               | 10.0  | 45     | -     | -      | 4th Edition of AP-42 Section 11.2.3, particle size fractions from AP-42 Section 13.2.5 (11/06)                                          |
| AWindCOS<br>6 (AOS1)     | Wind Erosion of Coarse Ore Stockpile 6 (AOS1) (annual basis)                                                                          | 2,778.90 | 1,389.45         | 208.42            | lb/acre-yr | acre-yr               | 1    | 0.50                | 0.075                |       |              | 7.4 |               | 10.0  | 45     | -     | -      | 4th Edition of AP-42 Section 11.2.3, particle size fractions from AP-42 Section 13.2.5 (11/06)                                          |
| HWindCOS<br>6 (AOS1)     | Wind Erosion of Coarse Ore Stockpile 6 (AOS1) (hourly basis)                                                                          | 0.32     | 0.16             | 0.024             | lb/acre-hr | acre-yr               | 1    | 0.50                | 0.075                | -     | -            | 7.4 |               | 10.0  | 45     | -     |        | 4th Edition of AP-42 Section 11.2.3, particle size fractions from AP-42 Section 13.2.5 (11/06)                                          |

July 2023

Table G.2 Particulate Matter Emission Factors - Potential Emission Calculations

| Process             | Process Description                                                                                                              |           | Emissio          | n Factors         |            | Process    |           |                          |                           | Pai        | rticulate Mat | ter Emissio | Factor Inpu | its <sup>a</sup> |             |            |             | - Reference                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-------------------|------------|------------|-----------|--------------------------|---------------------------|------------|---------------|-------------|-------------|------------------|-------------|------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Code                | Process Description                                                                                                              | PM        | PM <sub>10</sub> | PM <sub>2.5</sub> | Units      | Rate Units | k<br>(PM) | k<br>(PM <sub>10</sub> ) | k<br>(PM <sub>2.5</sub> ) | U<br>(mph) | M<br>(%)      | s<br>(%)    | S<br>(mph)  | f<br>(%)         | p<br>(days) | A<br>(ft²) | W<br>(tons) | Reference                                                                                                                                        |
| AWindSCC<br>(AOS1)  | Wind Erosion of Copper Concentrate Filter Drop<br>Storage (AOS1) and Copper Concentrate Loadout<br>Storage (AOS1) (annual basis) | 36,050.61 | 18,025.30        | 2,703.80          | lb/acre-yr | acre-yr    | 1         | 0.50                     | 0.075                     | -          |               | 96          |             | 10.0             | 45          |            |             | 4th Edition of AP-42 Section 11.2.3, particle size fractions from AP-42 Section 13.2.5 (11/06)                                                   |
| HWindSCC<br>(AOS1)  | Wind Erosion of Copper Concentrate Filter Drop<br>Storage (AOS1) and Copper Concentrate Loadout<br>Storage (AOS1) (hourly basis) | 4.12      | 2.06             | 0.31              | lb/acre-hr | acre-yr    | 1         | 0.50                     | 0.075                     |            | -             | 96          |             | 10.0             | 45          |            |             | 4th Edition of AP-42 Section 11.2.3, particle size fractions from AP-42 Section 13.2.5 (11/06)                                                   |
| Diesel Emer         | gency ICE                                                                                                                        |           |                  |                   |            |            |           |                          |                           |            |               |             |             |                  |             |            |             |                                                                                                                                                  |
| Tier2-560-D         | Tier 2 Diesel Non-Emergency Engines (kW > 560)                                                                                   | 0.00033   | 0.00033          | 0.00033           | lb/hp-hr   | hp-hr      | 1         | 1                        | 1                         | -          | -             | -           | -           |                  | -           |            |             | Tier 2 Emission Standards from 40 CFR 1039 Appendix I Table 2 for<br>Engines Rated kW > 560, Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub>       |
| Tier3-<br>450/560-D | Tier 3 Diesel Emergency Engines (450 ≤ kW ≤ 560)                                                                                 | 0.00033   | 0.00033          | 0.00033           | lb/hp-hr   | hp-hr      | 1         | 1                        | 1                         | -          | -             | -           | -           |                  | -           |            |             | Tier 3 Emission Standards from 40 CFR 1039 Appendix I Table 3 for<br>Engines Rated 450 ≤ kW < 560, Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub> |
| Propane Em          | ergency ICE                                                                                                                      |           |                  |                   |            |            |           | •                        | •                         | •          | •             | •           | •           | •                | •           | •          | •           |                                                                                                                                                  |
| SEG-P               | Sycamore Propane Emergency Generators                                                                                            | 0.00020   | 0.00020          | 0.00020           | lb/hp-hr   | hp-hr      | 1         | 1                        | 1                         |            | -             |             |             |                  |             |            |             | AP-42 Table 3.2-3 (08/00), 4-Stroke Rich Burn, Assume PM=PM <sub>10</sub> =PM <sub>2.5</sub> , and 10,500 Btu/hp-hr                              |

<sup>\*</sup> k = particle size multipliers, U = mean wind speed, M = material moisture content, s = surface material silt content, S = mean vehicle speed, f = percentage of time with mean wind speed greater than 12 mph at the mean pile height, p = number of days/year with precipitation ≥ 0.01 inches, A = horizontal area of blasting surface, W = mean vehicle weight

**Table G.3 Particulate Matter Control Efficiencies - Potential Emission Calculations** 

| Control<br>Code | Control Description                                        | Control<br>Efficiency (%) | Reference                                                                                                                                 |
|-----------------|------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| UnpvdRd         | Unpaved Road Watering and/or Chemical Dust Suppression Use | 90%                       | Control of Open Fugitive Dust Sources (09/88), pages 5-9 through 5-14                                                                     |
| SLimeBH         | Sycamore Lime Silo Baghouse (AOS1)                         | 99%                       | Minimum value from AP-42 Table B.2-3 (09/90)                                                                                              |
| SLSS            | Sycamore Lime System Scrubber (AOS1)                       | 0%                        | Control Efficiency Incorporated into Emission Factor                                                                                      |
| Fogging         | Dry Fogging System                                         | 90%                       | Manufacturer's Information (Dust Solutions Incorporated)                                                                                  |
| WS/BOP          | Water Spray/Wet Suppression When Necessary                 | 0%                        | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| 3Sided          | 3-Sided Enclosure                                          | 75%                       | South Coast Air Quality Management District Document on Fugitive Dust Mitigation Measures                                                 |
| DC              | Dust Collector                                             | 0%                        | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| sc              | Scrubber                                                   | 0%                        | Control Efficiency Incorporated into the Emission Factor (i.e., emissions are calculated without the application of a control efficiency) |
| ВОР             | Best Operating Practices                                   | 0%                        |                                                                                                                                           |

Table G.4 Annual Particulate Matter Emissions - Potential Emission Calculations

|                  |                                                                |                         |                    | Table          | G.4 Annua  | al Particula | te Matter Er     | nissions - P      | otential Em | ission Calcu | liations                   |              |            |                       |             |                        |             |
|------------------|----------------------------------------------------------------|-------------------------|--------------------|----------------|------------|--------------|------------------|-------------------|-------------|--------------|----------------------------|--------------|------------|-----------------------|-------------|------------------------|-------------|
| Process          | Process/Emission Unit Description                              | Process Code            | Non-Fug.<br>(NF) / | Annual Process | Rate Units | Er           | nission Facto    | ors               | EF Units    | Control      | Pick-up or<br>Control Eff. | PM Emiss     | ions (tpy) | PM <sub>10</sub> Emis | sions (tpy) | PM <sub>2.5</sub> Emis | sions (tpy) |
| Number           | Process/Emission Unit Description                              | Process Code            | Fug. (F)           | Rate           | Rate Units | PM           | PM <sub>10</sub> | PM <sub>2.5</sub> | EFONIS      | Code         | (%)                        | Uncontrolled | Controlled | Uncontrolled          | Controlled  | Uncontrolled           | Controlled  |
| Affected Em      | issions Units - Design of AOS1 in Class II Air Q               | uality Permit #7        | 7414               | •              | !          | !            | !                |                   |             | •            |                            |              |            | •                     |             | '                      |             |
| Mining Opera     | ations (AOS1)                                                  |                         |                    |                |            |              |                  |                   |             |              |                            |              |            |                       |             |                        |             |
| 026-3<br>(AOS1)  | Drilling (AOS1)                                                | Drilling (AOS1-C)       | F                  | 90,000         | holes      | 1.30         | 0.78             | 0.14              | lb/hole     | ВОР          | 0%                         | 58.50        | 58.50      | 35.10                 | 35.10       | 6.50                   | 6.50        |
| 026-2<br>(AOS1)  | Blasting (AOS1)                                                | ABlasting<br>(AOS1-C)   | F                  | 600            | blasts     | 397.06       | 206.47           | 11.91             | lb/blast    | ВОР          | 0%                         | 119.12       | 119.12     | 61.94                 | 61.94       | 3.57                   | 3.57        |
| 022-1<br>(AOS1)  | Haul Truck Travel Inside the Pit (AOS1)                        | ATravel<br>(AOS1-C)     | F                  | 2,513,372      | VMT        | 19.83        | 5.45             | 0.55              | lb/VMT      | UnpvdRd      | 90%                        | 24,925.28    | 2,492.53   | 6,850.44              | 685.04      | 685.04                 | 68.50       |
| 022-2<br>(AOS1)  | Haul Truck Travel Outside the Pit (AOS1)                       | ATravel<br>(AOS1-C)     | F                  | 837,791        | VMT        | 19.83        | 5.45             | 0.55              | lb/VMT      | UnpvdRd      | 90%                        | 8,308.43     | 830.84     | 2,283.48              | 228.35      | 228.35                 | 22.83       |
| 023-3<br>(AOS1)  | Other Vehicle Travel (AOS1)                                    | ATravel<br>(AOS1-C)     | F                  | 1,350,115      | VMT        | 19.83        | 5.45             | 0.55              | lb/VMT      | UnpvdRd      | 90%                        | 13,389.18    | 1,338.92   | 3,679.87              | 367.99      | 367.99                 | 36.80       |
| 023-1<br>(AOS1)  | Dozer Operation (AOS1)                                         | Dozer (AOS1-<br>C)      | F                  | 78,046         | hours      | 8.85         | 1.61             | 0.93              | lb/hr       | ВОР          | 0%                         | 345.20       | 345.20     | 62.66                 | 62.66       | 36.25                  | 36.25       |
| 023-2<br>(AOS1)  | Road Grader Operation (AOS1)                                   | Grader (AOS1-<br>C)     | F                  | 118,587        | VMT        | 3.53         | 1.10             | 0.11              | lb/VMT      | UnpvdRd      | 90%                        | 209.14       | 20.91      | 65.32                 | 6.53        | 6.48                   | 0.65        |
| 021-1<br>(AOS1)  | Loading Mined Material into Haul Trucks (AOS1)                 | Ore1TrUnprt<br>(AOS1-C) | F                  | 220,314,000    | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton      | ВОР          | 0%                         | 290.62       | 290.62     | 137.46                | 137.46      | 20.81                  | 20.81       |
| 001-6<br>(AOS1)  | Unloading Ore to Primary Crusher 1 (AOS1)                      | Ore2TrUnprt             | F                  | 65,700,000     | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton      | WS/BOP       | 0%                         | 86.67        | 86.67      | 40.99                 | 40.99       | 6.21                   | 6.21        |
| 001-7<br>(AOS1)  | Unloading Ore to Primary Crusher 2 (AOS1)                      | Orezmonpit              | ,                  | 00,700,000     | toris      | 0.0020       | 0.0012           | 0.00013           | 15/1011     | Worldon      | 070                        | 00.01        | 66.67      | 40.00                 | 40.00       | 0.21                   | 0.21        |
| 045-3<br>(AOS1)  | Unloading Ore to Leaching Areas (AOS1)                         | Ore3TrUnprt             | F                  | 30,076,000     | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton      | ВОР          | 0%                         | 39.67        | 39.67      | 18.76                 | 18.76       | 2.84                   | 2.84        |
| 045-1<br>(AOS1)  | Unloading Overburden/Low Grade Ore to Storage<br>Areas (AOS1)  | Ore4TrUnprt             | F                  | 124,538,000    | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton      | ВОР          | 0%                         | 164.28       | 164.28     | 77.70                 | 77.70       | 11.77                  | 11.77       |
| Primary Crus     | thing and Overland Conveying Operations (to Bagd               | ad Concentrator)        | (AOS1)             |                |            |              |                  |                   |             |              |                            |              |            |                       |             |                        |             |
| 001-5<br>(AOS1)  | Dust Collector C51 (AOS1)                                      | C51 (AOS1)              | NF                 | 7,884,000,000  | dscf       | 1.93E-06     | 1.93E-06         | 1.93E-06          | lb/dscf     | DC           | 0%                         | 7.60         | 7.60       | 7.60                  | 7.60        | 7.60                   | 7.60        |
| 001-16<br>(AOS1) | Dust Collector AE-001 (AOS1)                                   | AE-001<br>(AOS1)        | NF                 | 10,512,000,000 | dscf       | 3.71E-07     | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.95         | 1.95       | 1.95                  | 1.95        | 1.95                   | 1.95        |
| 001-17<br>(AOS1) | Dust Collector AE-014 (AOS1)                                   | AE-014<br>(AOS1)        | NF                 | 6,307,200,000  | dscf       | 3.71E-07     | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 001-18<br>(AOS1) | Dust Collector AE-015 (AOS1)                                   | AE-015<br>(AOS1)        | NF                 | 6,307,200,000  | dscf       | 3.71E-07     | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Ore2TrUnprt             | F                  | 32,850,000     | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton      | WS/BOP       | 0%                         | 43.33        | 43.33      | 20.50                 | 20.50       | 3.10                   | 3.10        |

Table G.4 Annual Particulate Matter Emissions - Potential Emission Calculations

|                  |                                                                |                       |                    | Table          | O.4 Allilue | ar i articula | te Matter Li     | 1113310113 - 1    | otential Em | ission calci | ilations                   |              |            |                       |             |                        |             |
|------------------|----------------------------------------------------------------|-----------------------|--------------------|----------------|-------------|---------------|------------------|-------------------|-------------|--------------|----------------------------|--------------|------------|-----------------------|-------------|------------------------|-------------|
| Process          | Process/Emission Unit Description                              | Process Code          | Non-Fug.<br>(NF) / | Annual Process | Rate Units  | Er            | nission Facto    | ors               | EF Units    | Control      | Pick-up or<br>Control Eff. | PM Emiss     | ions (tpy) | PM <sub>10</sub> Emis | sions (tpy) | PM <sub>2.5</sub> Emis | sions (tpy) |
| Number           | Frocess/Emission only Description                              | Flocess Code          | Fug. (F)           | Rate           | Rate Offics | PM            | PM <sub>10</sub> | PM <sub>2.5</sub> | EFOIIIS     | Code         | (%)                        | Uncontrolled | Controlled | Uncontrolled          | Controlled  | Uncontrolled           | Controlled  |
| 001-19<br>(AOS1) | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 5 (AOS1) | Ore2TrUnprt           | F                  | 16,206,000     | tons        | 0.0026        | 0.0012           | 0.00019           | lb/ton      | WS/BOP       | 0%                         | 21.38        | 21.38      | 10.11                 | 10.11       | 1.53                   | 1.53        |
| 027-1<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1)               | AWindCOS1/5<br>(AOS1) | F                  | 6.88           | acre-yr     | 2,778.90      | 1,389.45         | 208.42            | lb/acre-yr  | ВОР          | 0%                         | 9.56         | 9.56       | 4.78                  | 4.78        | 0.72                   | 0.72        |
| Primary Crus     | thing and Overland Conveying Operations (to Sycal              | more Concentrat       | or) (AOS1)         |                |             |               |                  |                   |             |              |                            |              |            |                       |             |                        |             |
| 001-12<br>(AOS1) | Dust Collector AE-002 (AOS1)                                   | AE-002<br>(AOS1)      | NF                 | 6,307,200,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 001-13<br>(AOS1) | Dust Collector AE-003 (AOS1)                                   | AE-003<br>(AOS1)      | NF                 | 7,884,000,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.46         | 1.46       | 1.46                  | 1.46        | 1.46                   | 1.46        |
| 001-14<br>(AOS1) | Dust Collector AE-016 (AOS1)                                   | AE-016<br>(AOS1)      | NF                 | 6,307,200,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 001-15<br>(AOS1) | Dust Collector AE-017 (AOS1)                                   | AE-017<br>(AOS1)      | NF                 | 6,307,200,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 001-20<br>(AOS1) | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 6        | Ore2TrUnprt           | F                  | 16,644,000     | tons        | 0.0026        | 0.0012           | 0.00019           | lb/ton      | WS/BOP       | 0%                         | 21.96        | 21.96      | 10.38                 | 10.38       | 1.57                   | 1.57        |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)                  | AWindCOS6<br>(AOS1)   | F                  | 2.34           | acre-yr     | 2,778.90      | 1,389.45         | 208.42            | lb/acre-yr  | ВОР          | 0%                         | 3.25         | 3.25       | 1.63                  | 1.63        | 0.24                   | 0.24        |
| Sycamore M       | illing Operations (AOS1)                                       |                       |                    |                |             |               |                  |                   | •           |              |                            |              |            |                       |             |                        |             |
| 002-7<br>(AOS1)  | Dust Collector AE-008 (AOS1)                                   | AE-008<br>(AOS1)      | NF                 | 26,280,000,000 | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 4.88         | 4.88       | 4.88                  | 4.88        | 4.88                   | 4.88        |
| 002-8<br>(AOS1)  | Dust Collector AE-009 (AOS1)                                   | AE-009<br>(AOS1)      | NF                 | 6,307,200,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 002-9<br>(AOS1)  | Dust Collector AE-010 (AOS1)                                   | AE-010<br>(AOS1)      | NF                 | 10,512,000,000 | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.95         | 1.95       | 1.95                  | 1.95        | 1.95                   | 1.95        |
| 002-10<br>(AOS1) | Dust Collector AE-011 (AOS1)                                   | AE-011<br>(AOS1)      | NF                 | 6,307,200,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 002-11<br>(AOS1) | Dust Collector AE-007 (AOS1)                                   | AE-007<br>(AOS1)      | NF                 | 6,307,200,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.17         | 1.17       | 1.17                  | 1.17        | 1.17                   | 1.17        |
| 002-12<br>(AOS1) | Dust Collector AE-012 (AOS1)                                   | AE-012<br>(AOS1)      | NF                 | 17,344,800,000 | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 3.22         | 3.22       | 3.22                  | 3.22        | 3.22                   | 3.22        |
| 002-13<br>(AOS1) | Dust Collector AE-013 (AOS1)                                   | AE-013<br>(AOS1)      | NF                 | 9,460,800,000  | dscf        | 3.71E-07      | 3.71E-07         | 3.71E-07          | lb/dscf     | DC           | 0%                         | 1.76         | 1.76       | 1.76                  | 1.76        | 1.76                   | 1.76        |
| Total of Non-    | Fugitive Emissions for Affected Emissions Units - I            | Prior to the Prop     | osed Update        | s:             |             |               |                  |                   |             | •            |                            | 32.20        | 32.20      | 32.20                 | 32.20       | 32.20                  | 32.20       |
| Total of Fugit   | tive Emissions for Affected Emissions Units - Prior            | to the Proposed       | Updates:           |                |             |               |                  |                   |             |              |                            | 48,035.58    | 5,886.74   | 13,361.12             | 1,769.92    | 1,382.98               | 223.90      |
| Total of Non-    | Fugitive and Fugitive Emissions for Affected Emiss             | sions Units - Prio    | r to the Prop      | osed Updates:  |             |               |                  |                   |             |              |                            | 48,067.78    | 5,918.94   | 13,393.32             | 1,802.12    | 1,415.18               | 256.10      |

Table G.4 Annual Particulate Matter Emissions - Potential Emission Calculations

|                 |                                                                |                       |          | Table          | G.4 Annua  | al Particula | e Matter Er      | nissions - P      | otential Emi | ssion Calcu | ılations                   |              |            |                       |             |                        |             |
|-----------------|----------------------------------------------------------------|-----------------------|----------|----------------|------------|--------------|------------------|-------------------|--------------|-------------|----------------------------|--------------|------------|-----------------------|-------------|------------------------|-------------|
| Process         | Process/Emission Unit Description                              | Process Code          | Non-Fug. | Annual Process | Rate Units | Er           | nission Facto    | ors               | EF Units     | Control     | Pick-up or<br>Control Eff. | PM Emiss     | ions (tpy) | PM <sub>10</sub> Emis | sions (tpy) | PM <sub>2.5</sub> Emis | sions (tpy) |
| Number          | Process/Emission only Description                              | Flocess Code          | Fug. (F) | Rate           | Rate Units | PM           | PM <sub>10</sub> | PM <sub>2.5</sub> | EF OIIIts    | Code        | (%)                        | Uncontrolled | Controlled | Uncontrolled          | Controlled  | Uncontrolled           | Controlled  |
| Affected Em     | issions Units - Proposed Updated Design of AC                  | DS1                   |          |                |            |              |                  |                   |              | !           |                            |              |            |                       |             |                        |             |
| Mining Opera    | ations (AOS1)                                                  |                       |          |                |            |              |                  |                   |              |             |                            |              |            |                       |             |                        |             |
| 026-3<br>(AOS1) | Drilling (AOS1)                                                | Drilling<br>(AOS1)    | F        | 106,219        | holes      | 1.30         | 0.78             | 0.14              | lb/hole      | ВОР         | 0%                         | 69.04        | 69.04      | 41.43                 | 41.43       | 7.67                   | 7.67        |
| 026-2<br>(AOS1) | Blasting (AOS1)                                                | ABlasting<br>(AOS1)   | F        | 260            | blasts     | 3,742.33     | 1,946.01         | 112.27            | lb/blast     | ВОР         | 0%                         | 486.50       | 486.50     | 252.98                | 252.98      | 14.60                  | 14.60       |
| 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1)                        | ATravel<br>(AOS1)     | F        | 7,099,653      | VMT        | 15.66        | 4.30             | 0.43              | lb/VMT       | UnpvdRd     | 90%                        | 55,596.53    | 5,559.65   | 15,280.10             | 1,528.01    | 1,528.01               | 152.80      |
| 022-2<br>(AOS1) | Haul Truck Travel Outside the Pit (AOS1)                       | ATravel<br>(AOS1)     | F        | 2,366,551      | VMT        | 15.66        | 4.30             | 0.43              | lb/VMT       | UnpvdRd     | 90%                        | 18,532.18    | 1,853.22   | 5,093.37              | 509.34      | 509.34                 | 50.93       |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                                    | ATravel<br>(AOS1)     | F        | 14,080,416     | VMT        | 15.66        | 4.30             | 0.43              | lb/VMT       | UnpvdRd     | 90%                        | 110,262.05   | 11,026.21  | 30,304.32             | 3,030.43    | 3,030.43               | 303.04      |
| 023-1<br>(AOS1) | Dozer Operation (AOS1)                                         | Dozer (AOS1)          | F        | 133,221        | hours      | 8.85         | 1.61             | 0.93              | lb/hr        | ВОР         | 0%                         | 589.25       | 589.25     | 106.96                | 106.96      | 61.87                  | 61.87       |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                                   | Grader<br>(AOS1)      | F        | 420,480        | VMT        | 3.53         | 1.10             | 0.11              | lb/VMT       | UnpvdRd     | 90%                        | 741.57       | 74.16      | 231.60                | 23.16       | 22.99                  | 2.30        |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1)                 | Ore1TrUnprt<br>(AOS1) | F        | 254,833,922    | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | ВОР         | 0%                         | 336.16       | 336.16     | 158.99                | 158.99      | 24.08                  | 24.08       |
| 001-6<br>(AOS1) | Unloading Ore to Primary Crusher 1 (AOS1)                      | Ore2TrUnprt           | F        | 44,433,881     | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 58.61        | 58.61      | 27.72                 | 27.72       | 4.20                   | 4.20        |
| 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)                      | Ore2TrUnprt           | F        | 32,632,000     | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 43.05        | 43.05      | 20.36                 | 20.36       | 3.08                   | 3.08        |
| 045-3<br>(AOS1) | Unloading Ore to Leaching Areas (AOS1)                         | Ore3TrUnprt           | F        | 9,230,000      | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | ВОР         | 0%                         | 12.18        | 12.18      | 5.76                  | 5.76        | 0.87                   | 0.87        |
| 045-1<br>(AOS1) | Unloading Overburden/Low Grade Ore to Storage<br>Areas (AOS1)  | Ore4TrUnprt           | F        | 168,538,041    | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | ВОР         | 0%                         | 222.32       | 222.32     | 105.15                | 105.15      | 15.92                  | 15.92       |
| Primary Crus    | shing and Overland Conveying Operations (to Bagd               | ad Concentrator       | ) (AOS1) |                |            |              |                  |                   |              |             |                            |              |            |                       |             |                        |             |
| 001-5<br>(AOS1) | Dust Collector C51 (AOS1)                                      | C51 (AOS1)            | NF       | 7,884,000,000  | dscf       | 1.93E-06     | 1.93E-06         | 1.93E-06          | lb/dscf      | DC          | 0%                         | 7.60         | 7.60       | 7.60                  | 7.60        | 7.60                   | 7.60        |
| 001-2<br>(AOS1) | Overland Conveyor 3A (AOS1) to Overland<br>Conveyor 3 (AOS1)   | Ore2TrPrt             | NF       | 66,576,000     | tons       | 0.00029      | 0.00014          | 0.000021          | lb/ton       | Fogging     | 90%                        | 9.66         | 0.97       | 4.57                  | 0.46        | 0.69                   | 0.07        |
| 001-8<br>(AOS1) | Overland Conveyor 3 (AOS1) to Overland<br>Conveyor 4 (AOS1)    | Ore2TrPrt             | NF       | 66,576,000     | tons       | 0.00029      | 0.00014          | 0.000021          | lb/ton       | Fogging     | 90%                        | 9.66         | 0.97       | 4.57                  | 0.46        | 0.69                   | 0.07        |
| 001-9<br>(AOS1) | Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)          | Ore2TrPrt             | NF       | 66,576,000     | tons       | 0.00029      | 0.00014          | 0.000021          | lb/ton       | Fogging     | 90%                        | 9.66         | 0.97       | 4.57                  | 0.46        | 0.69                   | 0.07        |
| 001-4<br>(AOS1) | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Ore2TrUnprt           | F        | 53,260,800     | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 70.26        | 70.26      | 33.23                 | 33.23       | 5.03                   | 5.03        |

Table G.4 Annual Particulate Matter Emissions - Potential Emission Calculations

|                  |                                                                                           |                       |                    | Table          | G.4 Allilua | ai Faiticulai | le Matter Li     | 113310113 - F     | otential Emi | SSION Calcu | ilations                   |              |            |                       |             |                        |             |
|------------------|-------------------------------------------------------------------------------------------|-----------------------|--------------------|----------------|-------------|---------------|------------------|-------------------|--------------|-------------|----------------------------|--------------|------------|-----------------------|-------------|------------------------|-------------|
| Process          | Process/Emission Unit Description                                                         | Process Code          | Non-Fug.<br>(NF) / | Annual Process | Rate Units  | En            | nission Facto    | ors               | EF Units     | Control     | Pick-up or<br>Control Eff. | PM Emiss     | ions (tpy) | PM <sub>10</sub> Emis | sions (tpy) | PM <sub>2.5</sub> Emis | sions (tpy) |
| Number           | Process/Emission only bescription                                                         | riocess code          | Fug. (F)           | Rate           | Nate Office | PM            | PM <sub>10</sub> | PM <sub>2.5</sub> | Li Ollits    | Code        | (%)                        | Uncontrolled | Controlled | Uncontrolled          | Controlled  | Uncontrolled           | Controlled  |
| 001-10<br>(AOS1) | Radial Stacker 5 (AOS1) to Free-Standing Stacker 6 (AOS1)                                 | Ore2TrUnprt           | F                  | 13,315,200     | tons        | 0.0026        | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 17.56        | 17.56      | 8.31                  | 8.31        | 1.26                   | 1.26        |
| 001-3<br>(AOS1)  | Free-Standing Stacker 6 (AOS1) to Coarse Ore<br>Stockpile 5 (AOS1)                        | Ore2TrUnprt           | F                  | 13,315,200     | tons        | 0.0026        | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 17.56        | 17.56      | 8.31                  | 8.31        | 1.26                   | 1.26        |
| 027-1<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1)                                          | AWindCOS1/5<br>(AOS1) | F                  | 6.18           | acre-yr     | 2,778.90      | 1,389.45         | 208.42            | lb/acre-yr   | ВОР         | 0%                         | 8.59         | 8.59       | 4.29                  | 4.29        | 0.64                   | 0.64        |
| Primary Crus     | shing and Overland Conveying Operations (to Sycar                                         | nore Concentrat       | or) (AOS1)         |                |             |               |                  |                   |              |             |                            |              |            |                       |             |                        |             |
| 001-12<br>(AOS1) | PC1 Dust Collector 1 (AOS1)                                                               | SDC1 (AOS1)           | NF                 | 7,621,200,000  | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.25         | 1.25       | 1.25                  | 1.25        | 1.25                   | 1.25        |
| 001-13<br>(AOS1) | PC1 CCC1 Dust Collector 2 (AOS1)                                                          | SDC2 (AOS1)           | NF                 | 8,777,520,000  | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.44         | 1.44       | 1.44                  | 1.44        | 1.44                   | 1.44        |
| 001-14<br>(AOS1) | PC1 CCC2 Dust Collector 3 (AOS1)                                                          | SDC3 (AOS1)           | NF                 | 8,777,520,000  | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.44         | 1.44       | 1.44                  | 1.44        | 1.44                   | 1.44        |
| 001-15<br>(AOS1) | PC1 CCC3 Dust Collector 4 (AOS1)                                                          | SDC4 (AOS1)           | NF                 | 8,777,520,000  | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.44         | 1.44       | 1.44                  | 1.44        | 1.44                   | 1.44        |
| 001-20<br>(AOS1) | PC1 Cross Country Conveyor 3 (AOS1) to Coarse<br>Ore Stockpile 6 (AOS1)                   | Ore2TrUnprt           | F                  | 70,080,000     | tons        | 0.0026        | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 92.44        | 92.44      | 43.72                 | 43.72       | 6.62                   | 6.62        |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)                                             | AWindCOS6<br>(AOS1)   | F                  | 3.04           | acre-yr     | 2,778.90      | 1,389.45         | 208.42            | lb/acre-yr   | ВОР         | 0%                         | 4.22         | 4.22       | 2.11                  | 2.11        | 0.32                   | 0.32        |
| Sycamore M       | filling Operations (AOS1)                                                                 |                       |                    |                |             |               |                  |                   |              | •           |                            |              |            |                       |             |                        |             |
| 002-7<br>(AOS1)  | Coarse Ore Reclaim Conveyor 1 Dust Collector 5 (AOS1)                                     | SDC5 (AOS1)           | NF                 | 11,563,200,000 | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.90         | 1.90       | 1.90                  | 1.90        | 1.90                   | 1.90        |
| 002-8<br>(AOS1)  | Coarse Ore Reclaim Conveyor 2 Dust Collector 6 (AOS1)                                     | SDC6 (AOS1)           | NF                 | 11,563,200,000 | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.90         | 1.90       | 1.90                  | 1.90        | 1.90                   | 1.90        |
| 002-9<br>(AOS1)  | HPGR Discharge Dust Collector 7 (AOS1)                                                    | SDC7 (AOS1)           | NF                 | 12,088,800,000 | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 1.99         | 1.99       | 1.99                  | 1.99        | 1.99                   | 1.99        |
| 002-10<br>(AOS1) | HPGR Discharge Conveyor Transfer Dust<br>Collector 8 (AOS1)                               | SDC8 (AOS1)           | NF                 | 14,191,200,000 | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 2.33         | 2.33       | 2.33                  | 2.33        | 2.33                   | 2.33        |
| 002-11<br>(AOS1) | HPGR Product Bin Dust Collector 9 (AOS1)                                                  | SDC9 (AOS1)           | NF                 | 13,140,000,000 | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 2.16         | 2.16       | 2.16                  | 2.16        | 2.16                   | 2.16        |
| 002-12<br>(AOS1) | HPGR Product Transfer Dust Collector 10 (AOS1)                                            | SDC10<br>(AOS1)       | NF                 | 5,256,000,000  | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 0.86         | 0.86       | 0.86                  | 0.86        | 0.86                   | 0.86        |
| 002-13<br>(AOS1) | HPGR Product Transfer Dust Collector 11 (AOS1)                                            | SDC11<br>(AOS1)       | NF                 | 5,256,000,000  | dscf        | 3.29E-07      | 3.29E-07         | 3.29E-07          | lb/dscf      | DC          | 0%                         | 0.86         | 0.86       | 0.86                  | 0.86        | 0.86                   | 0.86        |
| Sycamore Co      | oncentrate Handling Operations (AOS1)                                                     |                       |                    |                |             |               |                  |                   |              | •           | •                          |              |            |                       |             |                        |             |
| 006-11<br>(AOS1) | Copper Concentrate Filters 1/2 (AOS1) to Copper<br>Concentrate Filter Drop Storage (AOS1) | CCTrPrt               | F                  | 499,320        | tons        | 0.000050      | 0.000024         | 0.0000036         | lb/ton       | ВОР         | 0%                         | 0.01         | 0.01       | 0.006                 | 0.006       | 0.0009                 | 0.0009      |

Table G.4 Annual Particulate Matter Emissions - Potential Emission Calculations

| Process          | December 1 Init December 1                                                                                            | Brosses Code        | Non-Fug.           | Annual Process | Data Un't  | Er        | nission Facto    | ors               | EF Units   | Control | Pick-up or   | PM Emiss     | ions (tpy) | PM <sub>10</sub> Emiss | sions (tpy) | PM <sub>2.5</sub> Emis | sions (tpy) |
|------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|----------------|------------|-----------|------------------|-------------------|------------|---------|--------------|--------------|------------|------------------------|-------------|------------------------|-------------|
| Number           | Process/Emission Unit Description                                                                                     | Process Code        | (NF) /<br>Fug. (F) | Rate           | Rate Units | PM        | PM <sub>10</sub> | PM <sub>2.5</sub> | EF Units   | Code    | Control Eff. | Uncontrolled | Controlled | Uncontrolled           | Controlled  | Uncontrolled           | Controlled  |
| 006-12<br>(AOS1) | Copper Concentrate Filter Drop Storage (AOS1)<br>to Copper Concentrate Loadout Storage (AOS1)<br>via Front-End Loader | CCTrPrt             | F                  | 499,320        | tons       | 0.000050  | 0.000024         | 0.0000036         | lb/ton     | ВОР     | 0%           | 0.01         | 0.01       | 0.006                  | 0.006       | 0.0009                 | 0.0009      |
| 006-13<br>(AOS1) | Copper Concentrate Loadout Storage (AOS1) to<br>Trucks via Front-End Loader                                           | CCTrPrt             | F                  | 499,320        | tons       | 0.000050  | 0.000024         | 0.0000036         | lb/ton     | ВОР     | 0%           | 0.01         | 0.01       | 0.006                  | 0.006       | 0.0009                 | 0.0009      |
| 027-8<br>(AOS1)  | Wind Erosion of Copper Concentrate Filter Drop<br>Storage (AOS1) and Copper Concentrate Loadout<br>Storage (AOS1)     | AWindSCC<br>(AOS1)  | F                  | 0.30           | acre-yr    | 36,050.61 | 18,025.30        | 2,703.80          | lb/acre-yr | 3Sided  | 75%          | 5.41         | 1.35       | 2.70                   | 0.68        | 0.41                   | 0.10        |
| 052-2<br>(AOS1)  | Molybdenum Dryer Wet Scrubber System (AOS1)                                                                           | MDWSS<br>(AOS1)     | NF                 | 8,760          | hours      | 0.063     | 0.063            | 0.063             | lb/hr      | sc      | 0%           | 0.28         | 0.28       | 0.28                   | 0.28        | 0.28                   | 0.28        |
| 052-3<br>(AOS1)  | Molybdenum Concentrate Dryer (AOS1) to Dried Molybdenum Concentrate Storage Bin (AOS1)                                | MC4TrPrt            | NF                 | 18,396         | tons       | 0.0021    | 0.0010           | 0.00015           | lb/ton     | BOP     | 0%           | 0.02         | 0.02       | 0.009                  | 0.009       | 0.001                  | 0.001       |
| 052-4<br>(AOS1)  | Dried Molybdenum Concentrate Storage Bin<br>(AOS1) to Molybdenum Concentrate Bagging<br>System (AOS1)                 | MC4TrPrt            | F                  | 18,396         | tons       | 0.0021    | 0.0010           | 0.00015           | lb/ton     | ВОР     | 0%           | 0.02         | 0.02       | 0.009                  | 0.009       | 0.001                  | 0.001       |
| Sycamore Li      | ime and Other Regent Operations (AOS1)                                                                                |                     |                    |                |            |           |                  |                   |            | •       | •            |              |            |                        |             |                        |             |
| 007-6<br>(AOS1)  | Transfer of Lime to the Sycamore Lime Silo (AOS1)                                                                     | LimeLd              | NF                 | 99,514         | tons       | 0.61      | 0.21             | 0.032             | lb/ton     | SLimeBH | 99%          | 30.35        | 0.30       | 10.62                  | 0.11        | 1.61                   | 0.02        |
| 007-7<br>(AOS1)  | Sycamore Lime Slaker (AOS1)                                                                                           | SLS (AOS1)          | NF                 | 99,514         | tons       | 0.0012    | 0.0012           | 0.0012            | lb/ton     | SLSS    | 0%           | 0.06         | 0.06       | 0.06                   | 0.06        | 0.06                   | 0.06        |
| 055-1<br>(AOS1)  | Transfer of Flocculant to Tailings Flocculant Bag<br>Breaker Bin (AOS1)                                               | FITrUnprt           | NF                 | 7,227          | tons       | 0.069     | 0.032            | 0.0049            | lb/ton     | ВОР     | 0%           | 0.25         | 0.25       | 0.12                   | 0.12        | 0.02                   | 0.02        |
| 055-2<br>(AOS1)  | Transfer of Flocculant to Concentrate Flocculant Bag Breaker Bin (AOS1)                                               | FITrUnprt           | NF                 | 482            | tons       | 0.069     | 0.032            | 0.0049            | lb/ton     | ВОР     | 0%           | 0.02         | 0.02       | 0.008                  | 0.008       | 0.001                  | 0.001       |
| Sycamore P       | rill Handling Operations (AOS1)                                                                                       |                     |                    |                |            |           |                  |                   |            | !       | 1            |              |            |                        |             |                        |             |
| 050-7<br>(AOS1)  | Delivery of Ammonium Nitrate Prill to Prill Bin 6 (AOS1)                                                              | PBL                 | NF                 | 25,365         | tons       | 0.020     | 0.0070           | 0.0011            | lb/ton     | ВОР     | 0%           | 0.25         | 0.25       | 0.09                   | 0.09        | 0.01                   | 0.01        |
| 050-8<br>(AOS1)  | Prill Bin 6 to ANFO Trucks for Transfer to Drill Holes                                                                | PBL                 | NF                 | 25,365         | tons       | 0.020     | 0.0070           | 0.0011            | lb/ton     | ВОР     | 0%           | 0.25         | 0.25       | 0.09                   | 0.09        | 0.01                   | 0.01        |
| Sycamore E       | mergency ICE (AOS1)                                                                                                   |                     |                    |                |            |           |                  |                   |            | •       | 1            |              |            |                        |             |                        |             |
| 049-59<br>(AOS1) | Sycamore Diesel Emergency Generator 1 (AOS1) (609 hp engine)                                                          | Tier3-450/560-<br>D | NF                 | 304,500        | hp-hr      | 0.00033   | 0.00033          | 0.00033           | lb/hp-hr   | ВОР     | 0%           | 0.05         | 0.05       | 0.05                   | 0.05        | 0.05                   | 0.05        |
| 049-60<br>(AOS1) | Sycamore Diesel Emergency Generator 2 (AOS1) (762 hp engine)                                                          | Tier2-560-D         | NF                 | 381,000        | hp-hr      | 0.00033   | 0.00033          | 0.00033           | lb/hp-hr   | ВОР     | 0%           | 0.06         | 0.06       | 0.06                   | 0.06        | 0.06                   | 0.06        |
| 049-61<br>(AOS1) | Sycamore Propane Emergency Generator 1<br>(AOS1) (84.7 hp engine)                                                     | SEG-P               | NF                 | 42,350         | hp-hr      | 0.00020   | 0.00020          | 0.00020           | lb/hp-hr   | ВОР     | 0%           | 0.004        | 0.004      | 0.004                  | 0.004       | 0.004                  | 0.004       |
| 049-62<br>(AOS1) | Sycamore Propane Emergency Generator 2 (AOS1) (84.7 hp engine)                                                        | SEG-P               | NF                 | 42,350         | hp-hr      | 0.00020   | 0.00020          | 0.00020           | lb/hp-hr   | ВОР     | 0%           | 0.004        | 0.004      | 0.004                  | 0.004       | 0.004                  | 0.004       |
| Total of Non-    | I<br>-Fugitive Emissions for Affected Emissions Units - F                                                             | ollowing the Pro    | posed Upda         | ites:          |            |           |                  |                   |            | 1       | 1            | 85.77        | 29.63      | 50.29                  | 27.43       | 29.37                  | 25.91       |

## Emission Inventory Tables for Potential Emission Calculations July 2023

Table G.4 Annual Particulate Matter Emissions - Potential Emission Calculations

| Process        | Process/Emission Unit Description                   | Process Code     | Non-Fug.<br>(NF) / | Annual Process | Data Unita | E         | nission Facto    | ors               | - EF Units | Control | Pick-up or<br>Control Eff. | PM Emiss     | ions (tpy) | PM <sub>10</sub> Emis | sions (tpy) | PM <sub>2.5</sub> Emis | sions (tpy) |
|----------------|-----------------------------------------------------|------------------|--------------------|----------------|------------|-----------|------------------|-------------------|------------|---------|----------------------------|--------------|------------|-----------------------|-------------|------------------------|-------------|
| Number         | Process/Emission Unit Description                   | Process Code     | Fug. (F)           | Rate           | Rate Units | PM        | PM <sub>10</sub> | PM <sub>2.5</sub> | EFUILIS    | Code    | (%)                        | Uncontrolled | Controlled | Uncontrolled          | Controlled  | Uncontrolled           | Controlled  |
| Total of Fugit | tive Emissions for Affected Emissions Units - Follo | wing the Proposi | ed Updates:        |                |            |           |                  |                   | •          |         |                            | 187,165.54   | 20,542.38  | 51,731.45             | 5,910.96    | 5,238.60               | 656.60      |
| Total of Non-  | Fugitive and Fugitive Emissions for Affected Emis   |                  | 187,251.31         | 20,572.02      | 51,781.73  | 5,938.39  | 5,267.97         | 682.51            |            |         |                            |              |            |                       |             |                        |             |
| Total Chang    | e in Non-Fugitive Emissions:                        |                  |                    |                |            |           |                  |                   |            |         |                            | 53.57        | -2.57      | 18.09                 | -4.77       | -2.83                  | -6.29       |
| Total Chang    | e in Fugitive Emissions:                            |                  |                    |                |            |           |                  |                   |            |         |                            | 139,129.97   | 14,655.64  | 38,370.33             | 4,141.05    | 3,855.62               | 432.70      |
| Total Chang    | e in Non-Fugitive and Fugitive Emissions:           |                  |                    | 139,183.54     | 14,653.08  | 38,388.41 | 4,136.28         | 3,852.79          | 426.41     |         |                            |              |            |                       |             |                        |             |
| Total Chang    | e in FMBI Facility-Wide PTE (includes all non-f     |                  | 53.57              | -2.57          | 18.09      | -4.77     | -2.83            | -6.29             |            |         |                            |              |            |                       |             |                        |             |

Table G.5 Hourly Particulate Matter Emissions - Potential Emission Calculations

|                  |                                                                |                         |                    | Table          | G.5 Hour     | y Particulat | e Matter En      | nissions - P      | otentiai Emi | ssion Calcu | liations                   |              |             |                        |              |                         |               |
|------------------|----------------------------------------------------------------|-------------------------|--------------------|----------------|--------------|--------------|------------------|-------------------|--------------|-------------|----------------------------|--------------|-------------|------------------------|--------------|-------------------------|---------------|
| Process          | Process/Emission Unit Description                              | Process Code            | Non-Fug.<br>(NF) / | Hourly Process | Rate Units   | En           | nission Facto    | ors               | EF Units     | Control     | Pick-up or<br>Control Eff. | PM Emissi    | ons (lb/hr) | PM <sub>10</sub> Emiss | ions (lb/hr) | PM <sub>2.5</sub> Emiss | sions (lb/hr) |
| Number           | Processizinission onit bescription                             | riocess code            | Fug. (F)           | Rate           | ivate office | PM           | PM <sub>10</sub> | PM <sub>2.5</sub> | Li Ollits    | Code        | (%)                        | Uncontrolled | Controlled  | Uncontrolled           | Controlled   | Uncontrolled            | Controlled    |
| Affected Em      | issions Units - Design of AOS1 in Class II Air Q               | uality Permit #7        | 77414              |                |              |              |                  |                   |              |             |                            |              |             |                        |              |                         |               |
| Mining Opera     | ations (AOS1)                                                  |                         |                    |                |              |              |                  |                   |              |             |                            |              |             |                        |              |                         |               |
| 026-3<br>(AOS1)  | Drilling (AOS1)                                                | Drilling (AOS1-C)       | F                  | 200            | holes        | 1.30         | 0.78             | 0.14              | lb/hole      | ВОР         | 0%                         | 260.00       | 260.00      | 156.00                 | 156.00       | 28.89                   | 28.89         |
| 026-2<br>(AOS1)  | Blasting (AOS1)                                                | HBlasting<br>(AOS1-C)   | F                  | 1              | blasts       | 1,252.20     | 651.14           | 37.57             | lb/blast     | ВОР         | 0%                         | 1,252.20     | 1,252.20    | 651.14                 | 651.14       | 37.57                   | 37.57         |
| 022-1<br>(AOS1)  | Haul Truck Travel Inside the Pit (AOS1)                        | HTravel<br>(AOS1-C)     | F                  | 473            | VMT          | 21.48        | 5.90             | 0.59              | lb/VMT       | UnpvdRd     | 90%                        | 10,149.60    | 1,014.96    | 2,789.51               | 278.95       | 278.95                  | 27.90         |
| 022-2<br>(AOS1)  | Haul Truck Travel Outside the Pit (AOS1)                       | HTravel<br>(AOS1-C)     | F                  | 158            | VMT          | 21.48        | 5.90             | 0.59              | lb/VMT       | UnpvdRd     | 90%                        | 3,383.20     | 338.32      | 929.84                 | 92.98        | 92.98                   | 9.30          |
| 023-3<br>(AOS1)  | Other Vehicle Travel (AOS1)                                    | HTravel<br>(AOS1-C)     | F                  | 486            | VMT          | 21.48        | 5.90             | 0.59              | lb/VMT       | UnpvdRd     | 90%                        | 10,443.31    | 1,044.33    | 2,870.23               | 287.02       | 287.02                  | 28.70         |
| 023-1<br>(AOS1)  | Dozer Operation (AOS1)                                         | Dozer (AOS1-<br>C)      | F                  | 16.00          | hours        | 8.85         | 1.61             | 0.93              | lb/hr        | ВОР         | 0%                         | 141.54       | 141.54      | 25.69                  | 25.69        | 14.86                   | 14.86         |
| 023-2<br>(AOS1)  | Road Grader Operation (AOS1)                                   | Grader (AOS1-C)         | F                  | 30.00          | VMT          | 3.53         | 1.10             | 0.11              | lb/VMT       | UnpvdRd     | 90%                        | 105.82       | 10.58       | 33.05                  | 3.30         | 3.28                    | 0.33          |
| 021-1<br>(AOS1)  | Loading Mined Material into Haul Trucks (AOS1)                 | Ore1TrUnprt<br>(AOS1-C) | F                  | 30,515         | tons         | 0.0026       | 0.0012           | 0.00019           | lb/ton       | ВОР         | 0%                         | 80.51        | 80.51       | 38.08                  | 38.08        | 5.77                    | 5.77          |
| 001-6<br>(AOS1)  | Unloading Ore to Primary Crusher 1 (AOS1)                      | - Ore2TrUnprt           | F                  | 12,865         | tons         | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 33.94        | 33.94       | 16.05                  | 16.05        | 2.43                    | 2.43          |
| 001-7<br>(AOS1)  | Unloading Ore to Primary Crusher 2 (AOS1)                      | Orez monpit             | '                  | 12,000         | 10113        | 0.0020       | 0.0012           | 0.00013           | 15/10/1      | Worldon     | 070                        | 00.04        | 00.04       | 10.00                  | 10.00        | 2.40                    | 2.40          |
| 045-3<br>(AOS1)  | Unloading Ore to Leaching Areas (AOS1)                         | Ore3TrUnprt             | F                  | 3,433          | tons         | 0.0026       | 0.0012           | 0.00019           | lb/ton       | BOP         | 0%                         | 9.06         | 9.06        | 4.28                   | 4.28         | 0.65                    | 0.65          |
| 045-1<br>(AOS1)  | Unloading Overburden/Low Grade Ore to Storage<br>Areas (AOS1)  | Ore4TrUnprt             | F                  | 14,217         | tons         | 0.0026       | 0.0012           | 0.00019           | lb/ton       | ВОР         | 0%                         | 37.51        | 37.51       | 17.74                  | 17.74        | 2.69                    | 2.69          |
| Primary Crus     | hing and Overland Conveying Operations (to Bagda               | ad Concentrator,        | ) (AOS1)           |                |              |              |                  |                   |              |             |                            |              |             |                        |              |                         |               |
| 001-5<br>(AOS1)  | Dust Collector C51 (AOS1)                                      | C51 (AOS1)              | NF                 | 900,000        | dscf         | 1.93E-06     | 1.93E-06         | 1.93E-06          | lb/dscf      | DC          | 0%                         | 1.74         | 1.74        | 1.74                   | 1.74         | 1.74                    | 1.74          |
| 001-16<br>(AOS1) | Dust Collector AE-001 (AOS1)                                   | AE-001<br>(AOS1)        | NF                 | 1,200,000      | dscf         | 3.71E-07     | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.45         | 0.45        | 0.45                   | 0.45         | 0.45                    | 0.45          |
| 001-17<br>(AOS1) | Dust Collector AE-014 (AOS1)                                   | AE-014<br>(AOS1)        | NF                 | 720,000        | dscf         | 3.71E-07     | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27        | 0.27                   | 0.27         | 0.27                    | 0.27          |
| 001-18<br>(AOS1) | Dust Collector AE-015 (AOS1)                                   | AE-015<br>(AOS1)        | NF                 | 720,000        | dscf         | 3.71E-07     | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27        | 0.27                   | 0.27         | 0.27                    | 0.27          |
| 001-4<br>(AOS1)  | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Ore2TrUnprt             | F                  | 7,600          | tons         | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 20.05        | 20.05       | 9.48                   | 9.48         | 1.44                    | 1.44          |

Table G.5 Hourly Particulate Matter Emissions - Potential Emission Calculations

|                  |                                                                |                       |                    | Table          | Hour        | y i ai ticulat | e matter Li      | 113310113 - F     | otential Emi | SSION Calcu | ilations                   |              |              |                        |               |                         |              |
|------------------|----------------------------------------------------------------|-----------------------|--------------------|----------------|-------------|----------------|------------------|-------------------|--------------|-------------|----------------------------|--------------|--------------|------------------------|---------------|-------------------------|--------------|
| Process          | Process/Emission Unit Description                              | Process Code          | Non-Fug.<br>(NF) / | Hourly Process | Rate Units  | En             | nission Facto    | ors               | EF Units     | Control     | Pick-up or<br>Control Eff. | PM Emissi    | ions (lb/hr) | PM <sub>10</sub> Emiss | sions (lb/hr) | PM <sub>2.5</sub> Emiss | ions (lb/hr) |
| Number           | Process/Emission only Description                              | Frocess Code          | Fug. (F)           | Rate           | Rate Offics | PM             | PM <sub>10</sub> | PM <sub>2.5</sub> | EFOIIIS      | Code        | (%)                        | Uncontrolled | Controlled   | Uncontrolled           | Controlled    | Uncontrolled            | Controlled   |
| 001-19<br>(AOS1) | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 5 (AOS1) | Ore2TrUnprt           | F                  | 3,965          | tons        | 0.0026         | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 10.46        | 10.46        | 4.95                   | 4.95          | 0.75                    | 0.75         |
| 027-1<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpiles 1/5<br>(AOS1)            | HWindCOS1/5<br>(AOS1) | F                  | 6.88           | acre-yr     | 0.32           | 0.16             | 0.024             | lb/acre-hr   | ВОР         | 0%                         | 2.18         | 2.18         | 1.09                   | 1.09          | 0.16                    | 0.16         |
| Primary Crus     | shing and Overland Conveying Operations (to Sycal              | more Concentrat       | or) (AOS1)         |                |             |                |                  |                   |              |             |                            |              |              |                        |               |                         |              |
| 001-12<br>(AOS1) | Dust Collector AE-002 (AOS1)                                   | AE-002<br>(AOS1)      | NF                 | 720,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27         | 0.27                   | 0.27          | 0.27                    | 0.27         |
| 001-13<br>(AOS1) | Dust Collector AE-003 (AOS1)                                   | AE-003<br>(AOS1)      | NF                 | 900,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.33         | 0.33         | 0.33                   | 0.33          | 0.33                    | 0.33         |
| 001-14<br>(AOS1) | Dust Collector AE-016 (AOS1)                                   | AE-016<br>(AOS1)      | NF                 | 720,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27         | 0.27                   | 0.27          | 0.27                    | 0.27         |
| 001-15<br>(AOS1) | Dust Collector AE-017 (AOS1)                                   | AE-017<br>(AOS1)      | NF                 | 720,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27         | 0.27                   | 0.27          | 0.27                    | 0.27         |
| 001-20<br>(AOS1) | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 6        | Ore2TrUnprt           | F                  | 1,900          | tons        | 0.0026         | 0.0012           | 0.00019           | lb/ton       | WS/BOP      | 0%                         | 5.01         | 5.01         | 2.37                   | 2.37          | 0.36                    | 0.36         |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)                  | HWindCOS6<br>(AOS1)   | F                  | 2.34           | acre-yr     | 0.32           | 0.16             | 0.024             | lb/acre-hr   | ВОР         | 0%                         | 0.74         | 0.74         | 0.37                   | 0.37          | 0.06                    | 0.06         |
| Sycamore M       | illing Operations (AOS1)                                       | 1                     |                    |                |             |                |                  |                   |              |             |                            |              |              |                        |               | '                       |              |
| 002-7<br>(AOS1)  | Dust Collector AE-008 (AOS1)                                   | AE-008<br>(AOS1)      | NF                 | 3,000,000      | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 1.11         | 1.11         | 1.11                   | 1.11          | 1.11                    | 1.11         |
| 002-8<br>(AOS1)  | Dust Collector AE-009 (AOS1)                                   | AE-009<br>(AOS1)      | NF                 | 720,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27         | 0.27                   | 0.27          | 0.27                    | 0.27         |
| 002-9<br>(AOS1)  | Dust Collector AE-010 (AOS1)                                   | AE-010<br>(AOS1)      | NF                 | 1,200,000      | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.45         | 0.45         | 0.45                   | 0.45          | 0.45                    | 0.45         |
| 002-10<br>(AOS1) | Dust Collector AE-011 (AOS1)                                   | AE-011<br>(AOS1)      | NF                 | 720,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27         | 0.27                   | 0.27          | 0.27                    | 0.27         |
| 002-11<br>(AOS1) | Dust Collector AE-007 (AOS1)                                   | AE-007<br>(AOS1)      | NF                 | 720,000        | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.27         | 0.27         | 0.27                   | 0.27          | 0.27                    | 0.27         |
| 002-12<br>(AOS1) | Dust Collector AE-012 (AOS1)                                   | AE-012<br>(AOS1)      | NF                 | 1,980,000      | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.74         | 0.74         | 0.74                   | 0.74          | 0.74                    | 0.74         |
| 002-13<br>(AOS1) | Dust Collector AE-013 (AOS1)                                   | AE-013<br>(AOS1)      | NF                 | 1,080,000      | dscf        | 3.71E-07       | 3.71E-07         | 3.71E-07          | lb/dscf      | DC          | 0%                         | 0.40         | 0.40         | 0.40                   | 0.40          | 0.40                    | 0.40         |
| Total of Non-    | Fugitive Emissions for Affected Emissions Units - F            | Prior to the Prope    | osed Update        | s:             | •           |                |                  |                   |              |             | •                          | 7.35         | 7.35         | 7.35                   | 7.35          | 7.35                    | 7.35         |
| Total of Fugit   | tive Emissions for Affected Emissions Units - Prior            | to the Proposed       | Updates:           |                |             |                |                  |                   |              |             |                            | 25,935.12    | 4,261.39     | 7,549.87               | 1,589.51      | 757.85                  | 161.84       |
| Total of Non-    | Fugitive and Fugitive Emissions for Affected Emiss             | sions Units - Prio    | r to the Prop      | osed Updates:  |             |                |                  |                   |              |             |                            | 25,942.48    | 4,268.74     | 7,557.23               | 1,596.87      | 765.20                  | 169.19       |

Table G.5 Hourly Particulate Matter Emissions - Potential Emission Calculations

|                 |                                                                |                       |                    |                |             |          |                  |                   |           |         |                            |              |             | I                      |              | 1                       |              |
|-----------------|----------------------------------------------------------------|-----------------------|--------------------|----------------|-------------|----------|------------------|-------------------|-----------|---------|----------------------------|--------------|-------------|------------------------|--------------|-------------------------|--------------|
| Process         | Process/Emission Unit Description                              | Process Code          | Non-Fug.<br>(NF) / | Hourly Process | Rate Units  | En       | nission Facto    | ors               | EF Units  | Control | Pick-up or<br>Control Eff. | PM Emissi    | ons (lb/hr) | PM <sub>10</sub> Emiss | ions (lb/hr) | PM <sub>2.5</sub> Emiss | ions (lb/hr) |
| Number          | 1 100033/Emission one Sescription                              | 1 Toccas Gode         | Fug. (F)           | Rate           | rtute omits | РМ       | PM <sub>10</sub> | PM <sub>2.5</sub> | Li Giillo | Code    | (%)                        | Uncontrolled | Controlled  | Uncontrolled           | Controlled   | Uncontrolled            | Controlled   |
| Affected Em     | issions Units - Proposed Updated Design of AC                  | DS1                   |                    |                |             |          |                  |                   |           |         |                            |              |             |                        |              |                         |              |
| Mining Opera    | ations (AOS1)                                                  |                       |                    |                |             |          |                  |                   |           |         |                            |              |             |                        |              |                         |              |
| 026-3<br>(AOS1) | Drilling (AOS1)                                                | Drilling<br>(AOS1)    | F                  | 490            | holes       | 1.30     | 0.78             | 0.14              | lb/hole   | ВОР     | 0%                         | 637.31       | 637.31      | 382.39                 | 382.39       | 70.81                   | 70.81        |
| 026-2<br>(AOS1) | Blasting (AOS1)                                                | HBlasting<br>(AOS1)   | F                  | 1              | blasts      | 4,919.42 | 2,558.10         | 147.58            | lb/blast  | ВОР     | 0%                         | 4,919.42     | 4,919.42    | 2,558.10               | 2,558.10     | 147.58                  | 147.58       |
| 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1)                        | HTravel<br>(AOS1)     | F                  | 2,239          | VMT         | 21.01    | 5.77             | 0.58              | lb/VMT    | UnpvdRd | 90%                        | 47,027.41    | 4,702.74    | 12,924.97              | 1,292.50     | 1,292.50                | 129.25       |
| 022-2<br>(AOS1) | Haul Truck Travel Outside the Pit (AOS1)                       | HTravel<br>(AOS1)     | F                  | 746            | VMT         | 21.01    | 5.77             | 0.58              | lb/VMT    | UnpvdRd | 90%                        | 15,675.80    | 1,567.58    | 4,308.32               | 430.83       | 430.83                  | 43.08        |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                                    | HTravel<br>(AOS1)     | F                  | 2,188          | VMT         | 21.01    | 5.77             | 0.58              | lb/VMT    | UnpvdRd | 90%                        | 45,955.59    | 4,595.56    | 12,630.39              | 1,263.04     | 1,263.04                | 126.30       |
| 023-1<br>(AOS1) | Dozer Operation (AOS1)                                         | Dozer (AOS1)          | F                  | 22.00          | hours       | 8.85     | 1.61             | 0.93              | lb/hr     | ВОР     | 0%                         | 194.61       | 194.61      | 35.33                  | 35.33        | 20.43                   | 20.43        |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                                   | Grader<br>(AOS1)      | F                  | 48.00          | VMT         | 3.53     | 1.10             | 0.11              | lb/VMT    | UnpvdRd | 90%                        | 169.31       | 16.93       | 52.88                  | 5.29         | 5.25                    | 0.52         |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1)                 | Ore1TrUnprt<br>(AOS1) | F                  | 39,352         | tons        | 0.0026   | 0.0012           | 0.00019           | lb/ton    | ВОР     | 0%                         | 103.82       | 103.82      | 49.10                  | 49.10        | 7.44                    | 7.44         |
| 001-6<br>(AOS1) | Unloading Ore to Primary Crusher 1 (AOS1)                      | Ore2TrUnprt           | F                  | 8,000          | tons        | 0.0026   | 0.0012           | 0.00019           | lb/ton    | WS/BOP  | 0%                         | 21.11        | 21.11       | 9.98                   | 9.98         | 1.51                    | 1.51         |
| 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)                      | Ore2TrUnprt           | F                  | 7,000          | tons        | 0.0026   | 0.0012           | 0.00019           | lb/ton    | WS/BOP  | 0%                         | 18.47        | 18.47       | 8.73                   | 8.73         | 1.32                    | 1.32         |
| 045-3<br>(AOS1) | Unloading Ore to Leaching Areas (AOS1)                         | Ore3TrUnprt           | F                  | 1,264          | tons        | 0.0026   | 0.0012           | 0.00019           | lb/ton    | ВОР     | 0%                         | 3.34         | 3.34        | 1.58                   | 1.58         | 0.24                    | 0.24         |
| 045-1<br>(AOS1) | Unloading Overburden/Low Grade Ore to Storage<br>Areas (AOS1)  | Ore4TrUnprt           | F                  | 23,087         | tons        | 0.0026   | 0.0012           | 0.00019           | lb/ton    | ВОР     | 0%                         | 60.91        | 60.91       | 28.81                  | 28.81        | 4.36                    | 4.36         |
| Primary Crus    | hing and Overland Conveying Operations (to Bagd                | ad Concentrator)      | (AOS1)             |                | •           |          | •                |                   |           |         |                            |              |             |                        |              |                         |              |
| 001-5<br>(AOS1) | Dust Collector C51 (AOS1)                                      | C51 (AOS1)            | NF                 | 900,000        | dscf        | 1.93E-06 | 1.93E-06         | 1.93E-06          | lb/dscf   | DC      | 0%                         | 1.74         | 1.74        | 1.74                   | 1.74         | 1.74                    | 1.74         |
| 001-2<br>(AOS1) | Overland Conveyor 3A (AOS1) to Overland<br>Conveyor 3 (AOS1)   | Ore2TrPrt             | NF                 | 7,600          | tons        | 0.00029  | 0.00014          | 0.000021          | lb/ton    | Fogging | 90%                        | 2.21         | 0.22        | 1.04                   | 0.10         | 0.16                    | 0.02         |
| 001-8<br>(AOS1) | Overland Conveyor 3 (AOS1) to Overland<br>Conveyor 4 (AOS1)    | Ore2TrPrt             | NF                 | 7,600          | tons        | 0.00029  | 0.00014          | 0.000021          | lb/ton    | Fogging | 90%                        | 2.21         | 0.22        | 1.04                   | 0.10         | 0.16                    | 0.02         |
| 001-9<br>(AOS1) | Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1)          | Ore2TrPrt             | NF                 | 7,600          | tons        | 0.00029  | 0.00014          | 0.000021          | lb/ton    | Fogging | 90%                        | 2.21         | 0.22        | 1.04                   | 0.10         | 0.16                    | 0.02         |
| 001-4<br>(AOS1) | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Ore2TrUnprt           | F                  | 7,600          | tons        | 0.0026   | 0.0012           | 0.00019           | lb/ton    | WS/BOP  | 0%                         | 20.05        | 20.05       | 9.48                   | 9.48         | 1.44                    | 1.44         |

Table G.5 Hourly Particulate Matter Emissions - Potential Emission Calculations

|                  |                                                                                           |                       |             | Table          | G.5 Houri  | y Farticulat | e Matter Lii     | 113310113 - F     | otential Emi | SSIOII Calcu | ilations                   |              |             |                        |              |                         |              |
|------------------|-------------------------------------------------------------------------------------------|-----------------------|-------------|----------------|------------|--------------|------------------|-------------------|--------------|--------------|----------------------------|--------------|-------------|------------------------|--------------|-------------------------|--------------|
| Process          | Process/Emission Unit Description                                                         | Process Code          | Non-Fug.    | Hourly Process | Rate Units | En           | nission Facto    | ors               | EF Units     | Control      | Pick-up or<br>Control Eff. | PM Emiss     | ons (lb/hr) | PM <sub>10</sub> Emiss | ions (lb/hr) | PM <sub>2.5</sub> Emiss | ions (lb/hr) |
| Number           | 1 100033/Elilission Onk Description                                                       | Trocess code          | Fug. (F)    | Rate           | rate onits | PM           | PM <sub>10</sub> | PM <sub>2.5</sub> | Li Giillo    | Code         | (%)                        | Uncontrolled | Controlled  | Uncontrolled           | Controlled   | Uncontrolled            | Controlled   |
| 001-10<br>(AOS1) | Radial Stacker 5 (AOS1) to Free-Standing Stacker 6 (AOS1)                                 | Ore2TrUnprt           | F           | 7,600          | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP       | 0%                         | 20.05        | 20.05       | 9.48                   | 9.48         | 1.44                    | 1.44         |
| 001-3<br>(AOS1)  | Free-Standing Stacker 6 (AOS1) to Coarse Ore<br>Stockpile 5 (AOS1)                        | Ore2TrUnprt           | F           | 7,600          | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP       | 0%                         | 20.05        | 20.05       | 9.48                   | 9.48         | 1.44                    | 1.44         |
| 027-1<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpiles 1/5 (AOS1)                                          | HWindCOS1/5<br>(AOS1) | F           | 6.18           | acre-yr    | 0.32         | 0.16             | 0.024             | lb/acre-hr   | ВОР          | 0%                         | 1.96         | 1.96        | 0.98                   | 0.98         | 0.15                    | 0.15         |
| Primary Crus     | shing and Overland Conveying Operations (to Sycar                                         | more Concentrat       | tor) (AOS1) |                |            |              |                  |                   |              | •            | ,                          |              |             |                        |              |                         |              |
| 001-12<br>(AOS1) | PC1 Dust Collector 1 (AOS1)                                                               | SDC1 (AOS1)           | NF          | 870,000        | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.29         | 0.29        | 0.29                   | 0.29         | 0.29                    | 0.29         |
| 001-13<br>(AOS1) | PC1 CCC1 Dust Collector 2 (AOS1)                                                          | SDC2 (AOS1)           | NF          | 1,002,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.33         | 0.33        | 0.33                   | 0.33         | 0.33                    | 0.33         |
| 001-14<br>(AOS1) | PC1 CCC2 Dust Collector 3 (AOS1)                                                          | SDC3 (AOS1)           | NF          | 1,002,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.33         | 0.33        | 0.33                   | 0.33         | 0.33                    | 0.33         |
| 001-15<br>(AOS1) | PC1 CCC3 Dust Collector 4 (AOS1)                                                          | SDC4 (AOS1)           | NF          | 1,002,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.33         | 0.33        | 0.33                   | 0.33         | 0.33                    | 0.33         |
| 001-20<br>(AOS1) | PC1 Cross Country Conveyor 3 (AOS1) to Coarse<br>Ore Stockpile 6 (AOS1)                   | Ore2TrUnprt           | F           | 8,000          | tons       | 0.0026       | 0.0012           | 0.00019           | lb/ton       | WS/BOP       | 0%                         | 21.11        | 21.11       | 9.98                   | 9.98         | 1.51                    | 1.51         |
| 027-7<br>(AOS1)  | Wind Erosion of Coarse Ore Stockpile 6 (AOS1)                                             | HWindCOS6<br>(AOS1)   | F           | 3.04           | acre-yr    | 0.32         | 0.16             | 0.024             | lb/acre-hr   | ВОР          | 0%                         | 0.96         | 0.96        | 0.48                   | 0.48         | 0.07                    | 0.07         |
| Sycamore M       | illing Operations (AOS1)                                                                  |                       |             |                |            |              |                  |                   |              | •            |                            |              |             |                        |              |                         |              |
| 002-7<br>(AOS1)  | Coarse Ore Reclaim Conveyor 1 Dust Collector 5 (AOS1)                                     | SDC5 (AOS1)           | NF          | 1,320,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.43         | 0.43        | 0.43                   | 0.43         | 0.43                    | 0.43         |
| 002-8<br>(AOS1)  | Coarse Ore Reclaim Conveyor 2 Dust Collector 6 (AOS1)                                     | SDC6 (AOS1)           | NF          | 1,320,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.43         | 0.43        | 0.43                   | 0.43         | 0.43                    | 0.43         |
| 002-9<br>(AOS1)  | HPGR Discharge Dust Collector 7 (AOS1)                                                    | SDC7 (AOS1)           | NF          | 1,380,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.45         | 0.45        | 0.45                   | 0.45         | 0.45                    | 0.45         |
| 002-10<br>(AOS1) | HPGR Discharge Conveyor Transfer Dust<br>Collector 8 (AOS1)                               | SDC8 (AOS1)           | NF          | 1,620,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.53         | 0.53        | 0.53                   | 0.53         | 0.53                    | 0.53         |
| 002-11<br>(AOS1) | HPGR Product Bin Dust Collector 9 (AOS1)                                                  | SDC9 (AOS1)           | NF          | 1,500,000      | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.49         | 0.49        | 0.49                   | 0.49         | 0.49                    | 0.49         |
| 002-12<br>(AOS1) | HPGR Product Transfer Dust Collector 10 (AOS1)                                            | SDC10<br>(AOS1)       | NF          | 600,000        | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.20         | 0.20        | 0.20                   | 0.20         | 0.20                    | 0.20         |
| 002-13<br>(AOS1) | HPGR Product Transfer Dust Collector 11 (AOS1)                                            | SDC11<br>(AOS1)       | NF          | 600,000        | dscf       | 3.29E-07     | 3.29E-07         | 3.29E-07          | lb/dscf      | DC           | 0%                         | 0.20         | 0.20        | 0.20                   | 0.20         | 0.20                    | 0.20         |
| Sycamore Co      | oncentrate Handling Operations (AOS1)                                                     |                       |             |                | _          |              |                  |                   |              |              |                            |              |             |                        | <u> </u>     |                         |              |
| 006-11<br>(AOS1) | Copper Concentrate Filters 1/2 (AOS1) to Copper<br>Concentrate Filter Drop Storage (AOS1) | CCTrPrt               | F           | 57.00          | tons       | 0.000050     | 0.000024         | 0.0000036         | lb/ton       | ВОР          | 0%                         | 0.003        | 0.003       | 0.001                  | 0.001        | 0.0002                  | 0.0002       |

Table G.5 Hourly Particulate Matter Emissions - Potential Emission Calculations

| Process          | Process/Emission Unit Description                                                                                 | Process Code        | Non-Fug.<br>(NF) / | Hourly Process | Rate Units  | En       | nission Facto    | ors               | EF Units   | Control | Pick-up or<br>Control Eff. | PM Emissi    | ons (lb/hr) | PM <sub>10</sub> Emiss | ions (lb/hr) | PM <sub>2.5</sub> Emiss | ions (lb/hr) |
|------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|----------------|-------------|----------|------------------|-------------------|------------|---------|----------------------------|--------------|-------------|------------------------|--------------|-------------------------|--------------|
| Number           | Process/Emission only Description                                                                                 | riocess code        | Fug. (F)           | Rate           | Nate Office | PM       | PM <sub>10</sub> | PM <sub>2.5</sub> | Li Ollits  | Code    | (%)                        | Uncontrolled | Controlled  | Uncontrolled           | Controlled   | Uncontrolled            | Controlled   |
| 006-12<br>(AOS1) | Copper Concentrate Filter Drop Storage (AOS1) to Copper Concentrate Loadout Storage (AOS1) via Front-End Loader   | CCTrPrt             | F                  | 57.00          | tons        | 0.000050 | 0.000024         | 0.0000036         | lb/ton     | ВОР     | 0%                         | 0.003        | 0.003       | 0.001                  | 0.001        | 0.0002                  | 0.0002       |
| 006-13<br>(AOS1) | Copper Concentrate Loadout Storage (AOS1) to<br>Trucks via Front-End Loader                                       | CCTrPrt             | F                  | 57.00          | tons        | 0.000050 | 0.000024         | 0.0000036         | lb/ton     | ВОР     | 0%                         | 0.003        | 0.003       | 0.001                  | 0.001        | 0.0002                  | 0.0002       |
| 027-8<br>(AOS1)  | Wind Erosion of Copper Concentrate Filter Drop<br>Storage (AOS1) and Copper Concentrate Loadout<br>Storage (AOS1) | HWindSCC<br>(AOS1)  | F                  | 0.30           | acre-yr     | 4.12     | 2.06             | 0.31              | lb/acre-hr | 3Sided  | 75%                        | 1.23         | 0.31        | 0.62                   | 0.15         | 0.09                    | 0.02         |
| 052-2<br>(AOS1)  | Molybdenum Dryer Wet Scrubber System (AOS1)                                                                       | MDWSS<br>(AOS1)     | NF                 | 1              | hours       | 0.063    | 0.063            | 0.063             | lb/hr      | sc      | 0%                         | 0.06         | 0.06        | 0.06                   | 0.06         | 0.06                    | 0.06         |
| 052-3<br>(AOS1)  | Molybdenum Concentrate Dryer (AOS1) to Dried<br>Molybdenum Concentrate Storage Bin (AOS1)                         | MC4TrPrt            | NF                 | 2.10           | tons        | 0.0021   | 0.0010           | 0.00015           | lb/ton     | ВОР     | 0%                         | 0.004        | 0.004       | 0.002                  | 0.002        | 0.0003                  | 0.0003       |
| 052-4<br>(AOS1)  | Dried Molybdenum Concentrate Storage Bin<br>(AOS1) to Molybdenum Concentrate Bagging<br>System (AOS1)             | MC4TrPrt            | F                  | 2.10           | tons        | 0.0021   | 0.0010           | 0.00015           | lb/ton     | ВОР     | 0%                         | 0.004        | 0.004       | 0.002                  | 0.002        | 0.0003                  | 0.0003       |
| ycamore Li       | ime and Other Regent Operations (AOS1)                                                                            |                     |                    |                |             |          |                  |                   |            |         |                            |              |             |                        |              |                         |              |
| 007-6<br>(AOS1)  | Transfer of Lime to the Sycamore Lime Silo (AOS1)                                                                 | LimeLd              | NF                 | 25.00          | tons        | 0.61     | 0.21             | 0.032             | lb/ton     | SLimeBH | 99%                        | 15.25        | 0.15        | 5.34                   | 0.05         | 0.81                    | 0.008        |
| 007-7<br>(AOS1)  | Sycamore Lime Slaker (AOS1)                                                                                       | SLS (AOS1)          | NF                 | 11.36          | tons        | 0.0012   | 0.0012           | 0.0012            | lb/ton     | SLSS    | 0%                         | 0.01         | 0.01        | 0.01                   | 0.01         | 0.01                    | 0.01         |
| 055-1<br>(AOS1)  | Transfer of Flocculant to Tailings Flocculant Bag<br>Breaker Bin (AOS1)                                           | FITrUnprt           | NF                 | 0.83           | tons        | 0.069    | 0.032            | 0.0049            | lb/ton     | ВОР     | 0%                         | 0.06         | 0.06        | 0.03                   | 0.03         | 0.004                   | 0.004        |
| 055-2<br>(AOS1)  | Transfer of Flocculant to Concentrate Flocculant Bag Breaker Bin (AOS1)                                           | FITrUnprt           | NF                 | 0.06           | tons        | 0.069    | 0.032            | 0.0049            | lb/ton     | ВОР     | 0%                         | 0.004        | 0.004       | 0.002                  | 0.002        | 0.0003                  | 0.0003       |
| ycamore Pr       | rill Handling Operations (AOS1)                                                                                   |                     | •                  |                |             |          |                  |                   |            |         |                            |              |             |                        |              |                         |              |
| 050-7<br>(AOS1)  | Delivery of Ammonium Nitrate Prill to Prill Bin 6 (AOS1)                                                          | PBL                 | NF                 | 25.75          | tons        | 0.020    | 0.0070           | 0.0011            | lb/ton     | вор     | 0%                         | 0.52         | 0.52        | 0.18                   | 0.18         | 0.03                    | 0.03         |
| 050-8<br>(AOS1)  | Prill Bin 6 to ANFO Trucks for Transfer to Drill Holes                                                            | PBL                 | NF                 | 50.00          | tons        | 0.020    | 0.0070           | 0.0011            | lb/ton     | ВОР     | 0%                         | 1.00         | 1.00        | 0.35                   | 0.35         | 0.05                    | 0.05         |
| ycamore Ei       | mergency ICE (AOS1)                                                                                               | •                   |                    |                |             |          |                  |                   |            |         |                            |              |             |                        |              |                         |              |
| 049-59<br>(AOS1) | Sycamore Diesel Emergency Generator 1 (AOS1) (609 hp engine)                                                      | Tier3-450/560-<br>D | NF                 | 609            | hp-hr       | 0.00033  | 0.00033          | 0.00033           | lb/hp-hr   | ВОР     | 0%                         | 0.20         | 0.20        | 0.20                   | 0.20         | 0.20                    | 0.20         |
| 049-60<br>(AOS1) | Sycamore Diesel Emergency Generator 2 (AOS1) (762 hp engine)                                                      | Tier2-560-D         | NF                 | 762            | hp-hr       | 0.00033  | 0.00033          | 0.00033           | lb/hp-hr   | вор     | 0%                         | 0.25         | 0.25        | 0.25                   | 0.25         | 0.25                    | 0.25         |
| 049-61<br>(AOS1) | Sycamore Propane Emergency Generator 1 (AOS1) (84.7 hp engine)                                                    | SEG-P               | NF                 | 84.70          | hp-hr       | 0.00020  | 0.00020          | 0.00020           | lb/hp-hr   | ВОР     | 0%                         | 0.02         | 0.02        | 0.02                   | 0.02         | 0.02                    | 0.02         |
| 049-62<br>(AOS1) | Sycamore Propane Emergency Generator 2 (AOS1) (84.7 hp engine)                                                    | SEG-P               | NF                 | 84.70          | hp-hr       | 0.00020  | 0.00020          | 0.00020           | lb/hp-hr   | BOP     | 0%                         | 0.02         | 0.02        | 0.02                   | 0.02         | 0.02                    | 0.02         |
| atal of Nan      | -Fugitive Emissions for Affected Emissions Units - F                                                              | ollowing the Pro    | posed Upda         | ites:          |             |          |                  |                   |            | 1       | -                          | 29.76        | 8.71        | 15.34                  | 7.24         | 7.68                    | 6.45         |

### Emission Inventory Tables for Potential Emission Calculations

July 2023

Table G.5 Hourly Particulate Matter Emissions - Potential Emission Calculations

| Process        | Draces / Emission Unit Description                 | Drassas Cada        | Non-Fug.     | Hourly Process  | Data Unita | Er | nission Facto    | ors               | - EF Units | Control  | Pick-up or<br>Control Eff. | PM Emissi    | ons (lb/hr) | PM <sub>10</sub> Emiss | ions (lb/hr) | PM <sub>2.5</sub> Emiss | ions (lb/hr) |
|----------------|----------------------------------------------------|---------------------|--------------|-----------------|------------|----|------------------|-------------------|------------|----------|----------------------------|--------------|-------------|------------------------|--------------|-------------------------|--------------|
| Number         | Process/Emission Unit Description                  | Process Code        | Fug. (F)     | Rate            | Rate Units | PM | PM <sub>10</sub> | PM <sub>2.5</sub> | EFUNITS    | Code     | (%)                        | Uncontrolled | Controlled  | Uncontrolled           | Controlled   | Uncontrolled            | Controlled   |
| Total of Fugit | ve Emissions for Affected Emissions Units - Follow | wing the Propose    | ed Updates:  |                 |            |    |                  |                   | •          |          |                            | 114,872.53   | 16,926.31   | 33,031.11              | 6,105.73     | 3,251.45                | 558.93       |
| Total of Non-  | Fugitive and Fugitive Emissions for Affected Emiss | sions Units - Follo | owing the Pr | oposed Updates: |            |    |                  |                   |            |          |                            | 114,902.29   | 16,935.01   | 33,046.45              | 6,112.97     | 3,259.13                | 565.38       |
| Total Chang    | e in Non-Fugitive Emissions:                       |                     |              |                 |            |    |                  |                   |            |          |                            | 22.41        | 1.35        | 7.99                   | -0.11        | 0.33                    | -0.90        |
| Total Chang    | e in Fugitive Emissions:                           |                     |              |                 |            |    | 88,937.41        | 12,664.92         | 25,481.23  | 4,516.22 | 2,493.60                   | 397.09       |             |                        |              |                         |              |
| Total Change   | e in Non-Fugitive and Fugitive Emissions:          |                     |              |                 |            |    |                  |                   |            |          |                            | 88,959.82    | 12,666.27   | 25,489.22              | 4,516.11     | 2,493.93                | 396.19       |

Table G.6 Gaseous Emission Factors - Potential Emission Calculations

|                       |                                                                                                                                     |           |        |                 |         | Emiss                          | ion Factor       |                 |          |                  |          |                       |                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|-----------------|---------|--------------------------------|------------------|-----------------|----------|------------------|----------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Process<br>Code       | Process Description                                                                                                                 | со        | NOx    | SO <sub>2</sub> | voc     | H <sub>2</sub> SO <sub>4</sub> | H <sub>2</sub> S | CO <sub>2</sub> | CH₄      | N <sub>2</sub> O | Units    | Process<br>Rate Units | Reference                                                                                                                                                                                                                                                                                                                                                                       |
| Pollution Co          | ntrol Devices                                                                                                                       | -         |        | -               |         |                                | -                |                 |          | -                |          |                       |                                                                                                                                                                                                                                                                                                                                                                                 |
|                       |                                                                                                                                     |           |        |                 |         |                                |                  |                 |          |                  |          |                       |                                                                                                                                                                                                                                                                                                                                                                                 |
| MDWSS<br>(AOS1)       | Molybdenum Dryer Wet Scrubber System (AOS1)                                                                                         | 0         | 0      | 0               | 1.83    | 0                              | 0                | 0               | 0        | 0                | lb/hr    | hours                 | Test results from a similar scrubber system scaled to FMBI operations and an added 20% safety factor                                                                                                                                                                                                                                                                            |
| H2S<br>(AOS1)         | Sycamore NaHS System Scrubber (AOS1)                                                                                                | 0         | 0      | 0               | 0       | 0                              | 0.038            | 0               | 0        | 0                | lb/hr    | hours                 | Manufacturer Expected Concentration of 10 ppm                                                                                                                                                                                                                                                                                                                                   |
| Drilling and          | Blasting Operations                                                                                                                 |           |        |                 |         |                                |                  |                 |          |                  |          |                       |                                                                                                                                                                                                                                                                                                                                                                                 |
| ABlasting<br>(AOS1-C) | Blasting (AOS1) (annual basis) (AOS1-C)                                                                                             | 3,048.30  | 135.00 | 0.92            | 0       | 0                              | 0                | 28,550          | 1.11     | 0.22             | lb/blast | blasts                | Factors Affecting ANFO Fumes Production from NIOSH (2001), NO x Emissions from Blasting Operations in Open-Cut Coal Mining from Atmospheric Environment 42 (2008), Complete Sulfur Conversion Using a Sulfur Contents of 15 ppm for Diesel and 500 ppm for Animal Fat (worst case assumption based on a 03/2003 EPA document that says biofuels reduce SO, emissions            |
| HBlasting<br>(AOS1-C) | Blasting (AOS1) (hourly basis) (AOS1-C)                                                                                             | 4,064.40  | 180.00 | 1.23            | 0       | 0                              | 0                | 38,066          | 1.49     | 0.29             | lb/blast | blasts                | compared to No. 2 diesel), 40 CFR 98, Tables C-1 and C-2, 137,000 Btu/gal diesel, 7.5 lb/gal diesel, 0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat                                                                                                                                                                                                                     |
| ABlasting<br>(AOS1)   | Blasting (AOS1) (annual basis)                                                                                                      | 12,766.38 | 565.38 | 3.86            | 0       | 0                              | 0                | 119,571         | 4.67     | 0.92             | lb/blast | blasts                | Factors Affecting ANFO Fumes Production from NIOSH (2001), NO <sub>X</sub> Emissions from Blasting Operations in Open-Cut Coal Mining from Atmospheric Environment 42 (2008), Complete Sulfur Conversion Using a Sulfur Contents of 15 ppm for Diesel and 500 ppm for Animal Fat (worst case assumption based on a 03/2003 EPA document that says biofuels reduce SO, emissions |
| HBlasting<br>(AOS1)   | Blasting (AOS1) (hourly basis)                                                                                                      | 15,319.65 | 678.46 | 4.64            | 0       | 0                              | 0                | 143,485         | 5.60     | 1.11             | lb/blast | blasts                | compared to No. 2 diesel), 40 CFR 98, Tables C-1 and C-2, 137,000 Btu/gal diesel, 7.5 lb/gal diesel, 0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat                                                                                                                                                                                                                     |
| Bulk and Mo           | lybdenum Flotation Operations                                                                                                       |           |        |                 |         |                                | •                |                 |          |                  |          |                       |                                                                                                                                                                                                                                                                                                                                                                                 |
| MFE                   | Sycamore Bulk and Molybdenum Flotation<br>Equipment                                                                                 | 0         | 0      | 0               | 0.0046  | 0                              | 0.0084           | 0               | 0        | 0                | lb/ton   | tons                  | Testing at the Freeport-McMoRan Henderson Mill in 2009, Freeport-McMoRan Technology Center study titled Hydrogen Sulfide and Carbon Dioxide Emissions from Flotation Cell Operations Under Targeted Conditions conducted by Hazen Research Inc. (02/2013), conservative estimate using pH = 9.5 (molybdenum flotation usually operates at a pH = 11+)                           |
| Diesel Emer           | gency ICE                                                                                                                           |           |        |                 |         |                                |                  |                 |          |                  |          | •                     |                                                                                                                                                                                                                                                                                                                                                                                 |
| Tier2-560-D           | Tier 2 Diesel Non-Emergency Engines (kW > 560)                                                                                      | 0.0058    | 0.0099 | 0.000011        | 0.00066 | 0                              | 0                | 1.14            | 0.000046 | 0.0000093        | lb/hp-hr | hp-hr                 | Tier 2 Emission Standards from 40 CFR 1039 Appendix I Table 2 for Engines Rated kW > 560, Complete Sulfur Conversion Using a Diesel Sulfur Content of 15 ppm, 40 CFR 98 Tables C-1 and C-2, 7,000 Btu/hp-hr, and 19,300 Btu/lb diesel                                                                                                                                           |
| Tier3-<br>450/560-D   | Tier 3 Diesel Emergency Engines (450 ≤ kW ≤ 560)                                                                                    | 0.0058    | 0.0061 | 0.000011        | 0.00044 | 0                              | 0                | 1.14            | 0.000046 | 0.0000093        | lb/hp-hr | hp-hr                 | Tier 3 Emission Standards from 40 CFR 1039 Appendix I Table 3 for Engines Rated 450 ≤ kW < 560, Complete Sulfur Conversion Using a Diesel Sulfur Content of 15 ppm, 40 CFR 98 Tables C-1 and C-2, 7,000 Btu/hp-hr, and 19,300 Btu/lb diesel                                                                                                                                     |
| Propane Em            | ergency ICE                                                                                                                         |           |        |                 |         |                                |                  |                 | •        |                  |          | •                     |                                                                                                                                                                                                                                                                                                                                                                                 |
| SEG-P                 | Sycamore Propane Emergency Generators                                                                                               | 0.20      | 0.013  | 0.00012         | 0.0030  | 0                              | 0                | 1.46            | 0.000069 | 0.000014         | lb/hp-hr | hp-hr                 | Certification Values for EPA Engine Family PCEXB05.9ARC, Complete Sulfur Conversion Using a Propane Sulfur Content of 10 gr/100 scf, 40 CFR 98 Tables C-1 and C-2, 2,520 Btu/scf, and 10,500 Btu/hp-hr                                                                                                                                                                          |
| Storage Tan           | ks and Parts Cleaning                                                                                                               |           |        |                 |         |                                |                  |                 |          |                  |          |                       |                                                                                                                                                                                                                                                                                                                                                                                 |
| SXMS                  | Xanthate Mix Tank (AOS1), Xanthate<br>Holding Tank (AOS1), Test Reagent Mix<br>Tank (AOS1), and Test Reagent Holding<br>Tank (AOS1) | 0         | 0      | 0               | 12.34   | 0                              | 0                | 0               | 0        | 0                | lb/ton   | tons                  | AERO Xanthate Handbook (1972) and assume a 3-day holding period                                                                                                                                                                                                                                                                                                                 |

Table G.7 Annual Gaseous Emissions - Potential Emission Calculations

|                   |                                                                                                                                  |                       | Non-Fug.           |                        |            |          |                 |                 | Em      | ission Fac                     | tors             |                 |                 |                  |          |          |                 |                 |       | Emissions (tp)                 | ()               |                 |                 |                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------|------------------------|------------|----------|-----------------|-----------------|---------|--------------------------------|------------------|-----------------|-----------------|------------------|----------|----------|-----------------|-----------------|-------|--------------------------------|------------------|-----------------|-----------------|------------------|
| Process<br>Number | Process/Emission Unit Description                                                                                                | Process<br>Code       | (NF) /<br>Fug. (F) | Annual Process<br>Rate | Rate Units | со       | NO <sub>x</sub> | SO <sub>2</sub> | voc     | H <sub>2</sub> SO <sub>4</sub> | H <sub>2</sub> S | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O | EF Units | со       | NO <sub>x</sub> | SO <sub>2</sub> | voc   | H <sub>2</sub> SO <sub>4</sub> | H <sub>2</sub> S | CO <sub>2</sub> | CH <sub>4</sub> | N <sub>2</sub> O |
| Affected Em       | nissions Units - Design of AOS1 in Class II Air                                                                                  | r Quality Permi       | t #77414           | l I                    |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | ı        |                 |                 |       |                                |                  | 1               |                 |                  |
| Mining Opera      | ations (AOS1)                                                                                                                    |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| 026-2<br>(AOS1)   | Blasting (AOS1)                                                                                                                  | ABlasting<br>(AOS1-C) | F                  | 600                    | blasts     | 3,048.30 | 135.00          | 0.92            | 0       | 0                              | 0                | 28,550          | 1.11            | 0.22             | lb/blast | 914.49   | 40.50           | 0.28            | 0     | 0                              | 0                | 8,564.96        | 0.33            | 0.07             |
| Total of Non-     | Fugitive Emissions for Affected Emissions Units                                                                                  | - Prior to the P      | roposed Upo        | dates:                 |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 0        | 0               | 0               | 0     | 0                              | 0                | 0               | 0               | 0                |
| Total of Fugit    | ive Emissions for Affected Emissions Units - Pri                                                                                 | ior to the Propos     | sed Updates        | 3:                     |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 914.49   | 40.50           | 0.28            | 0     | 0                              | 0                | 8,564.96        | 0.33            | 0.07             |
| Total of Non-     | Fugitive and Fugitive Emissions for Affected Em                                                                                  | nissions Units - F    | Prior to the F     | Proposed Updates:      |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 914.49   | 40.50           | 0.28            | 0     | 0                              | 0                | 8,564.96        | 0.33            | 0.07             |
| Affected Em       | issions Units - Proposed Updated Design of                                                                                       | AOS1                  |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| Mining Opera      | ations (AOS1)                                                                                                                    |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| 026-2<br>(AOS1)   | Blasting (AOS1)                                                                                                                  | ABlasting<br>(AOS1)   | F                  | 260                    | blasts     | 12,766.4 | 565.38          | 3.86            | 0       | 0                              | 0                | 119,571         | 4.67            | 0.92             | lb/blast | 1,659.63 | 73.50           | 0.50            | 0     | 0                              | 0                | 15,544.19       | 0.61            | 0.12             |
| Sycamore Bu       | ulk and Molybdenum Flotation Operations (AOS                                                                                     | 51)                   |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| 044-2<br>(AOS1)   | Sycamore Bulk and Molybdenum Flotation<br>Equipment                                                                              | MFE                   | F                  | 517,716                | tons       | 0        | 0               | 0               | 0.0046  | 0                              | 0.0084           | 0               | 0               | 0                | lb/ton   | 0        | 0               | 0               | 1.18  | 0                              | 2.18             | 0               | 0               | 0                |
| Sycamore Co       | oncentrate Handling Operations (AOS1)                                                                                            |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| 052-2<br>(AOS1)   | Molybdenum Dryer Wet Scrubber System (AOS1)                                                                                      | MDWSS<br>(AOS1)       | NF                 | 8,760                  | hours      | 0        | 0               | 0               | 1.83    | 0                              | 0                | 0               | 0               | 0                | lb/hr    | 0        | 0               | 0               | 8.02  | 0                              | 0                | 0               | 0               | 0                |
| Sycamore Lir      | me and Other Regent Operations (AOS1)                                                                                            |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| 053-2<br>(AOS1)   | Xanthate Mix Tank (AOS1), Xanthate Holding<br>Tank (AOS1), Test Reagent Mix Tank (AOS1),<br>and Test Reagent Holding Tank (AOS1) | SXMS                  | NF                 | 213                    | tons       | 0        | 0               | 0               | 12.34   | 0                              | 0                | 0               | 0               | 0                | lb/ton   | 0        | 0               | 0               | 1.31  | 0                              | 0                | 0               | 0               | 0                |
| 055-3<br>(AOS1)   | Sycamore NaHS System Scrubber (AOS1)                                                                                             | H2S (AOS1)            | NF                 | 8,760                  | hours      | 0        | 0               | 0               | 0       | 0                              | 0.038            | 0               | 0               | 0                | lb/hr    | 0        | 0               | 0               | 0     | 0                              | 0.17             | 0               | 0               | 0                |
| Sycamore Er       | mergency ICE (AOS1)                                                                                                              |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          |          |                 |                 |       |                                |                  |                 |                 |                  |
| 049-59<br>(AOS1)  | Sycamore Diesel Emergency Generator 1<br>(AOS1) (609 hp engine)                                                                  | Tier3-450/560-<br>D   | NF                 | 304,500                | hp-hr      | 0.0058   | 0.0061          | 0.000011        | 0.00044 | 0                              | 0                | 1.14            | 0.000046        | 0.000009         | lb/hp-hr | 0.88     | 0.93            | 0.002           | 0.07  | 0                              | 0                | 173.77          | 0.007           | 0.001            |
| 049-60<br>(AOS1)  | Sycamore Diesel Emergency Generator 2<br>(AOS1) (762 hp engine)                                                                  | Tier2-560-D           | NF                 | 381,000                | hp-hr      | 0.0058   | 0.0099          | 0.000011        | 0.00066 | 0                              | 0                | 1.14            | 0.000046        | 0.000009         | lb/hp-hr | 1.10     | 1.88            | 0.002           | 0.13  | 0                              | 0                | 217.43          | 0.009           | 0.002            |
| 049-61<br>(AOS1)  | Sycamore Propane Emergency Generator 1<br>(AOS1) (84.7 hp engine)                                                                | SEG-P                 | NF                 | 42,350                 | hp-hr      | 0.20     | 0.013           | 0.00012         | 0.0030  | 0                              | 0                | 1.46            | 0.000069        | 0.000014         | lb/hp-hr | 4.19     | 0.29            | 0.003           | 0.06  | 0                              | 0                | 30.82           | 0.001           | 0.0003           |
| 049-62<br>(AOS1)  | Sycamore Propane Emergency Generator 2<br>(AOS1) (84.7 hp engine)                                                                | SEG-P                 | NF                 | 42,350                 | hp-hr      | 0.20     | 0.013           | 0.00012         | 0.0030  | 0                              | 0                | 1.46            | 0.000069        | 0.000014         | lb/hp-hr | 4.19     | 0.29            | 0.003           | 0.06  | 0                              | 0                | 30.82           | 0.001           | 0.0003           |
| Total of Non-     | Fugitive Emissions for Affected Emissions Units                                                                                  | - Following the       | Proposed U         | Jpdates:               |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 10.35    | 3.38            | 0.01            | 9.65  | 0                              | 0.17             | 452.84          | 0.02            | 0.00             |
| Total of Fugit    | ive Emissions for Affected Emissions Units - Fo                                                                                  | llowing the Prop      | osed Updat         | es:                    |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 1,659.63 | 73.50           | 0.50            | 1.18  | 0                              | 2.18             | 15,544.19       | 0.61            | 0.12             |
| Total of Non-     | Fugitive and Fugitive Emissions for Affected Em                                                                                  | nissions Units - F    | ollowing the       | Proposed Updates       | s:         |          |                 |                 |         |                                |                  |                 |                 |                  |          | 1,669.98 | 76.88           | 0.51            | 10.83 | 0                              | 2.35             | 15,997.03       | 0.63            | 0.12             |
| Total Chang       | e in Non-Fugitive Emissions:                                                                                                     |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 10.35    | 3.38            | 0.01            | 9.65  | 0                              | 0.17             | 452.84          | 0.02            | 0.004            |
| Total Chang       | e in Fugitive Emissions:                                                                                                         |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 745.14   | 33.00           | 0.23            | 1.18  | 0                              | 2.18             | 6,979.23        | 0.27            | 0.05             |
| Total Chang       | e in Non-Fugitive and Fugitive Emissions:                                                                                        |                       |                    |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 755.49   | 36.38           | 0.23            | 10.83 | 0                              | 2.35             | 7,432.07        | 0.29            | 0.06             |
| Total Chang       | e in FMBI Facility-Wide PTE (includes all nor                                                                                    | n-fugitive emiss      | sions):            |                        |            |          |                 |                 |         |                                |                  |                 |                 |                  |          | 10.35    | 3.38            | 0.01            | 9.65  | 0                              | 0.17             | 452.84          | 0.02            | 0.004            |

Table G.8 Hourly Gaseous Emissions - Potential Emission Calculations

| _                 |                                                                                                                                  | _                   | Non-Fug.           |                        |            |          |                 |                 | Em      | ission Fac                     | tors   |          |                 | aiculations      |          |           |                 |                 | Er   | missions (lb/ho                | our)             |                 |       |                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|------------------------|------------|----------|-----------------|-----------------|---------|--------------------------------|--------|----------|-----------------|------------------|----------|-----------|-----------------|-----------------|------|--------------------------------|------------------|-----------------|-------|------------------|
| Process<br>Number | Process/Emission Unit Description                                                                                                | Process<br>Code     | (NF) /<br>Fug. (F) | Hourly Process<br>Rate | Rate Units | СО       | NO <sub>X</sub> | SO <sub>2</sub> | voc     | H <sub>2</sub> SO <sub>4</sub> | H₂S    | CO2      | CH <sub>4</sub> | N <sub>2</sub> O | EF Units | со        | NO <sub>x</sub> | SO <sub>2</sub> | voc  | H <sub>2</sub> SO <sub>4</sub> | H <sub>2</sub> S | CO <sub>2</sub> | CH₄   | N <sub>2</sub> O |
| Affected E        | missions Units - Design of AOS1 in Class II Ai                                                                                   | r Quality Permi     | t #77414           |                        |            |          |                 | -               |         |                                | _      |          |                 |                  |          |           |                 | -               |      |                                | -                | _               | *     | _                |
|                   | erations (AOS1)                                                                                                                  |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          |           |                 |                 |      |                                |                  |                 |       |                  |
| 026-2             | Blasting (AOS1)                                                                                                                  | HBlasting           | F                  | 1                      | blasts     | 4,064.40 | 180.00          | 1.23            | 0       | 0                              | 0      | 38,066.5 | 1.49            | 0.29             | lb/blast | 4,064.40  | 180.00          | 1.23            | 0    | 0                              | 0                | 38,066.47       | 1.49  | 0.29             |
| (AOS1)            |                                                                                                                                  | (AOS1-C)            |                    | ľ                      | Diasts     | 4,004.40 | 100.00          | 1.20            | Ů       |                                |        | 50,000.5 | 1.40            | 0.20             | ib/bidat |           |                 |                 |      |                                |                  |                 |       |                  |
| Total of No       | n-Fugitive Emissions for Affected Emissions Units                                                                                | s - Prior to the P  | roposed Up         | dates:                 |            |          |                 |                 |         |                                |        |          |                 |                  |          | 0         | 0               | 0               | 0    | 0                              | 0                | 0               | 0     | 0                |
| Total of Fuç      | gitive Emissions for Affected Emissions Units - Pr                                                                               | ior to the Propos   | sed Updates        | 3:                     |            |          |                 |                 |         |                                |        |          |                 |                  |          | 4,064.40  | 180.00          | 1.23            | 0    | 0                              | 0                | 38,066.47       | 1.49  | 0.29             |
| Total of No       | n-Fugitive and Fugitive Emissions for Affected En                                                                                | nissions Units - F  | Prior to the F     | Proposed Updates:      |            |          |                 |                 |         |                                |        |          |                 |                  |          | 4,064.40  | 180.00          | 1.23            | 0    | 0                              | 0                | 38,066.47       | 1.49  | 0.29             |
| Affected E        | missions Units - Proposed Updated Design of                                                                                      | FAOS1               |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          |           |                 |                 |      |                                |                  |                 |       |                  |
| Mining Ope        | erations (AOS1)                                                                                                                  |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          |           |                 |                 |      |                                |                  |                 |       |                  |
| 026-2<br>(AOS1)   | Blasting (AOS1)                                                                                                                  | HBlasting<br>(AOS1) | F                  | 1                      | blasts     | 15,319.7 | 678.46          | 4.64            | 0       | 0                              | 0      | 143,485  | 5.60            | 1.11             | lb/blast | 15,319.65 | 678.46          | 4.64            | 0    | 0                              | 0                | 143,484.81      | 5.60  | 1.11             |
| Sycamore I        | Bulk and Molybdenum Flotation Operations (AOS                                                                                    | S1)                 |                    |                        |            |          |                 |                 |         | •                              | '      | •        |                 | •                | •        | •         |                 |                 | •    | •                              | •                |                 |       | •                |
| 044-2<br>(AOS1)   | Sycamore Bulk and Molybdenum Flotation<br>Equipment                                                                              | MFE                 | F                  | 59.10                  | tons       | 0        | 0               | 0               | 0.0046  | 0                              | 0.0084 | 0        | 0               | 0                | lb/ton   | 0         | 0               | 0               | 0.27 | 0                              | 0.50             | 0               | 0     | 0                |
| Sycamore (        | Concentrate Handling Operations (AOS1)                                                                                           |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          |           | I               |                 |      | '                              |                  |                 |       | '                |
| 052-2<br>(AOS1)   | Molybdenum Dryer Wet Scrubber System (AOS1)                                                                                      | MDWSS<br>(AOS1)     | NF                 | 1                      | hours      | 0        | 0               | 0               | 1.83    | 0                              | 0      | 0        | 0               | 0                | lb/hr    | 0         | 0               | 0               | 1.83 | 0                              | 0                | 0               | 0     | 0                |
| Sycamore I        | Lime and Other Regent Operations (AOS1)                                                                                          | !                   | -                  |                        |            |          |                 |                 |         |                                | 1      |          |                 |                  |          |           |                 |                 |      |                                |                  |                 |       |                  |
| 053-2<br>(AOS1)   | Xanthate Mix Tank (AOS1), Xanthate Holding<br>Tank (AOS1), Test Reagent Mix Tank (AOS1),<br>and Test Reagent Holding Tank (AOS1) | SXMS                | NF                 | 0.04                   | tons       | 0        | 0               | 0               | 12.34   | 0                              | 0      | 0        | 0               | 0                | lb/ton   | 0         | 0               | 0               | 0.49 | 0                              | 0                | 0               | 0     | 0                |
| 055-3<br>(AOS1)   | Sycamore NaHS System Scrubber (AOS1)                                                                                             | H2S (AOS1)          | NF                 | 1                      | hours      | 0        | 0               | 0               | 0       | 0                              | 0.038  | 0        | 0               | 0                | lb/hr    | 0         | 0               | 0               | 0    | 0                              | 0.038            | 0               | 0     | 0                |
| Sycamore I        | Emergency ICE (AOS1)                                                                                                             |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          |           |                 |                 |      |                                |                  |                 |       |                  |
| 049-59<br>(AOS1)  | Sycamore Diesel Emergency Generator 1<br>(AOS1) (609 hp engine)                                                                  | Tier3-450/560-<br>D | NF                 | 609                    | hp-hr      | 0.0058   | 0.0061          | 0.000011        | 0.00044 | 0                              | 0      | 1.14     | 0.000046        | 0.000009         | lb/hp-hr | 3.50      | 3.74            | 0.007           | 0.27 | 0                              | 0                | 695.10          | 0.03  | 0.006            |
| 049-60<br>(AOS1)  | Sycamore Diesel Emergency Generator 2<br>(AOS1) (762 hp engine)                                                                  | Tier2-560-D         | NF                 | 762                    | hp-hr      | 0.0058   | 0.0099          | 0.000011        | 0.00066 | 0                              | 0      | 1.14     | 0.000046        | 0.000009         | lb/hp-hr | 4.38      | 7.52            | 0.008           | 0.50 | 0                              | 0                | 869.73          | 0.04  | 0.007            |
| 049-61<br>(AOS1)  | Sycamore Propane Emergency Generator 1<br>(AOS1) (84.7 hp engine)                                                                | SEG-P               | NF                 | 84.70                  | hp-hr      | 0.20     | 0.013           | 0.00012         | 0.0030  | 0                              | 0      | 1.46     | 0.000069        | 0.000014         | lb/hp-hr | 16.77     | 1.14            | 0.01            | 0.25 | 0                              | 0                | 123.27          | 0.006 | 0.001            |
| 049-62<br>(AOS1)  | Sycamore Propane Emergency Generator 2<br>(AOS1) (84.7 hp engine)                                                                | SEG-P               | NF                 | 84.70                  | hp-hr      | 0.20     | 0.013           | 0.00012         | 0.0030  | 0                              | 0      | 1.46     | 0.000069        | 0.000014         | lb/hp-hr | 16.77     | 1.14            | 0.01            | 0.25 | 0                              | 0                | 123.27          | 0.006 | 0.001            |
| Total of No       | n-Fugitive Emissions for Affected Emissions Units                                                                                | s - Following the   | Proposed L         | Jpdates:               |            |          |                 |                 |         |                                |        |          |                 |                  |          | 41.42     | 13.54           | 0.04            | 3.59 | 0                              | 0.04             | 1,811.36        | 0.08  | 0.02             |
| Total of Fuç      | gitive Emissions for Affected Emissions Units - Fo                                                                               | llowing the Prop    | osed Updat         | es:                    |            |          |                 |                 |         |                                |        |          |                 |                  |          | 15,319.65 | 678.46          | 4.64            | 0.27 | 0                              | 0.50             | 143,484.81      | 5.60  | 1.11             |
| Total of No       | n-Fugitive and Fugitive Emissions for Affected En                                                                                | nissions Units - F  | Following the      | Proposed Update        | s:         |          |                 |                 |         |                                |        |          |                 |                  |          | 15,361.07 | 692.00          | 4.67            | 3.86 | 0                              | 0.54             | 145,296.17      | 5.68  | 1.12             |
| Total Char        | ge in Non-Fugitive Emissions:                                                                                                    |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          | 41.42     | 13.54           | 0.04            | 3.59 | 0                              | 0.04             | 1,811.36        | 0.08  | 0.02             |
| Total Char        | ge in Fugitive Emissions:                                                                                                        |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          | 11,255.26 | 498.46          | 3.41            | 0.27 | 0                              | 0.50             | 105,418.34      | 4.11  | 0.81             |
| Total Char        | ge in Non-Fugitive and Fugitive Emissions:                                                                                       |                     |                    |                        |            |          |                 |                 |         |                                |        |          |                 |                  |          | 11,296.68 | 512.00          | 3.44            | 3.86 | 0                              | 0.54             | 107,229.70      | 4.19  | 0.83             |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process          |                              | HAP Informa       | tion                 |                    | Emission   |                                                                                                                                    |
|------------------|------------------------------|-------------------|----------------------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Code             | Process Description          | Name              | EF                   | EF Units           | Rate Units | Reference                                                                                                                          |
| Pollution Co     | ntrol Devices                | 1                 |                      |                    |            |                                                                                                                                    |
|                  |                              | Antimony          | 1.76E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Arsenic           | 2.89E-11             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Beryllium         | 2.03E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Cadmium           | 1.49E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Chromium          | 5.80E-11             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| C51 (AOS1)       | Dust Collector C51 (AOS1)    | Cobalt            | 2.49E-11             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process                                                                           |
| 001 (11001)      | 2 det 2011000 201 (1.1001)   | Lead              | 2.38E-11             | lb/dscf            | 400.       | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |
|                  |                              | Manganese         | 4.03E-10             | lb/dscf            |            | ,                                                                                                                                  |
|                  |                              | Mercury           | 8.49E-13             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Nickel            | 3.40E-11             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Selenium          | 5.36E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Total HAPs        | 5.85E-10             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Antimony          | 3.38E-13             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Arsenic           | 5.56E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Beryllium         | 3.90E-13             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Cadmium           | 2.86E-13             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Chromium          | 1.12E-11             | lb/dscf            | _          | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| AE-001<br>(AOS1) | Dust Collector AE-001 (AOS1) | Cobalt            | 4.80E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |
| (AOS1)           |                              | Lead              | 4.59E-12             | lb/dscf            | -          | emissions)                                                                                                                         |
|                  |                              | Manganese         | 7.77E-11             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Mercury           | 1.63E-13             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Nickel            | 6.55E-12             | lb/dscf            | -          |                                                                                                                                    |
|                  |                              | Selenium          | 1.03E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Total HAPs        | 1.13E-10<br>3.38E-13 | lb/dscf<br>lb/dscf |            |                                                                                                                                    |
|                  |                              | Antimony  Arsenic | 5.56E-12             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Beryllium         | 3.90E-13             | lb/dscf            | -          |                                                                                                                                    |
|                  |                              | Cadmium           | 2.86E-13             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Chromium          | 1.12E-11             | lb/dscf            | 1          |                                                                                                                                    |
| AE-014           |                              | Cobalt            | 4.80E-12             | lb/dscf            | 1          | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |
| (AOS1)           | Dust Collector AE-014 (AOS1) | Lead              | 4.59E-12             | lb/dscf            | - dscf     | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |
|                  |                              | Manganese         | 7.77E-11             | lb/dscf            | 1          | emissions)                                                                                                                         |
|                  |                              | Mercury           | 1.63E-13             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Nickel            | 6.55E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Selenium          | 1.03E-12             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Total HAPs        | 1.13E-10             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Antimony          | 3.38E-13             | lb/dscf            |            |                                                                                                                                    |
|                  |                              | Arsenic           | 5.56E-12             | lb/dscf            | ]          |                                                                                                                                    |
|                  |                              | Beryllium         | 3.90E-13             | lb/dscf            | ]          |                                                                                                                                    |
|                  |                              | Cadmium           | 2.86E-13             | lb/dscf            | ]          |                                                                                                                                    |
|                  |                              | Chromium          | 1.12E-11             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| AE-015           | Dust Collector AE-015 (AOS1) | Cobalt            | 4.80E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process                                                                           |
| (AOS1)           |                              | Lead              | 4.59E-12             | lb/dscf            | ]          | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |
|                  |                              | Manganese         | 7.77E-11             | lb/dscf            | 1          | ,                                                                                                                                  |
|                  |                              | Mercury           | 1.63E-13             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Nickel            | 6.55E-12             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Selenium          | 1.03E-12             | lb/dscf            | 1          |                                                                                                                                    |
|                  |                              | Total HAPs        | 1.13E-10             | lb/dscf            |            |                                                                                                                                    |
| AE-002           |                              | Antimony          | 3.38E-13             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |
| (AOS1)           | Dust Collector AE-002 (AOS1) | Arsenic           | 5.56E-12             | lb/dscf            | dscf       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |
|                  |                              | Beryllium         | 3.90E-13             | lb/dscf            |            | emissions)                                                                                                                         |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process          |                                       | HAP Informati     | on                   |                    | Emission   |                                                                                                                                    |  |
|------------------|---------------------------------------|-------------------|----------------------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Code             | Process Description                   | Name              | EF                   | EF Units           | Rate Units | Reference                                                                                                                          |  |
|                  |                                       | Cadmium           | 2.86E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  | İ                                     | Chromium          | 1.12E-11             | lb/dscf            |            |                                                                                                                                    |  |
|                  | İ                                     | Cobalt            | 4.80E-12             | lb/dscf            |            |                                                                                                                                    |  |
| AE-002           | İ                                     | Lead              | 4.59E-12             | lb/dscf            |            | PM10 emission factor multiplied by the concentration of the                                                                        |  |
| (AOS1)           | Dust Collector AE-002 (AOS1) (cont'd) | Manganese         | 7.77E-11             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM10             |  |
| (cont'd)         |                                       | Mercury           | 1.63E-13             | lb/dscf            |            | emissions)                                                                                                                         |  |
|                  |                                       | Nickel            | 6.55E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Selenium          | 1.03E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Total HAPs        | 1.13E-10             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Antimony          | 3.38E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Arsenic           | 5.56E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Beryllium         | 3.90E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Cadmium           | 2.86E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Chromium          | 1.12E-11             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |
| AE-003           | Dust Collector AE-003 (AOS1)          | Cobalt            | 4.80E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process                                                                           |  |
| (AOS1)           |                                       | Lead              | 4.59E-12             | lb/dscf            |            | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |  |
|                  |                                       | Manganese         | 7.77E-11             | lb/dscf            |            | ,                                                                                                                                  |  |
|                  |                                       | Mercury           | 1.63E-13             | lb/dscf            | -          |                                                                                                                                    |  |
|                  |                                       | Nickel            | 6.55E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Selenium          | 1.03E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Total HAPs        | 1.13E-10             | lb/dscf            |            |                                                                                                                                    |  |
|                  | -<br>-<br>-<br>-                      | Antimony          | 3.38E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Arsenic           | 5.56E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Beryllium         | 3.90E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Cadmium           | 2.86E-13             | lb/dscf            | dscf       |                                                                                                                                    |  |
|                  |                                       | Chromium          | 1.12E-11             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of t                                                              |  |
| AE-016<br>(AOS1) | Dust Collector AE-016 (AOS1)          | Cobalt            | 4.80E-12             | lb/dscf            |            | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |
| (/1001)          |                                       | Lead              | 4.59E-12             | lb/dscf            |            | emissions)                                                                                                                         |  |
|                  | -                                     | Manganese         | 7.77E-11<br>1.63E-13 | lb/dscf<br>lb/dscf |            |                                                                                                                                    |  |
|                  |                                       | Mercury<br>Nickel | 6.55E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Selenium          | 1.03E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Total HAPs        | 1.13E-10             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Antimony          | 3.38E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Arsenic           | 5.56E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Beryllium         | 3.90E-13             | lb/dscf            | 1          |                                                                                                                                    |  |
|                  |                                       | Cadmium           | 2.86E-13             | lb/dscf            | 1          |                                                                                                                                    |  |
|                  |                                       | Chromium          | 1.12E-11             | lb/dscf            |            |                                                                                                                                    |  |
| AE-017           |                                       | Cobalt            | 4.80E-12             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |  |
| (AOS1)           | Dust Collector AE-017 (AOS1)          | Lead              | 4.59E-12             | lb/dscf            | dscf       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |  |
|                  |                                       | Manganese         | 7.77E-11             | lb/dscf            | 1          | emissions)                                                                                                                         |  |
|                  |                                       | Mercury           | 1.63E-13             | lb/dscf            | 1          |                                                                                                                                    |  |
|                  |                                       | Nickel            | 6.55E-12             | lb/dscf            | 1          |                                                                                                                                    |  |
|                  |                                       | Selenium          | 1.03E-12             | lb/dscf            | 1          |                                                                                                                                    |  |
|                  |                                       | Total HAPs        | 1.13E-10             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Antimony          | 3.38E-13             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Arsenic           | 5.56E-12             | lb/dscf            |            |                                                                                                                                    |  |
| 45.000           |                                       | Beryllium         | 3.90E-13             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |
| AE-008<br>(AOS1) | Dust Collector AE-008 (AOS1)          | Cadmium           | 2.86E-13             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |
|                  |                                       | Chromium          | 1.12E-11             | lb/dscf            |            | emissions)                                                                                                                         |  |
|                  |                                       | Cobalt            | 4.80E-12             | lb/dscf            |            |                                                                                                                                    |  |
|                  |                                       | Lead              | 4.59E-12             | lb/dscf            |            |                                                                                                                                    |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process          |                                       | HAP Informati | on       |          | Emission   |                                                                                                                                    |
|------------------|---------------------------------------|---------------|----------|----------|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Code             | Process Description                   | Name          | EF       | EF Units | Rate Units | Reference                                                                                                                          |
|                  |                                       | Manganese     | 7.77E-11 | lb/dscf  |            |                                                                                                                                    |
| AE-008           |                                       | Mercury       | 1.63E-13 | lb/dscf  |            | PM10 emission factor multiplied by the concentration of the                                                                        |
| (AOS1)           | Dust Collector AE-008 (AOS1) (cont'd) | Nickel        | 6.55E-12 | lb/dscf  | dscf       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM10             |
| (cont'd)         |                                       | Selenium      | 1.03E-12 | lb/dscf  |            | emissions)                                                                                                                         |
|                  |                                       | Total HAPs    | 1.13E-10 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Antimony      | 3.38E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Arsenic       | 5.56E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Beryllium     | 3.90E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Cadmium       | 2.86E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Chromium      | 1.12E-11 | lb/dscf  |            | DM emission feater multiplied by the concentration of the                                                                          |
| AE-009           | Durt Callanter AE 000 (AOC4)          | Cobalt        | 4.80E-12 | lb/dscf  | dscf       | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |
| (AOS1)           | Dust Collector AE-009 (AOS1)          | Lead          | 4.59E-12 | lb/dscf  |            | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |
|                  |                                       | Manganese     | 7.77E-11 | lb/dscf  |            | emissions)                                                                                                                         |
|                  |                                       | Mercury       | 1.63E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Nickel        | 6.55E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Selenium      | 1.03E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Total HAPs    | 1.13E-10 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Antimony      | 3.38E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Arsenic       | 5.56E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Beryllium     | 3.90E-13 | lb/dscf  |            |                                                                                                                                    |
|                  | Dust Collector AE-010 (AOS1)          | Cadmium       | 2.86E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Chromium      | 1.12E-11 | lb/dscf  |            | DM emission factor multiplied by the concentration of the                                                                          |
| AE-010           |                                       | Cobalt        | 4.80E-12 | lb/dscf  | dscf       | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |
| (AOS1)           |                                       | Lead          | 4.59E-12 | lb/dscf  |            | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |
|                  |                                       | Manganese     | 7.77E-11 | lb/dscf  |            | emissions)                                                                                                                         |
|                  |                                       | Mercury       | 1.63E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Nickel        | 6.55E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Selenium      | 1.03E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Total HAPs    | 1.13E-10 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Antimony      | 3.38E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Arsenic       | 5.56E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Beryllium     | 3.90E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Cadmium       | 2.86E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Chromium      | 1.12E-11 | lb/dscf  |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| AE-011           | Dust Collector AE-011 (AOS1)          | Cobalt        | 4.80E-12 | lb/dscf  | dscf       | HAPs (assume the concentration of the HAP in the process                                                                           |
| (AOS1)           | Dust Collector AL-011 (ACC1)          | Lead          | 4.59E-12 | lb/dscf  | 4361       | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |
|                  |                                       | Manganese     | 7.77E-11 | lb/dscf  |            | omissions)                                                                                                                         |
|                  |                                       | Mercury       | 1.63E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Nickel        | 6.55E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Selenium      | 1.03E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Total HAPs    | 1.13E-10 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Antimony      | 3.38E-13 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Arsenic       | 5.56E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Beryllium     | 3.90E-13 | lb/dscf  |            |                                                                                                                                    |
| 45.00            |                                       | Cadmium       | 2.86E-13 | lb/dscf  |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| AE-007<br>(AOS1) | Dust Collector AE-007 (AOS1)          | Chromium      | 1.12E-11 | lb/dscf  | dscf       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |
|                  |                                       | Cobalt        | 4.80E-12 | lb/dscf  |            | emissions)                                                                                                                         |
|                  |                                       | Lead          | 4.59E-12 | lb/dscf  |            |                                                                                                                                    |
|                  |                                       | Manganese     | 7.77E-11 | lb/dscf  |            |                                                                                                                                    |
| 1                |                                       | Mercury       | 1.63E-13 | lb/dscf  |            |                                                                                                                                    |

Table G.9 HAP Emission Factors - Potential Emission Calculations

|                  |                                         | HAP Information | on       |          |                        |                                                                                                                                    |  |  |
|------------------|-----------------------------------------|-----------------|----------|----------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Process<br>Code  | Process Description                     | Name            | EF       | EF Units | Emission<br>Rate Units | Reference                                                                                                                          |  |  |
|                  |                                         | Nickel          | 6.55E-12 | lb/dscf  |                        | PM10 emission factor multiplied by the concentration of the                                                                        |  |  |
| AE-007<br>(AOS1) | Dust Collector AE-007 (AOS1) (cont'd)   | Selenium        | 1.03E-12 | lb/dscf  | dscf                   | HAPs (assume the concentration of the HAP in the process                                                                           |  |  |
| (cont'd)         | Dust Composer / LE CO / (100 /) (com u) | Total HAPs      | 1.13E-10 | lb/dscf  | 400.                   | material is equal to the concentration of the HAP in the PM10 emissions)                                                           |  |  |
|                  |                                         | Antimony        | 3.38E-13 | lb/dscf  |                        | ,                                                                                                                                  |  |  |
|                  |                                         | Arsenic         | 5.56E-12 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Beryllium       | 3.90E-13 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Cadmium         | 2.86E-13 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Chromium        | 1.12E-11 | lb/dscf  | -                      |                                                                                                                                    |  |  |
| AF 040           |                                         | Cobalt          | 4.80E-12 | lb/dscf  | -                      | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |  |  |
| AE-012<br>(AOS1) | Dust Collector AE-012 (AOS1)            | Lead            | 4.59E-12 | lb/dscf  | dscf                   | material is equal to the concentration of the HAP in the process                                                                   |  |  |
|                  |                                         | Manganese       | 7.77E-11 | lb/dscf  | -                      | emissions)                                                                                                                         |  |  |
|                  |                                         | Mercury         | 1.63E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Nickel          | 6.55E-12 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Selenium        | 1.03E-12 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Total HAPs      | 1.03E-12 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Antimony        | 3.38E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Arsenic         | 5.56E-12 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Beryllium       | 3.90E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Cadmium         | 2.86E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Chromium        | 1.12E-11 | lb/dscf  |                        |                                                                                                                                    |  |  |
| 45.040           |                                         | Cobalt          | 4.80E-12 | lb/dscf  |                        | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| AE-013<br>(AOS1) | Dust Collector AE-013 (AOS1)            | Lead            | 4.59E-12 | lb/dscf  | dscf                   | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
| , ,              |                                         | Manganese       | 7.77E-11 | lb/dscf  |                        | emissions)                                                                                                                         |  |  |
|                  |                                         | Mercury         | 1.63E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Nickel          | 6.55E-12 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Selenium        | 1.03E-12 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Total HAPs      | 1.13E-10 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Antimony        | 2.99E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Arsenic         | 4.92E-12 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Beryllium       | 3.45E-13 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Cadmium         | 2.53E-13 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Chromium        | 9.88E-12 | lb/dscf  | -                      |                                                                                                                                    |  |  |
| SDC1             |                                         | Cobalt          | 4.24E-12 | lb/dscf  | -                      | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |  |  |
| (AOS1)           | PC1 Dust Collector 1 (AOS1)             | Lead            | 4.06E-12 | lb/dscf  | dscf                   | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |  |  |
|                  |                                         | Manganese       | 6.87E-11 | lb/dscf  |                        | emissions)                                                                                                                         |  |  |
|                  |                                         | Mercury         | 1.45E-13 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Nickel          | 5.80E-12 | lb/dscf  | -                      |                                                                                                                                    |  |  |
|                  |                                         | Selenium        | 9.13E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Total HAPs      | 9.96E-11 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Antimony        | 2.99E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Arsenic         | 4.92E-12 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Beryllium       | 3.45E-13 | lb/dscf  |                        |                                                                                                                                    |  |  |
|                  |                                         | Cadmium         | 2.53E-13 | lb/dscf  | 1                      |                                                                                                                                    |  |  |
|                  |                                         | Chromium        | 9.88E-12 | lb/dscf  | 1                      |                                                                                                                                    |  |  |
| SDC2             |                                         | Cobalt          | 4.24E-12 | lb/dscf  |                        | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |  |  |
| (AOS1)           | PC1 CCC1 Dust Collector 2 (AOS1)        | Lead            | 4.06E-12 | lb/dscf  | dscf                   | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |  |  |
|                  |                                         | Manganese       | 6.87E-11 | lb/dscf  | 1                      | emissions)                                                                                                                         |  |  |
|                  |                                         | Mercury         | 1.45E-13 | lb/dscf  | 1                      |                                                                                                                                    |  |  |
|                  |                                         | Nickel          | 5.80E-12 | lb/dscf  | <del></del>            |                                                                                                                                    |  |  |
|                  |                                         | Selenium        | 9.13E-13 | lb/dscf  | 1                      |                                                                                                                                    |  |  |
|                  |                                         | Total HAPs      | 9.96E-11 | lb/dscf  | 1                      |                                                                                                                                    |  |  |
| I                |                                         | TOWN TIAL 9     | 0.00L-11 | 10,4301  |                        |                                                                                                                                    |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process        |                                                          | HAP Informati | on                   |                    | Emission   |                                                                                                                                    |  |  |
|----------------|----------------------------------------------------------|---------------|----------------------|--------------------|------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Code           | Process Description                                      | Name          | EF                   | EF Units           | Rate Units | Reference                                                                                                                          |  |  |
|                |                                                          | Antimony      | 2.99E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Arsenic       | 4.92E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Beryllium     | 3.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Cadmium       | 2.53E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Chromium      | 9.88E-12             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| SDC3           | PC1 CCC2 Dust Collector 3 (AOS1)                         | Cobalt        | 4.24E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process                                                                           |  |  |
| (AOS1)         | 1 01 0002 2 4 5 1 6 5 1 6 (1001)                         | Lead          | 4.06E-12             | lb/dscf            | 4501       | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |  |  |
|                |                                                          | Manganese     | 6.87E-11             | lb/dscf            |            | Childson's)                                                                                                                        |  |  |
|                |                                                          | Mercury       | 1.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Nickel        | 5.80E-12             | lb/dscf            | _          |                                                                                                                                    |  |  |
|                |                                                          | Selenium      | 9.13E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Total HAPs    | 9.96E-11             | lb/dscf            |            |                                                                                                                                    |  |  |
|                | -                                                        | Antimony      | 2.99E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                | -                                                        | Arsenic       | 4.92E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
|                | -                                                        | Beryllium     | 3.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                | -                                                        | Cadmium       | 2.53E-13<br>9.88E-12 | lb/dscf            |            |                                                                                                                                    |  |  |
|                | -                                                        | Cobalt        | 4.24E-12             | lb/dscf<br>lb/dscf | dscf       | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| SDC4<br>(AOS1) | PC1 CCC3 Dust Collector 4 (AOS1)                         | Lead          | 4.24L-12<br>4.06E-12 | lb/dscf            |            | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
| , , ,          |                                                          | Manganese     | 6.87E-11             | lb/dscf            |            | emissions)                                                                                                                         |  |  |
|                |                                                          | Mercury       | 1.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Nickel        | 5.80E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Selenium      | 9.13E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Total HAPs    | 9.96E-11             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Antimony      | 2.99E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Arsenic       | 4.92E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Beryllium     | 3.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Cadmium       | 2.53E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Chromium      | 9.88E-12             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| SDC5           | Coarse Ore Reclaim Conveyor 1 Dust                       | Cobalt        | 4.24E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process                                                                           |  |  |
| (AOS1)         | Collector 5 (AOS1)                                       | Lead          | 4.06E-12             | lb/dscf            | daci       | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |  |  |
|                |                                                          | Manganese     | 6.87E-11             | lb/dscf            |            | Childson's)                                                                                                                        |  |  |
|                |                                                          | Mercury       | 1.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Nickel        | 5.80E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Selenium      | 9.13E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Total HAPs    | 9.96E-11             | lb/dscf            |            |                                                                                                                                    |  |  |
| ,              |                                                          | Antimony      | 2.99E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Arsenic       | 4.92E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Beryllium     | 3.45E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Cadmium       | 2.53E-13<br>9.88E-12 | lb/dscf<br>lb/dscf |            |                                                                                                                                    |  |  |
| 0505           | <br>                                                     | Coromium      | 9.88E-12<br>4.24E-12 | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| SDC6<br>(AOS1) | Coarse Ore Reclaim Conveyor 2 Dust<br>Collector 6 (AOS1) | Lead          | 4.24E-12<br>4.06E-12 | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
| , '            | ` <i>'</i>                                               | Manganese     | 6.87E-11             | lb/dscf            |            | emissions)                                                                                                                         |  |  |
|                |                                                          | Mercury       | 1.45E-13             | lb/dscf            | 1          |                                                                                                                                    |  |  |
|                |                                                          | Nickel        | 5.80E-12             | lb/dscf            |            |                                                                                                                                    |  |  |
| ,              |                                                          | Selenium      | 9.13E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
| ,              |                                                          | Total HAPs    | 9.96E-11             | lb/dscf            |            |                                                                                                                                    |  |  |
|                |                                                          | Antimony      | 2.99E-13             | lb/dscf            |            |                                                                                                                                    |  |  |
|                | HPGR Discharge Dust Collector 7                          | Arsenic       | 4.92E-12             | lb/dscf            | 46         | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |  |  |
| SDC7           |                                                          |               |                      |                    | dscf       |                                                                                                                                    |  |  |
| SDC7<br>(AOS1) | (AOS1)                                                   | Beryllium     | 3.45E-13             | lb/dscf            |            | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process            |                                                   | HAP Informati     | on                   |                    | Emission   |                                                                                                                                       |  |  |
|--------------------|---------------------------------------------------|-------------------|----------------------|--------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Code               | Process Description                               | Name              | EF                   | EF Units           | Rate Units | Reference                                                                                                                             |  |  |
|                    |                                                   | Chromium          | 9.88E-12             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Cobalt            | 4.24E-12             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Lead              | 4.06E-12             | lb/dscf            | 1          |                                                                                                                                       |  |  |
| SDC7               | HPGR Discharge Dust Collector 7                   | Manganese         | 6.87E-11             | lb/dscf            | 1          | PM10 emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process                  |  |  |
| (AOS1)<br>(cont'd) | (AOS1) (cont'd)                                   | Mercury           | 1.45E-13             | lb/dscf            | dscf       | material is equal to the concentration of the HAP in the PM10                                                                         |  |  |
| , ,                |                                                   | Nickel            | 5.80E-12             | lb/dscf            | 1          | emissions)                                                                                                                            |  |  |
|                    |                                                   | Selenium          | 9.13E-13             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Total HAPs        | 9.96E-11             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Antimony          | 2.99E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Arsenic           | 4.92E-12             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Beryllium         | 3.45E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Cadmium           | 2.53E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Chromium          | 9.88E-12             | lb/dscf            |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                               |  |  |
| SDC8               | HPGR Discharge Conveyor Transfer                  | Cobalt            | 4.24E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process                                                                              |  |  |
| (AOS1)             | Dust Collector 8 (AOS1)                           | Lead              | 4.06E-12             | lb/dscf            | usci       | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                                  |  |  |
|                    |                                                   | Manganese         | 6.87E-11             | lb/dscf            |            | emissions)                                                                                                                            |  |  |
|                    |                                                   | Mercury           | 1.45E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Nickel            | 5.80E-12             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Selenium          | 9.13E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Total HAPs        | 9.96E-11             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Antimony          | 2.99E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Arsenic           | 4.92E-12             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Beryllium         | 3.45E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    | HPGR Product Bin Dust Collector 9                 | Cadmium           | 2.53E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Chromium          | 9.88E-12             | lb/dscf            | dscf       | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                               |  |  |
| SDC9               |                                                   | Cobalt            | 4.24E-12             | lb/dscf            |            | HAPs (assume the concentration of the HAP in the process                                                                              |  |  |
| (AOS1)             | (AOS1)                                            | Lead              | 4.06E-12             | lb/dscf            |            | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                                  |  |  |
|                    |                                                   | Manganese         | 6.87E-11             | lb/dscf            |            | ,                                                                                                                                     |  |  |
|                    |                                                   | Mercury           | 1.45E-13             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Nickel            | 5.80E-12             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Selenium          | 9.13E-13             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Total HAPs        | 9.96E-11             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Antimony          | 2.99E-13             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Arsenic           | 4.92E-12             | lb/dscf            | -          |                                                                                                                                       |  |  |
|                    |                                                   | Beryllium         | 3.45E-13             | lb/dscf            | +          |                                                                                                                                       |  |  |
|                    |                                                   | Cadmium           | 2.53E-13             | lb/dscf            | +          |                                                                                                                                       |  |  |
|                    |                                                   | Chromium          | 9.88E-12             | lb/dscf            | +          | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                               |  |  |
| SDC10<br>(AOS1)    | HPGR Product Transfer Dust Collector<br>10 (AOS1) | Cobalt            | 4.24E-12             | lb/dscf            | dscf       | HAPs (assume the concentration of the HAP in the process<br>material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
| ,                  |                                                   | Lead              | 4.06E-12             | lb/dscf            | 1          | emissions)                                                                                                                            |  |  |
|                    |                                                   | Manganese         | 6.87E-11<br>1.45E-13 | lb/dscf<br>lb/dscf | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Mercury<br>Nickel | 1.45E-13<br>5.80E-12 | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Selenium          | 9.13E-13             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Total HAPs        | 9.13E-13<br>9.96E-11 | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Antimony          | 2.99E-13             | lb/dscf            |            |                                                                                                                                       |  |  |
|                    |                                                   | Arsenic           | 4.92E-12             | lb/dscf            | †          |                                                                                                                                       |  |  |
|                    |                                                   | Beryllium         | 3.45E-13             | lb/dscf            | 1          |                                                                                                                                       |  |  |
| SDC11              | HPGR Product Transfer Dust Collector              | Cadmium           | 2.53E-13             | lb/dscf            | 1          | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process      |  |  |
| (AOS1)             | 11 (AOS1)                                         | Chromium          | 9.88E-12             | lb/dscf            | dscf       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                             |  |  |
|                    |                                                   | Cobalt            | 4.24E-12             | lb/dscf            | 1          | emissions)                                                                                                                            |  |  |
|                    |                                                   | Lead              | 4.06E-12             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    |                                                   | Manganese         | 6.87E-11             | lb/dscf            | 1          |                                                                                                                                       |  |  |
|                    | 1                                                 | <b>y</b> -        |                      |                    |            | İ                                                                                                                                     |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

|                       |                                                | HAP Information    | on                   |                    |                                                           |                                                                                                                                       |  |  |
|-----------------------|------------------------------------------------|--------------------|----------------------|--------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Process<br>Code       | Process Description                            | Name               | EF                   | EF Units           | Emission<br>Rate Units                                    | Reference                                                                                                                             |  |  |
|                       |                                                | Mercury            | 1.45E-13             | lb/dscf            |                                                           |                                                                                                                                       |  |  |
| SDC11                 | HPGR Product Transfer Dust Collector           | Nickel             | 5.80E-12             | lb/dscf            |                                                           | PM10 emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process                  |  |  |
| (AOS1)<br>(cont'd)    | 11 (AOS1) (cont'd)                             | Selenium           | 9.13E-13             | lb/dscf            | dscf                                                      | material is equal to the concentration of the HAP in the PM10                                                                         |  |  |
| , ,                   |                                                | Total HAPs         | 9.96E-11             | lb/dscf            | -                                                         | emissions)                                                                                                                            |  |  |
|                       |                                                | Antimony           | 3.04E-05             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Arsenic            | 9.89E-06             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Beryllium          | 6.31E-07             | lb/hr              | 1                                                         |                                                                                                                                       |  |  |
|                       |                                                | Cadmium            | 2.36E-06             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Chromium           | 1.31E-06             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Cobalt             | 6.25E-06             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Lead               | 9.67E-06             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Manganese          | 2.79E-06             | lb/hr              |                                                           | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                               |  |  |
| MDWSS<br>(AOS1)       | Molybdenum Dryer Wet Scrubber<br>System (AOS1) | Mercury            | 4.22E-07             | lb/hr              | hours                                                     | HAPs (assume the concentration of the HAP in the process<br>material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
| ,                     | , , ,                                          | Nickel             | 5.99E-06             | lb/hr              |                                                           | emissions), diesel vapor mass fractions                                                                                               |  |  |
|                       |                                                | Selenium           | 1.61E-05             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Benzene            | 3.48E-03             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Ethylbenzene       | 5.86E-03             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Hexane             | 7.32E-04             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Toluene            | 4.19E-02             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | m-Xylene           | 1.09E-01             | lb/hr              |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Total HAPs         | 1.61E-01             | lb/hr              |                                                           |                                                                                                                                       |  |  |
| Drilling and          | Blasting Operations                            |                    |                      |                    |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Antimony           | 3.12E-06             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Arsenic            | 1.01E-05             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Beryllium          | 1.07E-06             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Cadmium            | 3.86E-07             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Chromium           | 2.31E-05             | lb/hole            | holes                                                     | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                               |  |  |
| Drilling              | Drilling (AOS1) (AOS1-C)                       | Cobalt             | 1.11E-05             | lb/hole            |                                                           | HAPs (assume the concentration of the HAP in the process                                                                              |  |  |
| (AOS1-C)              |                                                | Lead               | 1.65E-05             | lb/hole            |                                                           | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                                  |  |  |
|                       |                                                | Manganese          | 1.84E-04             | lb/hole            |                                                           | ,                                                                                                                                     |  |  |
|                       |                                                | Mercury            | 1.82E-07             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Nickel             | 1.54E-05             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Selenium           | 1.63E-06             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Total HAPs         | 2.66E-04             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Antimony           | 3.62E-06             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Arsenic            | 1.12E-05             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Beryllium          | 9.45E-07             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Cadmium            | 4.24E-07             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Chromium           | 2.55E-05             | lb/hole            |                                                           | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                               |  |  |
| Drilling<br>(AOS1)    | Drilling (AOS1)                                | Cobalt             | 1.17E-05             | lb/hole            | holes                                                     | HAPs (assume the concentration of the HAP in the process<br>material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
| (1.00.)               |                                                | Lead               | 1.77E-05             | lb/hole            |                                                           | emissions)                                                                                                                            |  |  |
|                       |                                                | Manganese          | 1.90E-04             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Mercury            | 1.97E-07<br>1.67E-05 | lb/hole            | -                                                         |                                                                                                                                       |  |  |
|                       |                                                | Nickel<br>Selenium | 1.80E-06             | lb/hole<br>lb/hole | 1                                                         |                                                                                                                                       |  |  |
|                       |                                                | Total HAPs         | 2.80E-04             | lb/hole            | -                                                         |                                                                                                                                       |  |  |
|                       |                                                | POM                | 4.25E-03             | lb/hole            |                                                           |                                                                                                                                       |  |  |
|                       |                                                | Formaldehyde       | 7.86E-02             | lb/blast           | -                                                         | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gallon,                                                                            |  |  |
| ABloctic              | Placting (AOS1) (ar  b) (AOS1)                 | Antimony           | 8.26E-04             | lb/blast           |                                                           | 0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat (assume diesel combustion emissions are an upper limit for                     |  |  |
| ABlasting<br>(AOS1-C) | Blasting (AOS1) (annual basis) (AOS1-C)        | Arsenic            | 3.38E-03             | lb/blast           | blasts                                                    | animal fat combustion emissions), PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the            |  |  |
|                       |                                                | Beryllium          | 8.09E-04             | lb/blast           | -                                                         | concentration of the HAP in the process material is equal to                                                                          |  |  |
|                       |                                                | Cadmium            | 6.29E-04             | lb/blast           | the concentration of the HAP in the PM <sub>10</sub> emis |                                                                                                                                       |  |  |
|                       |                                                | Gaariilarii        | 0.20L-04             | ib/blast           | L                                                         |                                                                                                                                       |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process              |                                       | HAP Information | on       |          | Emission   |                                                                                                                                  |  |
|----------------------|---------------------------------------|-----------------|----------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Code                 | Process Description                   | Name            | EF       | EF Units | Rate Units | Reference                                                                                                                        |  |
|                      |                                       | Chromium        | 6.64E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Cobalt          | 2.94E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Lead            | 5.95E-03 | lb/blast |            | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gallon, 0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat                |  |
| ABlasting            | Blasting (AOS1) (annual basis) (AOS1- | Manganese       | 4.97E-02 | lb/blast |            | (assume diesel combustion emissions are an upper limit for                                                                       |  |
| (AOS1-C)<br>(cont'd) | C) (cont'd)                           | Mercury         | 5.75E-04 | lb/blast | blasts     | animal fat combustion emissions), PM10 emission factor multiplied by the concentration of the HAPs (assume the                   |  |
| , ,                  |                                       | Nickel          | 4.60E-03 | lb/blast |            | concentration of the HAP in the process material is equal to                                                                     |  |
|                      |                                       | Selenium        | 3.06E-03 | lb/blast |            | the concentration of the HAP in the PM10 emissions)                                                                              |  |
|                      |                                       | Total HAPs      | 1.62E-01 | lb/blast | -          |                                                                                                                                  |  |
|                      |                                       | РОМ             | 5.67E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Formaldehyde    | 1.05E-01 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Antimony        | 2.61E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Arsenic         | 9.38E-03 | lb/blast | •          |                                                                                                                                  |  |
|                      |                                       | Beryllium       | 1.59E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Cadmium         | 1.02E-03 | lb/blast | •          | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gallon,<br>0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat             |  |
| HBlasting            | Blasting (AOS1) (hourly basis) (AOS1- | Chromium        | 2.00E-02 | lb/blast |            | (assume diesel combustion emissions are an upper limit for                                                                       |  |
| (AOS1-C)             | (c)                                   | Cobalt          | 9.29E-03 | lb/blast | blasts     | animal fat combustion emissions), PM <sub>10</sub> emission factor<br>multiplied by the concentration of the HAPs (assume the    |  |
|                      |                                       | Lead            | 1.59E-02 | lb/blast |            | concentration of the HAP in the process material is equal to                                                                     |  |
|                      |                                       | Manganese       | 1.55E-01 | lb/blast |            | the concentration of the HAP in the PM <sub>10</sub> emissions)                                                                  |  |
|                      |                                       | Mercury         | 8.54E-04 | lb/blast | 1          |                                                                                                                                  |  |
|                      |                                       | Nickel          | 1.36E-02 | lb/blast | 1          |                                                                                                                                  |  |
|                      |                                       | Selenium        | 4.87E-03 | lb/blast | 1          |                                                                                                                                  |  |
|                      |                                       | Total HAPs      | 3.44E-01 | lb/blast | 1          |                                                                                                                                  |  |
|                      | _                                     | POM             | 1.78E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Formaldehyde    | 3.29E-01 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Antimony        | 9.03E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Arsenic         | 3.08E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Beryllium       | 4.56E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Cadmium         | 3.26E-03 | lb/blast |            | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gallon, 0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat                |  |
| ABlasting            | Disating (AOC4) (special basis)       | Chromium        | 6.57E-02 | lb/blast |            | (assume diesel combustion emissions are an upper limit for animal fat combustion emissions), PM <sub>10</sub> emission factor    |  |
| (AOS1)               | Blasting (AOS1) (annual basis)        | Cobalt          | 2.92E-02 | lb/blast | blasts     | multiplied by the concentration of the HAPs (assume the                                                                          |  |
|                      |                                       | Lead            | 5.07E-02 | lb/blast |            | concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)     |  |
|                      |                                       | Manganese       | 4.78E-01 | lb/blast |            | the concentration of the FIAL III the FIM <sub>10</sub> emissions)                                                               |  |
|                      |                                       | Mercury         | 2.70E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Nickel          | 4.39E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Selenium        | 1.55E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Total HAPs      | 1.08E+00 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | POM             | 2.14E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Formaldehyde    | 3.95E-01 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Antimony        | 1.19E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Arsenic         | 4.02E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Beryllium       | 5.74E-03 | lb/blast |            | AP-42 Tables 1.3-8 and 1.3-10 (05/10), 137,000 Btu/gallon,                                                                       |  |
|                      |                                       | Cadmium         | 4.04E-03 | lb/blast |            | 0.125 MMBtu/gal animal fat, and 7.34 lb/gal animal fat                                                                           |  |
| HBlasting            | Blasting (AOS1) (hourly basis)        | Chromium        | 8.61E-02 | lb/blast | blasts     | (assume diesel combustion emissions are an upper limit for<br>animal fat combustion emissions), PM <sub>10</sub> emission factor |  |
| (AOS1)               | Sidesting (1001) (flourly basis)      | Cobalt          | 3.84E-02 | lb/blast | Diago      | multiplied by the concentration of the HAPs (assume the                                                                          |  |
|                      |                                       | Lead            | 6.58E-02 | lb/blast |            | concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)     |  |
|                      |                                       | Manganese       | 6.28E-01 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Mercury         | 3.29E-03 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Nickel          | 5.74E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Selenium        | 1.91E-02 | lb/blast |            |                                                                                                                                  |  |
|                      |                                       | Total HAPs      | 1.38E+00 | lb/blast |            |                                                                                                                                  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process           |                                                          | HAP Informa       | tion                 |          | Emission   |                                                                                                                                    |
|-------------------|----------------------------------------------------------|-------------------|----------------------|----------|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Code              | Process Description                                      | Name              | EF                   | EF Units | Rate Units | Reference                                                                                                                          |
| Vehicle Oper      | rations                                                  |                   |                      |          |            |                                                                                                                                    |
|                   |                                                          | Antimony          | 2.18E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Arsenic           | 7.07E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Beryllium         | 7.46E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Cadmium           | 2.70E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Chromium          | 1.61E-04             | lb/VMT   |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| ATravel           | Vehicle Travel on Unpaved Roads                          | Cobalt            | 7.77E-05             | lb/VMT   | VMT        | HAPs (assume the concentration of the HAP in the process                                                                           |
| (AOS1-C)          | (annual basis) (AOS1-C)                                  | Lead              | 1.15E-04             | lb/VMT   |            | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |
|                   |                                                          | Manganese         | 1.28E-03             | lb/VMT   |            | Gilliosions)                                                                                                                       |
|                   |                                                          | Mercury           | 1.27E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Nickel            | 1.08E-04             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Selenium          | 1.14E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Total HAPs        | 1.86E-03             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Antimony          | 2.36E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Arsenic           | 7.66E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Beryllium         | 8.08E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Cadmium           | 2.92E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Chromium          | 1.75E-04             | lb/VMT   |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| HTravel           | Vehicle Travel on Unpaved Roads                          | Cobalt            | 8.42E-05             | lb/VMT   | VMT        | HAPs (assume the concentration of the HAP in the process                                                                           |
| (AOS1-C)          | (hourly basis) (AOS1-C)                                  | Lead              | 1.25E-04             | lb/VMT   |            | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |
|                   |                                                          | Manganese         | 1.39E-03             | lb/VMT   | -          | ,                                                                                                                                  |
|                   |                                                          | Mercury           | 1.38E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Nickel            | 1.16E-04             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Selenium          | 1.23E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Total HAPs        | 2.02E-03             | lb/VMT   |            |                                                                                                                                    |
|                   | _                                                        | Antimony          | 2.00E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Arsenic           | 6.17E-05             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Beryllium         | 5.21E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Cadmium           | 2.34E-06             | lb/VMT   |            |                                                                                                                                    |
|                   |                                                          | Chromium          | 1.40E-04             | lb/VMT   |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| ATravel<br>(AOS1) | Vehicle Travel on Unpaved Roads<br>(annual basis) (AOS1) | Cobalt            | 6.47E-05             | lb/VMT   | VMT        | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |
| (1.001)           | (dimidal basis) (Nee 1)                                  | Lead              | 9.74E-05             | lb/VMT   |            | emissions)                                                                                                                         |
|                   |                                                          | Manganese         | 1.05E-03             | Ib/VMT   |            |                                                                                                                                    |
|                   |                                                          | Mercury           | 1.09E-06             | Ib/VMT   |            |                                                                                                                                    |
|                   |                                                          | Nickel            | 9.21E-05             | Ib/VMT   |            |                                                                                                                                    |
|                   |                                                          | Selenium          | 9.94E-06             | Ib/VMT   |            |                                                                                                                                    |
|                   |                                                          | Total HAPs        | 1.54E-03             | Ib/VMT   |            |                                                                                                                                    |
|                   |                                                          | Antimony  Arsenic | 2.68E-05<br>8.27E-05 | lb/VMT   | -          |                                                                                                                                    |
|                   |                                                          | Beryllium         | 6.99E-06             | Ib/VMT   | -          |                                                                                                                                    |
|                   |                                                          | Cadmium           | 3.14E-06             | Ib/VMT   | -          |                                                                                                                                    |
|                   |                                                          | Chromium          | 1.88E-04             | Ib/VMT   |            |                                                                                                                                    |
| UTares            | Valida Traval on University Dec.                         | Cobalt            | 8.67E-05             | Ib/VMT   | -          | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| HTravel<br>(AOS1) | Vehicle Travel on Unpaved Roads<br>(hourly basis) (AOS1) | Lead              | 1.31E-04             | Ib/VMT   | VMT        | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |
| ,                 | ,                                                        | Manganese         | 1.41E-03             | Ib/VMT   | -          | emissions)                                                                                                                         |
|                   |                                                          | Mercury           | 1.46E-06             | Ib/VMT   | -          |                                                                                                                                    |
|                   |                                                          | Nickel            | 1.24E-04             | Ib/VMT   | 1          |                                                                                                                                    |
|                   |                                                          | Selenium          | 1.33E-05             | Ib/VMT   | -          |                                                                                                                                    |
|                   |                                                          | Total HAPs        | 2.07E-03             | Ib/VMT   | 1          |                                                                                                                                    |
|                   |                                                          | Antimony          | 6.43E-06             | lb/hr    |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |
| Dozer             | Dozer Operation (AOS1) (AOS1-C)                          | Arsenic           | 2.08E-05             | lb/hr    | hours      | HAPs (assume the concentration of the HAP in the process                                                                           |
| (AOS1-C)          | ( , ( )                                                  | Beryllium         | 2.20E-06             | lb/hr    | 1          | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |

Table G.9 HAP Emission Factors - Potential Emission Calculations

|                   |                                                                             | HAP Informati        | on                   |                  |                                                      |                                                                                                                                    |  |  |
|-------------------|-----------------------------------------------------------------------------|----------------------|----------------------|------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Process<br>Code   | Process Description                                                         | Name                 | EF                   | EF Units         | Emission<br>Rate Units                               | Reference                                                                                                                          |  |  |
|                   |                                                                             | Cadmium              | 7.95E-07             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Chromium             | 4.75E-05             | lb/hr            | -                                                    |                                                                                                                                    |  |  |
|                   |                                                                             | Cobalt               | 2.29E-05             | lb/hr            |                                                      |                                                                                                                                    |  |  |
| D                 |                                                                             | Lead                 | 3.40E-05             | lb/hr            | -                                                    | PM10 emission factor multiplied by the concentration of the                                                                        |  |  |
| Dozer<br>(AOS1-C) | Dozer Operation (AOS1) (AOS1-C)                                             | Manganese            | 3.78E-04             | lb/hr            | hours                                                | HAPs (assume the concentration of the HAP in the process                                                                           |  |  |
| (cont'd)          | (cont'd)                                                                    | Mercury              | 3.74E-07             | lb/hr            | 1                                                    | material is equal to the concentration of the HAP in the PM10 emissions)                                                           |  |  |
|                   |                                                                             | Nickel               | 3.17E-05             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Selenium             | 3.35E-06             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Total HAPs           | 5.49E-04             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Antimony             | 7.45E-06             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Arsenic              | 2.30E-05             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Beryllium            | 1.94E-06             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Cadmium              | 8.73E-07             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Chromium             | 5.24E-05             | lb/hr            |                                                      | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| Dozer             | Dozor Operation (AOS1)                                                      | Cobalt               | 2.41E-05             | lb/hr            | hours                                                | HAPs (assume the concentration of the HAP in the process                                                                           |  |  |
| (AOS1)            | Dozer Operation (AOS1)                                                      | Lead                 | 3.63E-05             | lb/hr            | nours                                                | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |  |  |
|                   |                                                                             | Manganese            | 3.91E-04             | lb/hr            |                                                      | emissions)                                                                                                                         |  |  |
|                   |                                                                             | Mercury              | 4.05E-07             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Nickel               | 3.44E-05             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Selenium             | 3.71E-06             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Total HAPs           | 5.76E-04             | lb/hr            |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Antimony             | 4.41E-06             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Arsenic              | 1.43E-05             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Beryllium            | 1.51E-06             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   | Road Grader Operation (AOS1) (AOS1-<br>C)                                   | Cadmium              | 5.46E-07             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Chromium             | 3.26E-05             | lb/VMT           | VMT                                                  | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| Grader            |                                                                             | Cobalt               | 1.57E-05             | lb/VMT           |                                                      | HAPs (assume the concentration of the HAP in the process                                                                           |  |  |
| (AOS1-C)          |                                                                             | Lead                 | 2.33E-05             | lb/VMT           |                                                      | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                               |  |  |
|                   |                                                                             | Manganese            | 2.60E-04             | lb/VMT           |                                                      | ·                                                                                                                                  |  |  |
|                   |                                                                             | Mercury              | 2.57E-07             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Nickel               | 2.17E-05             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Selenium             | 2.30E-06             | lb/VMT           | -                                                    |                                                                                                                                    |  |  |
|                   |                                                                             | Total HAPs           | 3.76E-04             | lb/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Antimony             | 5.11E-06             | Ib/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Arsenic              | 1.58E-05             | lb/VMT<br>lb/VMT |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Beryllium<br>Cadmium | 1.33E-06<br>5.99E-07 | Ib/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Chromium             | 3.59E-05             | Ib/VMT           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Cobalt               | 1.65E-05             | Ib/VMT           |                                                      | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                            |  |  |
| Grader<br>(AOS1)  | Road Grader Operation (AOS1)                                                | Lead                 | 2.49E-05             | Ib/VMT           | VMT                                                  | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> |  |  |
|                   |                                                                             | Manganese            | 2.49E-03             | Ib/VMT           | 1                                                    | emissions)                                                                                                                         |  |  |
|                   |                                                                             | Mercury              | 2.78E-07             | Ib/VMT           | -                                                    |                                                                                                                                    |  |  |
|                   |                                                                             | Nickel               | 2.36E-05             | Ib/VMT           | 1                                                    |                                                                                                                                    |  |  |
|                   |                                                                             | Selenium             | 2.54E-06             | Ib/VMT           | 1                                                    |                                                                                                                                    |  |  |
|                   |                                                                             | Total HAPs           | 3.95E-04             | lb/VMT           | 1                                                    |                                                                                                                                    |  |  |
| Material Tra      | Insfer Operations                                                           |                      | 1                    |                  | l .                                                  |                                                                                                                                    |  |  |
|                   |                                                                             | Antimony             | 4.99E-09             | lb/ton           |                                                      |                                                                                                                                    |  |  |
|                   |                                                                             | Arsenic              | 1.62E-08             | lb/ton           | 1                                                    |                                                                                                                                    |  |  |
| Ore1TrUnpr        | Material Transfer of the Combination of<br>All Mined Material (unprotected) | Beryllium            | 1.71E-09             | lb/ton           | 1 .                                                  | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process   |  |  |
| t (AOS1-C)        | (Design of AOS1 in Class II Air Quality                                     | Cadmium              | 6.18E-10             | lb/ton           | n tons material is equal to the concentration of the | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                          |  |  |
|                   | Permit #77414)                                                              | Chromium             | 3.69E-08             | lb/ton           | 1                                                    | emissions)                                                                                                                         |  |  |
|                   |                                                                             | Cobalt               | 1.78E-08             | lb/ton           | ]                                                    |                                                                                                                                    |  |  |
|                   |                                                                             |                      | •                    |                  | •                                                    |                                                                                                                                    |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process                |                                                                             | HAP Informati | on       |          | Emission   |                                                                                                                                  |  |
|------------------------|-----------------------------------------------------------------------------|---------------|----------|----------|------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Code                   | Process Description                                                         | Name          | EF       | EF Units | Rate Units | Reference                                                                                                                        |  |
|                        |                                                                             | Lead          | 2.64E-08 | lb/ton   |            |                                                                                                                                  |  |
|                        | <u> </u>                                                                    | Manganese     | 2.94E-07 | lb/ton   |            |                                                                                                                                  |  |
| Ore1TrUnpr             | Material Transfer of the Combination of<br>All Mined Material (unprotected) | Mercury       | 2.91E-10 | lb/ton   |            | PM10 emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process             |  |
| t (AOS1-C)<br>(cont'd) | (Design of AOS1 in Class II Air Quality                                     | Nickel        | 2.46E-08 | lb/ton   | tons       | material is equal to the concentration of the HAP in the PM10                                                                    |  |
|                        | Permit #77414) (cont'd)                                                     | Selenium      | 2.60E-09 | lb/ton   | 1          | emissions)                                                                                                                       |  |
|                        |                                                                             | Total HAPs    | 4.26E-07 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Antimony      | 5.79E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Arsenic       | 1.79E-08 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Beryllium     | 1.51E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Cadmium       | 6.78E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Chromium      | 4.07E-08 | lb/ton   | 1          | DM emission factor multiplied by the concentration of the                                                                        |  |
| Ore1TrUnpr             | Material Transfer of the Combination of                                     | Cobalt        | 1.87E-08 | lb/ton   | tono       | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |  |
| t (AOS1)               | All Mined Material (unprotected) (Proposed Updated Design of AOS1)          | Lead          | 2.82E-08 | lb/ton   | tons       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                        |  |
|                        |                                                                             | Manganese     | 3.04E-07 | lb/ton   | 1          | emissions)                                                                                                                       |  |
|                        |                                                                             | Mercury       | 3.15E-10 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Nickel        | 2.67E-08 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Selenium      | 2.88E-09 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Total HAPs    | 4.47E-07 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Antimony      | 1.14E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Arsenic       | 1.87E-08 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Beryllium     | 1.31E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        | Material Transfer of Mill Ore<br>(unprotected)                              | Cadmium       | 9.61E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Chromium      | 3.75E-08 | lb/ton   | tons       | DM emission factor multiplied by the concentration of the                                                                        |  |
| Ore2TrUnpr             |                                                                             | Cobalt        | 1.61E-08 | lb/ton   |            | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |  |
| t                      |                                                                             | Lead          | 1.54E-08 | lb/ton   |            | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                        |  |
|                        |                                                                             | Manganese     | 2.61E-07 | lb/ton   |            | emissions)                                                                                                                       |  |
|                        |                                                                             | Mercury       | 5.49E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Nickel        | 2.20E-08 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Selenium      | 3.47E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Total HAPs    | 3.78E-07 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Antimony      | 1.25E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Arsenic       | 2.06E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Beryllium     | 1.44E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Cadmium       | 1.06E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Chromium      | 4.13E-09 | lb/ton   |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                          |  |
| Ore2TrPrt              | Material Transfer of Mill Ore (protected)                                   | Cobalt        | 1.77E-09 | lb/ton   | tons       | HAPs (assume the concentration of the HAP in the process                                                                         |  |
|                        | , , , , , , , , , , , , , , , , , , , ,                                     | Lead          | 1.70E-09 | lb/ton   |            | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                             |  |
|                        |                                                                             | Manganese     | 2.87E-08 | lb/ton   |            | ,                                                                                                                                |  |
|                        |                                                                             | Mercury       | 6.04E-11 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Nickel        | 2.42E-09 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Selenium      | 3.82E-10 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Total HAPs    | 4.16E-08 | lb/ton   |            |                                                                                                                                  |  |
|                        |                                                                             | Antimony      | 0.00E+00 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Arsenic       | 1.50E-09 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Beryllium     | 3.44E-09 | lb/ton   | 1          |                                                                                                                                  |  |
| Ore3TrUnpr             | Material Transfer of Leach Ore                                              | Cadmium       | 0.00E+00 | lb/ton   | 1          | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |  |
| t t                    | (unprotected)                                                               | Chromium      | 5.99E-09 | lb/ton   | tons       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                        |  |
|                        |                                                                             | Cobalt        | 1.07E-08 | lb/ton   |            | emissions)                                                                                                                       |  |
|                        |                                                                             | Lead          | 1.60E-08 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Manganese     | 2.28E-07 | lb/ton   | 1          |                                                                                                                                  |  |
|                        |                                                                             | Mercury       | 0.00E+00 | lb/ton   |            |                                                                                                                                  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process                  |                                                        | HAP Informati | on       |            | Emission   |                                                                                                                                  |
|--------------------------|--------------------------------------------------------|---------------|----------|------------|------------|----------------------------------------------------------------------------------------------------------------------------------|
| Code                     | Process Description -                                  | Name          | EF       | EF Units   | Rate Units | Reference                                                                                                                        |
|                          |                                                        | Nickel        | 8.73E-09 | lb/ton     |            | PM10 emission factor multiplied by the concentration of the                                                                      |
| Ore3TrUnpr<br>t (cont'd) | Material Transfer of Leach Ore (unprotected) (cont'd)  | Selenium      | 0.00E+00 | lb/ton     | tons       | HAPs (assume the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM10           |
| (00.11.4)                | (anprotostos) (com s)                                  | Total HAPs    | 2.74E-07 | lb/ton     |            | emissions)                                                                                                                       |
|                          |                                                        | Antimony      | 8.24E-09 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Arsenic       | 1.84E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Beryllium     | 1.50E-09 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Cadmium       | 5.86E-10 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Chromium      | 4.41E-08 | lb/ton     |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                          |
| Ore4TrUnpr               | Material Transfer of Overburden/Low                    | Cobalt        | 2.04E-08 | lb/ton     | tons       | HAPs (assume the concentration of the HAP in the process                                                                         |
| t                        | Grade Ore (unprotected)                                | Lead          | 3.48E-08 | lb/ton     | toris      | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                             |
|                          |                                                        | Manganese     | 3.28E-07 | lb/ton     |            | eniissions)                                                                                                                      |
|                          |                                                        | Mercury       | 2.25E-10 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Nickel        | 2.98E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Selenium      | 2.77E-09 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Total HAPs    | 4.88E-07 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Antimony      | 1.14E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Arsenic       | 1.23E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Beryllium     | 2.37E-10 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Cadmium       | 8.88E-10 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Chromium      | 4.93E-10 | lb/ton     |            | DNA aminaine factor mouthing in a but the annual transfer of the                                                                 |
| 007.04                   | Material Transfer of Copper<br>Concentrate (protected) | Cobalt        | 2.35E-09 | lb/ton     |            | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |
| CCTrPrt                  |                                                        | Lead          | 1.73E-08 | lb/ton     | tons       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                        |
|                          |                                                        | Manganese     | 1.05E-09 | lb/ton     |            | emissions)                                                                                                                       |
|                          |                                                        | Mercury       | 1.58E-10 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Nickel        | 2.25E-09 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Selenium      | 3.91E-09 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Total HAPs    | 5.24E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Antimony      | 4.83E-07 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Arsenic       | 1.57E-07 | lb/ton     | 1          |                                                                                                                                  |
|                          |                                                        | Beryllium     | 1.00E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Cadmium       | 3.76E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Chromium      | 2.09E-08 | lb/ton     |            | DNA aminaine factor mouthing in a but the annual transfer of the                                                                 |
| MC4T-D-4                 | Material Transfer of Sycamore                          | Cobalt        | 9.93E-08 | lb/ton     |            | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |
| MC4TrPrt                 | Molybdenum Concentrate Post-Dryer - (protected)        | Lead          | 1.54E-07 | lb/ton     | tons       | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                        |
|                          |                                                        | Manganese     | 4.42E-08 | lb/ton     |            | emissions)                                                                                                                       |
|                          |                                                        | Mercury       | 6.70E-09 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Nickel        | 9.51E-08 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Selenium      | 2.55E-07 | lb/ton     |            |                                                                                                                                  |
|                          |                                                        | Total HAPs    | 1.36E-06 | lb/ton     |            |                                                                                                                                  |
| Wind Erosio              | n                                                      |               |          |            |            |                                                                                                                                  |
|                          |                                                        | Antimony      | 1.26E-03 | lb/acre-yr |            |                                                                                                                                  |
|                          |                                                        | Arsenic       | 2.08E-02 | lb/acre-yr | 1          |                                                                                                                                  |
|                          |                                                        | Beryllium     | 1.46E-03 | lb/acre-yr | 1          |                                                                                                                                  |
|                          |                                                        | Cadmium       | 1.07E-03 | lb/acre-yr | 1          |                                                                                                                                  |
|                          |                                                        | Chromium      | 4.18E-02 | lb/acre-yr | 1          | DM emission factor multiplied by the accordance of the                                                                           |
| AWindCOS                 | Wind Erosion of Coarse Ore Stockpiles                  | Cobalt        | 1.79E-02 | lb/acre-yr | 0000:      | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |
| 1/5 (AOS1)               | 1/5 (AOS1) (annual basis)                              | Lead          | 1.72E-02 | lb/acre-yr | - acre-yr  | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                        |
|                          |                                                        | Manganese     | 2.91E-01 | lb/acre-yr | 1          | emissions)                                                                                                                       |
|                          |                                                        | Mercury       | 6.11E-04 | lb/acre-yr | 1          |                                                                                                                                  |
|                          |                                                        | Nickel        | 2.45E-02 | lb/acre-yr |            |                                                                                                                                  |
|                          | _                                                      | Selenium      | 3.86E-03 | lb/acre-yr | 1          |                                                                                                                                  |
| I                        |                                                        | Total HAPs    | 4.21E-01 | lb/acre-yr | 1          |                                                                                                                                  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process            | Process December 2                                                          | HAP Informati                                | on       |             | Emission   | Reference                                                                                                                                             |  |  |  |
|--------------------|-----------------------------------------------------------------------------|----------------------------------------------|----------|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Code               | Process Description                                                         | Name                                         | EF       | EF Units    | Rate Units | Keterence                                                                                                                                             |  |  |  |
|                    |                                                                             | Antimony                                     | 1.44E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Arsenic                                      | 2.38E-06 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Beryllium                                    | 1.67E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Cadmium                                      | 1.22E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Chromium                                     | 4.77E-06 | lb/acre-hr  |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                                               |  |  |  |
| HWindCOS           | Wind Erosion of Coarse Ore Stockpiles                                       | Cobalt                                       | 2.05E-06 | lb/acre-hr  | acre-yr    | HAPs (assume the concentration of the HAP in the process                                                                                              |  |  |  |
| 1/5 (AOS1)         | 1/5 (AOS1) (hourly basis)                                                   | 1/5 (AOS1) (hourly basis) Lead 1.96E-06 lb/a |          | lb/acre-hr  | acre-yr    | material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions)                                                                  |  |  |  |
|                    |                                                                             | Manganese                                    | 3.32E-05 | lb/acre-hr  |            | eniissions)                                                                                                                                           |  |  |  |
|                    |                                                                             | Mercury                                      | 6.98E-08 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Nickel                                       | 2.80E-06 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Selenium                                     | 4.41E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Total HAPs                                   | 4.81E-05 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Antimony                                     | 1.26E-03 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Arsenic                                      | 2.08E-02 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Beryllium                                    | 1.46E-03 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Cadmium                                      | 1.07E-03 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Chromium                                     | 4.18E-02 | lb/acre-yr  |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                                               |  |  |  |
| AWindCOS           | Wind Erosion of Coarse Ore Stockpile 6                                      | Cobalt                                       | 1.79E-02 | lb/acre-yr  | acro vr    | HAPs (assume the concentration of the HAP in the process                                                                                              |  |  |  |
| 6 (AOS1)           | (AOS1) (annual basis)                                                       | Lead                                         | 1.72E-02 | lb/acre-yr  | acre-yr    | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                                             |  |  |  |
|                    |                                                                             | Manganese                                    | 2.91E-01 | lb/acre-yr  |            | emissions)                                                                                                                                            |  |  |  |
|                    |                                                                             | Mercury                                      | 6.11E-04 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Nickel                                       | 2.45E-02 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Selenium                                     | 3.86E-03 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Total HAPs                                   | 4.21E-01 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Antimony                                     | 1.44E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Arsenic 2.38E-06 lb/acre-hr                  |          |             |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Beryllium                                    | 1.67E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Cadmium                                      | 1.22E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Chromium                                     | 4.77E-06 | lb/acre-hr  |            | DM emission factor multiplied by the concentration of the                                                                                             |  |  |  |
| HWindCOS           | Wind Erosion of Coarse Ore Stockpile 6                                      | Cobalt                                       | 2.05E-06 | lb/acre-hr  | 0000 1/5   | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process                      |  |  |  |
| 6 (AOS1)           | (AOS1) (hourly basis)                                                       | Lead                                         | 1.96E-06 | lb/acre-hr  | acre-yr    | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                                             |  |  |  |
|                    |                                                                             | Manganese                                    | 3.32E-05 | lb/acre-hr  |            | emissions)                                                                                                                                            |  |  |  |
|                    |                                                                             | Mercury                                      | 6.98E-08 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Nickel                                       | 2.80E-06 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Selenium                                     | 4.41E-07 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Total HAPs                                   | 4.81E-05 | lb/acre-hr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Antimony                                     | 8.70E+00 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Arsenic                                      | 9.40E+00 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Beryllium                                    | 1.80E-01 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Cadmium                                      | 6.76E-01 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    | Wind Familia of Community                                                   | Chromium                                     | 3.75E-01 | lb/acre-yr  |            | DM emission factor multiplied by the concentration of the                                                                                             |  |  |  |
| AWindSCC           | Wind Erosion of Copper Concentrate<br>Filter Drop Storage (AOS1) and Copper | Cobalt                                       | 1.79E+00 | lb/acre-yr  |            | PM <sub>10</sub> emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process                      |  |  |  |
| (AOS1)             | Concentrate Loadout Storage (AOS1) (annual basis)                           | Lead                                         | 1.32E+01 | lb/acre-yr  | acre-yr    | material is equal to the concentration of the HAP in the PM <sub>10</sub>                                                                             |  |  |  |
|                    | (annual basis)                                                              | Manganese                                    | 7.96E-01 | lb/acre-yr  |            | emissions)                                                                                                                                            |  |  |  |
|                    |                                                                             | Mercury                                      | 1.21E-01 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Nickel                                       | 1.71E+00 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Selenium                                     | 2.97E+00 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    |                                                                             | Total HAPs                                   | 3.99E+01 | lb/acre-yr  |            |                                                                                                                                                       |  |  |  |
|                    | Wind Freeign of Community                                                   | Antimony                                     | 9.93E-04 | lb/acre-hr  |            | PM . emission factor multiplied by the concentration of the                                                                                           |  |  |  |
|                    | Wind Erosion of Copper Concentrate                                          |                                              | 1.07E-03 | lb/acre-hr  |            | PM <sub>10</sub> emission factor multiplied by the concentration of the                                                                               |  |  |  |
| HWindSCC           | Filter Drop Storage (AOS1) and Copper                                       | Arsenic                                      | 1.07E-03 | ID/ACIE-III | acre-yr    | HAPs (assume the concentration of the HAP in the process                                                                                              |  |  |  |
| HWindSCC<br>(AOS1) |                                                                             | Arsenic<br>Beryllium                         | 2.06E-05 | lb/acre-hr  | acre-yr    | material is equal to the concentration of the HAP in the process material is equal to the concentration of the HAP in the PM <sub>10</sub> emissions) |  |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process             |                                                                          | HAP Informa            | ition    |            | Emission   |                                                                                                                      |  |  |
|---------------------|--------------------------------------------------------------------------|------------------------|----------|------------|------------|----------------------------------------------------------------------------------------------------------------------|--|--|
| Code                | Process Description -                                                    | Name                   | EF       | EF Units   | Rate Units | Reference                                                                                                            |  |  |
|                     |                                                                          | Chromium               | 4.29E-05 | lb/acre-hr |            |                                                                                                                      |  |  |
|                     |                                                                          | Cobalt                 | 2.04E-04 | lb/acre-hr | 1          |                                                                                                                      |  |  |
|                     |                                                                          | Lead                   | 1.50E-03 | lb/acre-hr | 1          |                                                                                                                      |  |  |
| HWindSCC            | Wind Erosion of Copper Concentrate Filter Drop Storage (AOS1) and Copper | Manganese              | 9.09E-05 | lb/acre-hr | 1          | PM10 emission factor multiplied by the concentration of the HAPs (assume the concentration of the HAP in the process |  |  |
| (AOS1)<br>(cont'd)  | Concentrate Loadout Storage (AOS1)                                       | Mercury                | 1.38E-05 | lb/acre-hr | acre-yr    | material is equal to the concentration of the HAP in the PM10                                                        |  |  |
|                     | (hourly basis) (cont'd)                                                  | Nickel                 | 1.95E-04 | lb/acre-hr | 1          | emissions)                                                                                                           |  |  |
|                     |                                                                          | Selenium               | 3.40E-04 | lb/acre-hr |            |                                                                                                                      |  |  |
|                     |                                                                          | Total HAPs             | 4.55E-03 | lb/acre-hr |            |                                                                                                                      |  |  |
| Bulk and Mo         | olybdenum Flotation Operations                                           |                        |          |            |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzene                | 8.67E-06 | lb/ton     |            |                                                                                                                      |  |  |
|                     |                                                                          | Ethylbenzene           | 1.46E-05 | lb/ton     |            |                                                                                                                      |  |  |
| MFE                 | Sycamore Bulk and Molybdenum<br>Flotation Equipment                      | Hexane                 | 1.83E-06 | lb/ton     | tons       | Testing at the Freeport-McMoRan Henderson Mill in 2009 and                                                           |  |  |
| IVIFE               |                                                                          | Toluene                | 1.04E-04 | lb/ton     | toris      | diesel vapor mass fractions                                                                                          |  |  |
|                     |                                                                          | m-Xylene               | 2.72E-04 | lb/ton     |            |                                                                                                                      |  |  |
|                     |                                                                          | Total HAPs             | 4.02E-04 | lb/ton     |            |                                                                                                                      |  |  |
| Diesel Emer         | gency ICE                                                                |                        |          |            |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzene                | 5.43E-06 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Toluene                | 1.97E-06 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Xylenes                | 1.35E-06 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Formaldehyde           | 5.52E-07 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Acetaldehyde           | 1.76E-07 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Acrolein               | 5.52E-08 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Naphthalene            | 9.10E-07 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Acenaphthylene         | 6.46E-08 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     | -                                                                        | Acenaphthene           | 3.28E-08 | lb/hp-hr   | 1          |                                                                                                                      |  |  |
|                     |                                                                          | Fluorene               | 8.96E-08 | lb/hp-hr   | 1          |                                                                                                                      |  |  |
|                     |                                                                          | Phenanthrene           | 2.86E-07 | lb/hp-hr   | hp-hr      |                                                                                                                      |  |  |
| Tier2-560-D         | Tier 2 Diesel Non-Emergency Engines (kW > 560)                           | Anthracene             | 8.61E-09 | lb/hp-hr   |            | AP-42 Tables 3.4-3 and 3.4-4 (10/96), and a diesel brake-<br>specific fuel consumption of 7,000 Btu/hp-hr            |  |  |
|                     | (*** 555)                                                                | Fluoranthene           | 2.82E-08 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Pyrene                 | 2.60E-08 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Benz(a)anthracene      | 4.35E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Chrysene               | 1.07E-08 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzo(b)fluoranthene   | 7.77E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzo(k)fluoranthene   | 1.53E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzo(a)pyrene         | 1.80E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Indeno(1,2,3-cd)pyrene | 2.90E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Dibenz(a,h)anthracene  | 2.42E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzo(g,h,i)perylene   | 3.89E-09 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Total HAPs             | 1.10E-05 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Benzene                | 5.43E-06 | lb/hp-hr   |            |                                                                                                                      |  |  |
|                     |                                                                          | Toluene                | 1.97E-06 | lb/hp-hr   | ]          |                                                                                                                      |  |  |
|                     |                                                                          | Xylenes                | 1.35E-06 | lb/hp-hr   | ]          |                                                                                                                      |  |  |
|                     |                                                                          | Formaldehyde           | 5.52E-07 | lb/hp-hr   | ]          |                                                                                                                      |  |  |
|                     |                                                                          | Acetaldehyde           | 1.76E-07 | lb/hp-hr   | ]          |                                                                                                                      |  |  |
| Tio-2               | Tior 2 Disnal Emergency Familiary (450                                   | Acrolein               | 5.52E-08 | lb/hp-hr   | ]          | AD 42 Tobles 2.4.2 and 2.4.4.40000 and a 4.4.40000                                                                   |  |  |
| Tier3-<br>450/560-D | Tier 3 Diesel Emergency Engines (450 ≤ kW ≤ 560)                         | Naphthalene            | 9.10E-07 | lb/hp-hr   | hp-hr      | AP-42 Tables 3.4-3 and 3.4-4 (10/96), and a diesel brake-<br>specific fuel consumption of 7,000 Btu/hp-hr            |  |  |
|                     |                                                                          | Acenaphthylene         | 6.46E-08 | lb/hp-hr   | 1          |                                                                                                                      |  |  |
|                     |                                                                          | Acenaphthene           | 3.28E-08 | lb/hp-hr   | 1          |                                                                                                                      |  |  |
|                     | <u> </u>                                                                 | Fluorene               | 8.96E-08 | lb/hp-hr   | 1          |                                                                                                                      |  |  |
|                     | <u> </u>                                                                 | Phenanthrene           | 2.86E-07 | lb/hp-hr   | ]          |                                                                                                                      |  |  |
|                     |                                                                          | Anthracene             | 8.61E-09 | lb/hp-hr   | ]          |                                                                                                                      |  |  |
|                     |                                                                          | Fluoranthene           | 2.82E-08 | lb/hp-hr   |            |                                                                                                                      |  |  |

Table G.9 HAP Emission Factors - Potential Emission Calculations

| Process                          | Process Description -                                                   | HAP Informati                    | on       |          | Emission   | Peterson                                                               |  |  |  |
|----------------------------------|-------------------------------------------------------------------------|----------------------------------|----------|----------|------------|------------------------------------------------------------------------|--|--|--|
| Code                             | Process Description                                                     | Name                             | EF       | EF Units | Rate Units | Reference                                                              |  |  |  |
|                                  |                                                                         | Pyrene                           | 2.60E-08 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Benz(a)anthracene                | 4.35E-09 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Chrysene                         | 1.07E-08 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Benzo(b)fluoranthene             | 7.77E-09 | lb/hp-hr |            |                                                                        |  |  |  |
| Tier3-<br>450/560-D              | Tier 3 Diesel Emergency Engines (450                                    | Benzo(k)fluoranthene             | 1.53E-09 | lb/hp-hr |            | AP-42 Tables 3.4-3 and 3.4-4 (10/96), and a diesel brake-              |  |  |  |
| (cont'd)                         | ≤ kW ≤ 560) (cont'd)                                                    | Benzo(a)pyrene                   | 1.80E-09 | lb/hp-hr | hp-hr      | specific fuel consumption of 7,000 Btu/hp-hr                           |  |  |  |
|                                  |                                                                         | Indeno(1,2,3-cd)pyrene           | 2.90E-09 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  | -                                                                       | Dibenz(a,h)anthracene            | 2.42E-09 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Benzo(g,h,i)perylene             | 3.89E-09 | lb/hp-hr | 1          |                                                                        |  |  |  |
|                                  |                                                                         | Total HAPs                       | 1.10E-05 | lb/hp-hr |            |                                                                        |  |  |  |
| Propane Em                       | ergency ICE                                                             |                                  |          |          | •          |                                                                        |  |  |  |
|                                  |                                                                         | 1,1,2,2-Tetrachloroethane        | 2.66E-07 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | 1,1,2-Trichloroethane            | 1.61E-07 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | 1,1-Dichloroethane               | 1.19E-07 | lb/hp-hr | •          |                                                                        |  |  |  |
|                                  |                                                                         | 1,2-Dichloroethane               | 1.19E-07 | lb/hp-hr | •          |                                                                        |  |  |  |
|                                  |                                                                         | 1,2-Dichloropropane              | 1.37E-07 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | 1,3-Butadiene                    | 6.96E-06 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | 1,3-Dichloropropene              | 1.33E-07 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Acetaldehyde                     | 2.93E-05 | lb/hp-hr | -          |                                                                        |  |  |  |
|                                  |                                                                         | Acrolein                         | 2.76E-05 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Benzene                          | 1.66E-05 | lb/hp-hr | _          |                                                                        |  |  |  |
|                                  |                                                                         | Carbon Tetrachloride             | 1.86E-07 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Chlorobenzene                    | 1.35E-07 | lb/hp-hr |            |                                                                        |  |  |  |
| SEG-P                            | Sycamore Propane Emergency<br>Generators                                | Chloroform                       | 1.44E-07 | lb/hp-hr | hp-hr      | AP-42 Table 3.2-3 (08/00), 4-Stroke Rich Burn, and 10,500<br>Btu/hp-hr |  |  |  |
|                                  | Generators                                                              | Ethylbenzene                     | 2.60E-07 | lb/hp-hr |            | Бш/пр-пі                                                               |  |  |  |
|                                  |                                                                         | Ethylene Dibromide               | 2.24E-07 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Formaldehyde                     | 2.15E-04 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Methanol                         | 3.21E-05 | lb/hp-hr | -          |                                                                        |  |  |  |
|                                  |                                                                         | Methylene Chloride               | 4.33E-07 | lb/hp-hr | -          |                                                                        |  |  |  |
|                                  |                                                                         | Naphthalene                      | 1.02E-06 | lb/hp-hr | -          |                                                                        |  |  |  |
|                                  |                                                                         | Polycyclic Aromatic Hydrocarbons | 1.48E-06 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Styrene                          | 1.25E-07 | lb/hp-hr | 1          |                                                                        |  |  |  |
|                                  |                                                                         | Toluene                          | 5.86E-06 | lb/hp-hr |            |                                                                        |  |  |  |
|                                  |                                                                         | Vinyl Chloride                   | 7.54E-08 | lb/hp-hr | 1          |                                                                        |  |  |  |
|                                  |                                                                         | Xylene                           | 2.05E-06 | lb/hp-hr | 1          |                                                                        |  |  |  |
|                                  |                                                                         | Total HAPs                       | 3.41E-04 | lb/hp-hr | 1          |                                                                        |  |  |  |
| Storage Tanks and Parts Cleaning |                                                                         |                                  |          |          |            |                                                                        |  |  |  |
| SXMS                             | Xanthate Mix Tank (AOS1), Xanthate<br>Holding Tank (AOS1), Test Reagent | Carbon Disulfide                 | 1.23E+01 | lb/ton   | tons       | AERO Xanthate Handbook (1972) and assume a 3-day                       |  |  |  |
| SIVING                           | Mix Tank (AOS1), and Test Reagent<br>Holding Tank (AOS1)                | Total HAPs                       | 1.23E+01 | lb/ton   | tons       | holding period                                                         |  |  |  |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| D                 |                                             |                     | Non-Fug.           |                        |            | Emission Calculations  HAP Informat | ion                  |                      |                      |
|-------------------|---------------------------------------------|---------------------|--------------------|------------------------|------------|-------------------------------------|----------------------|----------------------|----------------------|
| Process<br>Number | Process/Emission Unit Description           | Process<br>Code     | (NF) /<br>Fug. (F) | Annual Process<br>Rate | Rate Units | Name                                | EF                   | EF Units             | Emissions (tpy)      |
| Affected Em       | nissions Units - Design of AOS1 in Class II | Air Quality F       | ermit #774         | 14                     |            |                                     |                      |                      |                      |
| Mining Opera      | ations (AOS1)                               |                     |                    |                        |            |                                     |                      |                      |                      |
|                   |                                             |                     |                    |                        |            | Antimony                            | 3.12E-06             | lb/hole              | 1.40E-04             |
|                   |                                             |                     |                    |                        |            | Arsenic                             | 1.01E-05             | lb/hole              | 4.55E-04             |
|                   |                                             |                     |                    |                        |            | Beryllium                           | 1.07E-06             | lb/hole              | 4.80E-05             |
|                   |                                             |                     |                    |                        |            | Cadmium                             | 3.86E-07             | lb/hole              | 1.74E-05             |
| 026-3             |                                             | Drilling            |                    |                        |            | Chromium                            | 2.31E-05             | lb/hole              | 1.04E-03             |
| (AOS1)            | Drilling (AOS1)                             | (AOS1-C)            | F                  | 90,000                 | holes      | Cobalt                              | 1.11E-05             | lb/hole              | 5.01E-04             |
|                   |                                             |                     |                    |                        |            | Lead                                | 1.65E-05             | lb/hole              | 7.44E-04             |
|                   |                                             |                     |                    |                        |            | Manganese                           | 1.84E-04             | lb/hole              | 8.27E-03             |
|                   |                                             |                     |                    |                        |            | Mercury                             | 1.82E-07             | lb/hole              | 8.18E-06             |
|                   |                                             |                     |                    |                        |            | Nickel                              | 1.54E-05             | lb/hole              | 6.93E-04             |
|                   |                                             |                     |                    |                        |            | Selenium                            | 1.63E-06             | lb/hole              | 7.31E-05             |
|                   |                                             |                     |                    |                        |            | POM                                 | 4.25E-03             | lb/blast             | 1.28E-03             |
|                   |                                             |                     |                    |                        |            | Formaldehyde                        | 7.86E-02             | lb/blast             | 2.36E-02             |
|                   |                                             |                     |                    |                        |            | Antimony                            | 8.26E-04             | lb/blast             | 2.48E-04<br>1.01E-03 |
|                   |                                             |                     |                    |                        |            | Arsenic  Beryllium                  | 3.38E-03<br>8.09E-04 | lb/blast<br>lb/blast | 2.43E-04             |
|                   |                                             |                     |                    |                        |            | Cadmium                             | 6.29E-04             | lb/blast             | 1.89E-04             |
| 026-2             | Blasting (AOS1)                             | ABlasting           | F                  | 600                    | blasts     | Chromium                            | 6.64E-03             | lb/blast             | 1.99E-03             |
| (AOS1)            | Blasting (1001)                             | (AOS1-C)            | '                  |                        | bidoto     | Cobalt                              | 2.94E-03             | lb/blast             | 8.83E-04             |
|                   |                                             |                     |                    |                        |            | Lead                                | 5.95E-03             | lb/blast             | 1.79E-03             |
|                   |                                             |                     |                    |                        |            | Manganese                           | 4.97E-02             | lb/blast             | 1.49E-02             |
|                   |                                             |                     |                    |                        |            | Mercury                             | 5.75E-04             | lb/blast             | 1.72E-04             |
|                   |                                             |                     |                    |                        |            | Nickel                              | 4.60E-03             | lb/blast             | 1.38E-03             |
|                   |                                             |                     |                    |                        |            | Selenium                            | 3.06E-03             | lb/blast             | 9.19E-04             |
|                   |                                             |                     |                    |                        |            | Antimony                            | 2.18E-05             | lb/VMT               | 2.74E-03             |
|                   |                                             |                     |                    |                        |            | Arsenic                             | 7.07E-05             | lb/VMT               | 8.88E-03             |
|                   |                                             |                     |                    |                        |            | Beryllium                           | 7.46E-06             | lb/VMT               | 9.37E-04             |
|                   |                                             |                     |                    |                        |            | Cadmium                             | 2.70E-06             | lb/VMT               | 3.39E-04             |
|                   |                                             |                     |                    |                        |            | Chromium                            | 1.61E-04             | lb/VMT               | 2.03E-02             |
| 022-1<br>(AOS1)   | Haul Truck Travel Inside the Pit (AOS1)     | ATravel<br>(AOS1-C) | F                  | 2,513,372              | VMT        | Cobalt                              | 7.77E-05             | lb/VMT               | 9.77E-03             |
| (AO31)            |                                             | (AO31-C)            |                    |                        |            | Lead                                | 1.15E-04             | lb/VMT               | 1.45E-02             |
|                   |                                             |                     |                    |                        |            | Manganese                           | 1.28E-03             | lb/VMT               | 1.61E-01             |
|                   |                                             |                     |                    |                        |            | Mercury                             | 1.27E-06             | lb/VMT               | 1.60E-04             |
|                   |                                             |                     |                    |                        |            | Nickel                              | 1.08E-04             | lb/VMT               | 1.35E-02             |
|                   |                                             |                     |                    |                        |            | Selenium                            | 1.14E-05             | lb/VMT               | 1.43E-03             |
|                   |                                             |                     |                    |                        |            | Antimony                            | 2.18E-05             | lb/VMT               | 9.14E-04             |
|                   |                                             |                     |                    |                        |            | Arsenic                             | 7.07E-05             | lb/VMT               | 2.96E-03             |
|                   |                                             |                     |                    |                        |            | Beryllium                           | 7.46E-06             | lb/VMT               | 3.12E-04             |
|                   |                                             |                     |                    |                        |            | Cadmium                             | 2.70E-06             | lb/VMT               | 1.13E-04             |
| 000.0             |                                             | A.Tr                |                    |                        |            | Chromium                            | 1.61E-04             | lb/VMT               | 6.76E-03             |
| 022-2<br>(AOS1)   | Haul Truck Travel Outside the Pit (AOS1)    | ATravel<br>(AOS1-C) | F                  | 837,791                | VMT        | Cobalt                              | 7.77E-05             | lb/VMT               | 3.26E-03             |
|                   |                                             |                     |                    |                        |            | Lead                                | 1.15E-04             | lb/VMT               | 4.84E-03             |
|                   |                                             |                     |                    |                        |            | Manganese                           | 1.28E-03             | lb/VMT               | 5.38E-02             |
|                   |                                             |                     |                    |                        |            | Mercury                             | 1.27E-06             | lb/VMT               | 5.32E-05             |
|                   |                                             |                     |                    |                        |            | Nickel                              | 1.08E-04             | lb/VMT               | 4.51E-03             |
|                   |                                             |                     |                    |                        |            | Selenium                            | 1.14E-05             | lb/VMT               | 4.76E-04             |
|                   |                                             |                     |                    |                        |            | Antimony                            | 2.18E-05             | lb/VMT               | 1.47E-03             |
|                   |                                             |                     |                    |                        |            | Arsenic                             | 7.07E-05             | lb/VMT               | 4.77E-03             |
| 023-3<br>(AOS1)   | Other Vehicle Travel (AOS1)                 | ATravel             | F                  | 1,350,115              | VMT -      | Beryllium                           | 7.46E-06             | lb/VMT               | 5.03E-04             |
| (AOS1)            | , ,                                         | (AOS1-C)            | F                  | 1,350,115              |            | Cadmium                             | 2.70E-06             | lb/VMT               | 1.82E-04             |
|                   |                                             |                     |                    |                        |            | Chromium                            | 1.61E-04             | lb/VMT               | 1.09E-02             |
|                   |                                             |                     |                    | <u> </u>               |            | Cobalt                              | 7.77E-05             | lb/VMT               | 5.25E-03             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process         | Dragge / Emission Unit Description             | Process                  | Non-Fug.           | Annual Process | Bata Unita   | HAP Informati | on       |          | Emissions (tru) |
|-----------------|------------------------------------------------|--------------------------|--------------------|----------------|--------------|---------------|----------|----------|-----------------|
| Number          | Process/Emission Unit Description              | Code                     | (NF) /<br>Fug. (F) | Rate           | Rate Units   | Name          | EF       | EF Units | Emissions (tpy) |
|                 |                                                |                          |                    |                |              | Lead          | 1.15E-04 | lb/VMT   | 7.80E-03        |
| 000.0           |                                                | ATroval                  |                    |                |              | Manganese     | 1.28E-03 | lb/VMT   | 8.67E-02        |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1) (cont'd)           | ATravel<br>(AOS1-C)      | F (cont'd)         | 1,350,115      | VMT (cont'd) | Mercury       | 1.27E-06 | lb/VMT   | 8.57E-05        |
| (cont'd)        |                                                | (cont'd)                 |                    |                |              | Nickel        | 1.08E-04 | lb/VMT   | 7.26E-03        |
|                 |                                                |                          |                    |                |              | Selenium      | 1.14E-05 | lb/VMT   | 7.67E-04        |
|                 |                                                |                          |                    |                |              | Antimony      | 6.43E-06 | lb/hr    | 2.51E-04        |
|                 |                                                |                          |                    |                |              | Arsenic       | 2.08E-05 | lb/hr    | 8.13E-04        |
|                 |                                                |                          |                    |                |              | Beryllium     | 2.20E-06 | lb/hr    | 8.57E-05        |
|                 |                                                |                          |                    |                |              | Cadmium       | 7.95E-07 | lb/hr    | 3.10E-05        |
|                 |                                                | _                        |                    |                |              | Chromium      | 4.75E-05 | lb/hr    | 1.85E-03        |
| 023-1<br>(AOS1) | Dozer Operation (AOS1)                         | Dozer<br>(AOS1-C)        | F                  | 78,046         | hours        | Cobalt        | 2.29E-05 | lb/hr    | 8.94E-04        |
| , ,             |                                                | , ,                      |                    |                |              | Lead          | 3.40E-05 | lb/hr    | 1.33E-03        |
|                 |                                                |                          |                    |                |              | Manganese     | 3.78E-04 | lb/hr    | 1.48E-02        |
|                 |                                                |                          |                    |                |              | Mercury       | 3.74E-07 | lb/hr    | 1.46E-05        |
|                 |                                                |                          |                    |                |              | Nickel        | 3.17E-05 | lb/hr    | 1.24E-03        |
|                 |                                                |                          |                    |                |              | Selenium      | 3.35E-06 | lb/hr    | 1.31E-04        |
|                 |                                                |                          |                    |                |              | Antimony      | 4.41E-06 | lb/VMT   | 2.61E-05        |
|                 |                                                |                          |                    |                |              | Arsenic       | 1.43E-05 | lb/VMT   | 8.47E-05        |
|                 |                                                |                          |                    |                |              | Beryllium     | 1.51E-06 | lb/VMT   | 8.94E-06        |
|                 |                                                |                          |                    |                |              | Cadmium       | 5.46E-07 | lb/VMT   | 3.24E-06        |
|                 |                                                |                          |                    |                |              | Chromium      | 3.26E-05 | lb/VMT   | 1.93E-04        |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                   | Grader<br>(AOS1-C)       | F                  | 118,587        | VMT          | Cobalt        | 1.57E-05 | lb/VMT   | 9.31E-05        |
| ,               |                                                | (A001-0)                 |                    |                |              | Lead          | 2.33E-05 | lb/VMT   | 1.38E-04        |
|                 |                                                |                          |                    |                |              | Manganese     | 2.60E-04 | lb/VMT   | 1.54E-03        |
|                 |                                                |                          |                    |                |              | Mercury       | 2.57E-07 | lb/VMT   | 1.52E-06        |
|                 |                                                |                          |                    |                |              | Nickel        | 2.17E-05 | lb/VMT   | 1.29E-04        |
|                 |                                                |                          |                    |                |              | Selenium      | 2.30E-06 | lb/VMT   | 1.36E-05        |
|                 |                                                |                          |                    |                |              | Antimony      | 4.99E-09 | lb/ton   | 5.50E-04        |
|                 |                                                |                          |                    |                |              | Arsenic       | 1.62E-08 | lb/ton   | 1.78E-03        |
|                 |                                                |                          |                    |                |              | Beryllium     | 1.71E-09 | lb/ton   | 1.88E-04        |
|                 |                                                |                          |                    |                |              | Cadmium       | 6.18E-10 | lb/ton   | 6.81E-05        |
|                 |                                                |                          |                    |                |              | Chromium      | 3.69E-08 | lb/ton   | 4.07E-03        |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1) | Ore1TrUnpr<br>t (AOS1-C) | F                  | 220,314,000    | tons         | Cobalt        | 1.78E-08 | lb/ton   | 1.96E-03        |
| , ,             | , ,                                            | , ,                      |                    |                |              | Lead          | 2.64E-08 | lb/ton   | 2.91E-03        |
|                 |                                                |                          |                    |                |              | Manganese     | 2.94E-07 | lb/ton   | 3.24E-02        |
|                 |                                                |                          |                    |                |              | Mercury       | 2.91E-10 | lb/ton   | 3.20E-05        |
|                 |                                                |                          |                    |                |              | Nickel        | 2.46E-08 | lb/ton   | 2.71E-03        |
|                 |                                                |                          |                    |                |              | Selenium      | 2.60E-09 | lb/ton   | 2.86E-04        |
|                 |                                                |                          |                    |                |              | Antimony      | 1.14E-09 | lb/ton   | 1.87E-05        |
|                 |                                                |                          |                    |                |              | Arsenic       | 1.87E-08 | lb/ton   | 3.07E-04        |
|                 |                                                |                          |                    |                |              | Beryllium     | 1.31E-09 | lb/ton   | 2.15E-05        |
|                 |                                                |                          |                    |                |              | Cadmium       | 9.61E-10 | lb/ton   | 1.58E-05        |
| 001-6           |                                                | Ore2TrUnpr               |                    |                |              | Chromium      | 3.75E-08 | lb/ton   | 6.16E-04        |
| (AOS1)          | Unloading Ore to Primary Crusher 1 (AOS1)      | t t                      | F                  | 32,850,000     | tons         | Cobalt        | 1.61E-08 | lb/ton   | 2.65E-04        |
|                 |                                                |                          |                    |                |              | Lead          | 1.54E-08 | lb/ton   | 2.53E-04        |
|                 |                                                |                          |                    |                |              | Manganese     | 2.61E-07 | lb/ton   | 4.29E-03        |
|                 |                                                |                          |                    |                |              | Mercury       | 5.49E-10 | lb/ton   | 9.02E-06        |
|                 |                                                |                          |                    |                |              | Nickel        | 2.20E-08 | lb/ton   | 3.62E-04        |
|                 |                                                |                          |                    |                |              | Selenium      | 3.47E-09 | lb/ton   | 5.70E-05        |
|                 |                                                |                          |                    |                |              | Antimony      | 1.14E-09 | lb/ton   | 1.87E-05        |
| 004.7           |                                                | Oro2Trl In               |                    |                |              | Arsenic       | 1.87E-08 | lb/ton   | 3.07E-04        |
| 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)      | Ore2TrUnpr<br>t          | F                  | 32,850,000     | tons         | Beryllium     | 1.31E-09 | lb/ton   | 2.15E-05        |
|                 |                                                |                          |                    |                |              | Cadmium       | 9.61E-10 | lb/ton   | 1.58E-05        |
|                 |                                                |                          |                    |                |              | Chromium      | 3.75E-08 | lb/ton   | 6.16E-04        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process            | Dragge / Emission Unit Description              | Process     | Non-Fug.           | Annual Process | Boto Unito    | HAP Information | on       |          | Emissions (tru)      |
|--------------------|-------------------------------------------------|-------------|--------------------|----------------|---------------|-----------------|----------|----------|----------------------|
| Number             | Process/Emission Unit Description               | Code        | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF       | EF Units | Emissions (tpy)      |
|                    |                                                 |             |                    |                |               | Cobalt          | 1.61E-08 | lb/ton   | 2.65E-04             |
|                    |                                                 |             |                    |                |               | Lead            | 1.54E-08 | lb/ton   | 2.53E-04             |
| 001-7              | Unloading Ore to Primary Crusher 2 (AOS1)       | Ore2TrUnpr  |                    |                |               | Manganese       | 2.61E-07 | lb/ton   | 4.29E-03             |
| (AOS1)<br>(cont'd) | (cont'd)                                        | t (cont'd)  | F (cont'd)         | 32,850,000     | tons (cont'd) | Mercury         | 5.49E-10 | lb/ton   | 9.02E-06             |
| (==:::=)           |                                                 |             |                    |                |               | Nickel          | 2.20E-08 | lb/ton   | 3.62E-04             |
|                    |                                                 |             |                    |                |               | Selenium        | 3.47E-09 | lb/ton   | 5.70E-05             |
|                    |                                                 |             |                    |                |               | Antimony        | 0.00E+00 | lb/ton   | 0.00E+00             |
|                    |                                                 |             |                    |                |               | Arsenic         | 1.50E-09 | lb/ton   | 2.25E-05             |
|                    |                                                 |             |                    |                |               | Beryllium       | 3.44E-09 | lb/ton   | 5.18E-05             |
|                    |                                                 |             |                    |                |               | Cadmium         | 0.00E+00 | lb/ton   | 0.00E+00             |
|                    |                                                 |             |                    |                |               | Chromium        | 5.99E-09 | lb/ton   | 9.01E-05             |
| 045-3              | Unloading Ore to Leaching Areas (AOS1)          | Ore3TrUnpr  | F                  | 30,076,000     | tons          | Cobalt          | 1.07E-08 | lb/ton   | 1.61E-04             |
| (AOS1)             |                                                 | t           |                    |                |               | Lead            | 1.60E-08 | lb/ton   | 2.40E-04             |
|                    |                                                 |             |                    |                |               | Manganese       | 2.28E-07 | lb/ton   | 3.43E-03             |
|                    |                                                 |             |                    |                |               | Mercury         | 0.00E+00 | lb/ton   | 0.00E+00             |
|                    |                                                 |             |                    |                |               | Nickel          | 8.73E-09 | lb/ton   | 1.31E-04             |
|                    |                                                 |             |                    |                |               | Selenium        | 0.00E+00 | lb/ton   | 0.00E+00             |
|                    |                                                 |             |                    |                |               | Antimony        | 8.24E-09 | lb/ton   | 5.13E-04             |
|                    |                                                 |             |                    |                |               | Arsenic         | 1.84E-08 | lb/ton   | 1.15E-03             |
|                    |                                                 |             |                    |                |               |                 | <u> </u> |          |                      |
|                    |                                                 |             |                    |                |               | Beryllium       | 1.50E-09 | lb/ton   | 9.32E-05             |
|                    |                                                 |             |                    |                |               | Cadmium         | 5.86E-10 | lb/ton   | 3.65E-05             |
| 045-1              | Unloading Overburden/Low Grade Ore to           | Ore4TrUnpr  | F                  | 404 500 000    | 4             | Chromium        | 4.41E-08 | lb/ton   | 2.74E-03             |
| (AOS1)             | Storage Areas (AOS1)                            | t           | -                  | 124,538,000    | tons          | Cobalt          | 2.04E-08 | lb/ton   | 1.27E-03             |
|                    |                                                 |             |                    |                |               | Lead            | 3.48E-08 | lb/ton   | 2.17E-03             |
|                    |                                                 |             |                    |                |               | Manganese       | 3.28E-07 | lb/ton   | 2.04E-02             |
|                    |                                                 |             |                    |                |               | Mercury         | 2.25E-10 | lb/ton   | 1.40E-05             |
|                    |                                                 |             |                    |                |               | Nickel          | 2.98E-08 | lb/ton   | 1.86E-03             |
| Primary Crus       | <br>shing and Overland Conveying Operations (to | Baddad Cond | centrator) (A      | (OS1)          |               | Selenium        | 2.77E-09 | lb/ton   | 1.72E-04             |
| , minary orac      | simily and eventure conveying operations (to    |             |                    |                |               | Antimony        | 1.76E-12 | lb/dscf  | 6.92E-06             |
|                    |                                                 |             |                    |                |               | Arsenic         | 2.89E-11 | lb/dscf  | 1.14E-04             |
|                    |                                                 |             |                    |                |               | Beryllium       | 2.03E-12 | lb/dscf  | 7.98E-06             |
|                    |                                                 |             |                    |                |               | Cadmium         | 1.49E-12 | lb/dscf  | 5.85E-06             |
|                    |                                                 |             |                    |                |               | Chromium        | 5.80E-11 | lb/dscf  | 2.29E-04             |
| 001-5              | Dust Collector C51 (AOS1)                       | C51 (AOS1)  | NF                 | 7,884,000,000  | dscf          | Cobalt          | 2.49E-11 | lb/dscf  | 9.81E-05             |
| (AOS1)             | ,                                               | ,           |                    | ,,,,,,,,,,     |               | Lead            | 2.38E-11 | lb/dscf  | 9.39E-05             |
|                    |                                                 |             |                    |                |               | Manganese       | 4.03E-10 | lb/dscf  | 1.59E-03             |
|                    |                                                 |             |                    |                |               | Mercury         | 8.49E-13 | lb/dscf  | 3.35E-06             |
|                    |                                                 |             |                    |                |               | Nickel          | 3.40E-11 | lb/dscf  | 1.34E-04             |
|                    |                                                 |             |                    |                |               | Selenium        | 5.36E-12 | lb/dscf  | 2.11E-05             |
|                    |                                                 |             |                    |                |               | Antimony        | 3.38E-13 | lb/dscf  | 1.78E-06             |
|                    |                                                 |             |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf  | 2.92E-05             |
|                    |                                                 |             |                    |                |               | Beryllium       | 3.90E-12 | lb/dscf  | 2.92E-05<br>2.05E-06 |
|                    |                                                 |             |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf  | 2.05E-06<br>1.50E-06 |
|                    |                                                 |             |                    |                |               |                 |          |          |                      |
| 001-16             | Dust Collector AE-001 (AOS1)                    | AE-001      | NF                 | 10,512,000,000 | dscf          | Chromium        | 1.12E-11 | lb/dscf  | 5.87E-05             |
| (AOS1)             | Dust Collector AE-001 (AOS1)                    | (AOS1)      | INF                | 10,512,000,000 | usti          | Cobalt          | 4.80E-12 | lb/dscf  | 2.52E-05             |
|                    |                                                 |             |                    |                |               | Lead            | 4.59E-12 | lb/dscf  | 2.41E-05             |
|                    |                                                 |             |                    |                |               | Manganese       | 7.77E-11 | lb/dscf  | 4.08E-04             |
|                    |                                                 |             |                    |                |               | Mercury         | 1.63E-13 | lb/dscf  | 8.59E-07             |
|                    |                                                 |             |                    |                |               | Nickel          | 6.55E-12 | lb/dscf  | 3.44E-05             |
|                    |                                                 |             |                    |                |               | Selenium        | 1.03E-12 | lb/dscf  | 5.43E-06             |
| 001-17             |                                                 | AE-014      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf  | 1.07E-06             |
| (AOS1)             | Dust Collector AE-014 (AOS1)                    | (AOS1)      | NF                 | 6,307,200,000  | dscf          | Arsenic         | 5.56E-12 | lb/dscf  | 1.75E-05             |
|                    |                                                 |             |                    | 1              |               | Beryllium       | 3.90E-13 | lb/dscf  | 1.23E-06             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process            | Process/Emission Unit Description                              | Process            | Non-Fug.           | Annual Process |               | HAP Information |          |                          |                 |
|--------------------|----------------------------------------------------------------|--------------------|--------------------|----------------|---------------|-----------------|----------|--------------------------|-----------------|
| Number             | Process/Emission Unit Description                              | Code               | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF       | EF Units                 | Emissions (tpy) |
|                    |                                                                |                    |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf                  | 9.02E-07        |
|                    |                                                                |                    |                    |                |               | Chromium        | 1.12E-11 | lb/dscf                  | 3.52E-05        |
|                    |                                                                |                    |                    |                |               | Cobalt          | 4.80E-12 | lb/dscf                  | 1.51E-05        |
| 001-17             |                                                                | AE-014             | NF                 |                |               | Lead            | 4.59E-12 | lb/dscf                  | 1.45E-05        |
| (AOS1)<br>(cont'd) | Dust Collector AE-014 (AOS1) (cont'd)                          | (AOS1)<br>(cont'd) | (cont'd)           | 6,307,200,000  | dscf (cont'd) | Manganese       | 7.77E-11 | lb/dscf                  | 2.45E-04        |
| ()                 |                                                                | ()                 |                    |                |               | Mercury         | 1.63E-13 | lb/dscf                  | 5.15E-07        |
|                    |                                                                |                    |                    |                |               | Nickel          | 6.55E-12 | lb/dscf                  | 2.07E-05        |
|                    |                                                                |                    |                    |                |               | Selenium        | 1.03E-12 | lb/dscf                  | 3.26E-06        |
|                    |                                                                |                    |                    |                |               | Antimony        | 3.38E-13 | lb/dscf                  | 1.07E-06        |
|                    |                                                                |                    |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf                  | 1.75E-05        |
|                    |                                                                |                    |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf                  | 1.23E-06        |
|                    |                                                                |                    |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf                  | 9.02E-07        |
|                    |                                                                |                    |                    |                |               | Chromium        | 1.12E-11 | lb/dscf                  | 3.52E-05        |
| 001-18             | Dust Collector AE-015 (AOS1)                                   | AE-015<br>(AOS1)   | NF                 | 6,307,200,000  | dscf          | Cobalt          | 4.80E-12 | lb/dscf                  | 1.51E-05        |
| (AOS1)             |                                                                | (AUS1)             |                    |                |               | Lead            | 4.59E-12 | lb/dscf                  | 1.45E-05        |
|                    |                                                                |                    |                    |                |               | Manganese       | 7.77E-11 | lb/dscf                  | 2.45E-04        |
|                    |                                                                |                    |                    |                |               | Mercury         | 1.63E-13 | lb/dscf                  | 5.15E-07        |
|                    |                                                                |                    |                    |                |               | Nickel          | 6.55E-12 | lb/dscf                  | 2.07E-05        |
|                    |                                                                |                    |                    |                |               | Selenium        | 1.03E-12 | lb/dscf                  | 3.26E-06        |
|                    |                                                                |                    |                    |                |               | Antimony        | 1.14E-09 | lb/ton                   | 1.87E-05        |
|                    |                                                                |                    |                    |                |               | Arsenic         | 1.87E-08 | lb/ton                   | 3.07E-04        |
|                    | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) |                    |                    |                |               | Beryllium       | 1.31E-09 | lb/ton                   | 2.15E-05        |
|                    |                                                                |                    |                    |                |               | Cadmium         | 9.61E-10 | lb/ton                   | 1.58E-05        |
| 001-4              |                                                                |                    |                    | 32,850,000     | tons          | Chromium        | 3.75E-08 | lb/ton                   | 6.16E-04        |
|                    |                                                                | Ore2TrUnpr<br>t    | F F                |                |               | Cobalt          | 1.61E-08 | lb/ton                   | 2.65E-04        |
| (AOS1)             |                                                                |                    |                    |                |               | Lead            | 1.54E-08 | lb/ton                   | 2.53E-04        |
|                    |                                                                |                    |                    |                |               | Manganese       | 2.61E-07 | lb/ton                   | 4.29E-03        |
|                    |                                                                |                    |                    |                |               | Mercury         | 5.49E-10 | lb/ton                   | 9.02E-06        |
|                    |                                                                |                    |                    |                |               | Nickel          | 2.20E-08 | lb/ton                   | 3.62E-04        |
|                    |                                                                |                    |                    |                |               | Selenium        | 3.47E-09 | lb/ton                   | 5.70E-05        |
|                    |                                                                |                    |                    |                |               | Antimony        | 1.14E-09 | lb/ton                   | 9.20E-06        |
|                    |                                                                |                    |                    |                |               | Arsenic         | 1.87E-08 | lb/ton                   | 1.51E-04        |
|                    |                                                                |                    |                    |                |               | Beryllium       | 1.31E-09 | lb/ton                   | 1.06E-05        |
|                    |                                                                |                    |                    |                |               | Cadmium         | 9.61E-10 | lb/ton                   | 7.79E-06        |
|                    |                                                                |                    |                    |                |               | Chromium        | 3.75E-08 | lb/ton                   | 3.04E-04        |
| 001-19             | Radial Stacker C-10 (AOS1) to Coarse Ore                       |                    | F                  | 16,206,000     | tons          | Cobalt          | 1.61E-08 | lb/ton                   | 1.31E-04        |
| (AOS1)             | Stockpile 5 (AOS1)                                             | t                  |                    |                |               | Lead            | 1.54E-08 | lb/ton                   | 1.25E-04        |
|                    |                                                                |                    |                    |                |               | Manganese       | 2.61E-07 | lb/ton                   | 2.12E-03        |
|                    |                                                                |                    |                    |                |               | Mercury         | 5.49E-10 | lb/ton                   | 4.45E-06        |
|                    |                                                                |                    |                    |                |               | Nickel          | 2.20E-08 | lb/ton                   | 1.78E-04        |
|                    |                                                                |                    |                    |                |               | Selenium        | 3.47E-09 | lb/ton                   | 2.81E-05        |
|                    |                                                                |                    |                    |                |               | Antimony        | 1.26E-03 | lb/acre-yr               | 4.35E-06        |
|                    |                                                                |                    |                    |                |               | Arsenic         | 2.08E-02 | lb/acre-yr               | 7.16E-05        |
|                    |                                                                |                    |                    |                |               | Beryllium       | 1.46E-03 | lb/acre-yr               | 5.02E-06        |
|                    |                                                                |                    |                    |                |               | Cadmium         | 1.07E-03 | lb/acre-yr               | 3.68E-06        |
|                    |                                                                |                    |                    |                |               | Chromium        | 4.18E-02 | lb/acre-yr               | 1.44E-04        |
| 027-1              | Wind Erosion of Coarse Ore Stockpiles 1/5                      | AWindCOS           | F                  | 6.88           | acre-yr       | Cobalt          | 1.79E-02 | lb/acre-yr               | 6.17E-05        |
| (AOS1)             | (AOS1)                                                         | 1/5 (AOS1)         | '                  | 0.00           | 2010 yi       | Lead            | 1.79E-02 | lb/acre-yr               | 5.90E-05        |
|                    |                                                                |                    |                    |                |               | Manganese       | 2.91E-01 | lb/acre-yr               | 1.00E-03        |
|                    |                                                                |                    |                    |                |               | Mercury         | 6.11E-04 |                          | 2.10E-06        |
|                    |                                                                |                    |                    |                |               | Nickel          | 2.45E-02 | lb/acre-yr               | 8.43E-05        |
|                    |                                                                |                    |                    |                |               | Selenium        | 3.86E-03 | lb/acre-yr<br>lb/acre-yr | 1.33E-05        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| D                 |                                             |                  | Non-Fug.           |                        |            | Emission Calculations  HAP Informati | on                   |                    |                      |
|-------------------|---------------------------------------------|------------------|--------------------|------------------------|------------|--------------------------------------|----------------------|--------------------|----------------------|
| Process<br>Number | Process/Emission Unit Description           | Process<br>Code  | (NF) /<br>Fug. (F) | Annual Process<br>Rate | Rate Units | Name                                 | EF                   | EF Units           | Emissions (tpy)      |
| Primary Crus      | shing and Overland Conveying Operations (to | Sycamore Co      | ncentrator)        | (AOS1)                 |            |                                      |                      |                    |                      |
|                   |                                             |                  |                    |                        |            | Antimony                             | 3.38E-13             | lb/dscf            | 1.07E-06             |
|                   |                                             |                  |                    |                        |            | Arsenic                              | 5.56E-12             | lb/dscf            | 1.75E-05             |
|                   |                                             |                  |                    |                        |            | Beryllium                            | 3.90E-13             | lb/dscf            | 1.23E-06             |
|                   |                                             |                  |                    |                        |            | Cadmium                              | 2.86E-13             | lb/dscf            | 9.02E-07             |
| 004.40            |                                             | 45.000           |                    |                        |            | Chromium                             | 1.12E-11             | lb/dscf            | 3.52E-05             |
| 001-12<br>(AOS1)  | Dust Collector AE-002 (AOS1)                | AE-002<br>(AOS1) | NF                 | 6,307,200,000          | dscf       | Cobalt                               | 4.80E-12             | lb/dscf            | 1.51E-05             |
|                   |                                             |                  |                    |                        |            | Lead                                 | 4.59E-12             | lb/dscf            | 1.45E-05             |
|                   |                                             |                  |                    |                        |            | Manganese                            | 7.77E-11             | lb/dscf            | 2.45E-04             |
|                   |                                             |                  |                    |                        |            | Mercury                              | 1.63E-13             | lb/dscf            | 5.15E-07             |
|                   |                                             |                  |                    |                        |            | Nickel                               | 6.55E-12             | lb/dscf            | 2.07E-05             |
|                   |                                             |                  |                    |                        |            | Selenium                             | 1.03E-12             | lb/dscf            | 3.26E-06             |
|                   |                                             |                  |                    |                        |            | Antimony                             | 3.38E-13             | lb/dscf            | 1.33E-06             |
|                   |                                             |                  |                    |                        |            | Arsenic                              | 5.56E-12             | lb/dscf            | 2.19E-05             |
|                   |                                             |                  |                    |                        |            | Beryllium                            | 3.90E-13             | lb/dscf            | 1.54E-06             |
|                   |                                             |                  |                    |                        |            | Cadmium                              | 2.86E-13             | lb/dscf            | 1.13E-06             |
| 001-13            |                                             | AE-003           |                    |                        |            | Chromium                             | 1.12E-11             | lb/dscf            | 4.40E-05             |
| (AOS1)            | Dust Collector AE-003 (AOS1)                | (AOS1)           | NF                 | 7,884,000,000          | dscf       | Cobalt                               | 4.80E-12             | lb/dscf            | 1.89E-05             |
|                   |                                             |                  |                    |                        |            | Lead                                 | 4.59E-12             | lb/dscf            | 1.81E-05             |
|                   |                                             |                  |                    |                        |            | Manganese                            | 7.77E-11             | lb/dscf            | 3.06E-04             |
|                   |                                             |                  |                    |                        |            | Mercury                              | 1.63E-13             | lb/dscf            | 6.44E-07             |
|                   |                                             |                  |                    |                        |            | Nickel                               | 6.55E-12             | lb/dscf            | 2.58E-05<br>4.07E-06 |
|                   |                                             |                  |                    |                        |            | Selenium                             | 1.03E-12<br>3.38E-13 | lb/dscf<br>lb/dscf | 1.07E-06             |
|                   |                                             |                  |                    |                        |            | Antimony<br>Arsenic                  | 5.56E-12             | lb/dscf            | 1.07E-06<br>1.75E-05 |
|                   |                                             |                  |                    |                        |            | Beryllium                            | 3.90E-13             | lb/dscf            | 1.23E-06             |
|                   |                                             |                  |                    |                        |            | Cadmium                              | 2.86E-13             | lb/dscf            | 9.02E-07             |
|                   |                                             |                  |                    | 6,307,200,000          | dscf       | Chromium                             | 1.12E-11             | lb/dscf            | 3.52E-05             |
| 001-14            | Dust Collector AE-016 (AOS1)                | AE-016           | NF                 |                        |            | Cobalt                               | 4.80E-12             | lb/dscf            | 1.51E-05             |
| (AOS1)            | , ,                                         | (AOS1)           | , and              |                        |            | Lead                                 | 4.59E-12             | lb/dscf            | 1.45E-05             |
|                   |                                             |                  |                    |                        |            | Manganese                            | 7.77E-11             | lb/dscf            | 2.45E-04             |
|                   |                                             |                  |                    |                        |            | Mercury                              | 1.63E-13             | lb/dscf            | 5.15E-07             |
|                   |                                             |                  |                    |                        |            | Nickel                               | 6.55E-12             | lb/dscf            | 2.07E-05             |
|                   |                                             |                  |                    |                        |            | Selenium                             | 1.03E-12             | lb/dscf            | 3.26E-06             |
|                   |                                             |                  |                    |                        |            | Antimony                             | 3.38E-13             | lb/dscf            | 1.07E-06             |
|                   |                                             |                  |                    |                        |            | Arsenic                              | 5.56E-12             | lb/dscf            | 1.75E-05             |
|                   |                                             |                  |                    |                        |            | Beryllium                            | 3.90E-13             | lb/dscf            | 1.23E-06             |
|                   |                                             |                  |                    |                        |            | Cadmium                              | 2.86E-13             | lb/dscf            | 9.02E-07             |
| 004 :-            |                                             | 45.00            |                    |                        |            | Chromium                             | 1.12E-11             | lb/dscf            | 3.52E-05             |
| 001-15<br>(AOS1)  | Dust Collector AE-017 (AOS1)                | AE-017<br>(AOS1) | NF                 | 6,307,200,000          | dscf       | Cobalt                               | 4.80E-12             | lb/dscf            | 1.51E-05             |
| , ,               |                                             |                  |                    |                        |            | Lead                                 | 4.59E-12             | lb/dscf            | 1.45E-05             |
|                   |                                             |                  |                    |                        |            | Manganese                            | 7.77E-11             | lb/dscf            | 2.45E-04             |
|                   |                                             |                  |                    |                        |            | Mercury                              | 1.63E-13             | lb/dscf            | 5.15E-07             |
|                   |                                             |                  |                    |                        |            | Nickel                               | 6.55E-12             | lb/dscf            | 2.07E-05             |
|                   |                                             |                  |                    |                        |            | Selenium                             | 1.03E-12             | lb/dscf            | 3.26E-06             |
|                   |                                             |                  |                    |                        |            | Antimony                             | 1.14E-09             | lb/ton             | 9.45E-06             |
|                   |                                             |                  |                    |                        |            | Arsenic                              | 1.87E-08             | lb/ton             | 1.56E-04             |
|                   |                                             |                  |                    |                        |            | Beryllium                            | 1.31E-09             | lb/ton             | 1.09E-05             |
| 001-20            | Radial Stacker C-10 (AOS1) to Coarse Ore    | Ore2Trl Innr     | _                  |                        |            | Cadmium                              | 9.61E-10             | lb/ton             | 8.00E-06             |
| (AOS1)            | Stockpile 6                                 | t                | F                  | 16,644,000             | tons       | Chromium                             | 3.75E-08             | lb/ton             | 3.12E-04             |
|                   |                                             |                  |                    |                        |            | Cobalt                               | 1.61E-08             | lb/ton             | 1.34E-04             |
|                   |                                             |                  |                    |                        |            | Lead                                 | 1.54E-08             | lb/ton             | 1.28E-04             |
|                   |                                             |                  |                    |                        |            | Manganese                            | 2.61E-07             | lb/ton             | 2.17E-03             |
|                   |                                             |                  |                    |                        |            | Mercury                              | 5.49E-10             | lb/ton             | 4.57E-06             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process            | Process/Emission Unit Description                | Process              | Non-Fug.           | Annual Process | Rate Units    | HAP Information | on       |            | Emissions (tru) |
|--------------------|--------------------------------------------------|----------------------|--------------------|----------------|---------------|-----------------|----------|------------|-----------------|
| Number             | Process/Emission only Description                | Code                 | (NF) /<br>Fug. (F) | Rate           | Rate Offics   | Name            | EF       | EF Units   | Emissions (tpy) |
| 001-20             | Radial Stacker C-10 (AOS1) to Coarse Ore         | Ore2TrUnpr           | -,                 |                |               | Nickel          | 2.20E-08 | lb/ton     | 1.83E-04        |
| (AOS1)<br>(cont'd) | Stockpile 6 (cont'd)                             | t (cont'd)           | F (cont'd)         | 16,644,000     | tons (cont'd) | Selenium        | 3.47E-09 | lb/ton     | 2.89E-05        |
| , ,                |                                                  |                      |                    |                |               | Antimony        | 1.26E-03 | lb/acre-yr | 1.48E-06        |
|                    |                                                  |                      |                    |                |               | Arsenic         | 2.08E-02 | lb/acre-yr | 2.44E-05        |
|                    |                                                  |                      |                    |                |               | Beryllium       | 1.46E-03 | lb/acre-yr | 1.71E-06        |
|                    |                                                  |                      |                    |                |               | Cadmium         | 1.07E-03 | lb/acre-yr | 1.25E-06        |
|                    |                                                  |                      |                    |                |               | Chromium        | 4.18E-02 | lb/acre-yr | 4.89E-05        |
| 027-7<br>(AOS1)    | Wind Erosion of Coarse Ore Stockpile 6<br>(AOS1) | AWindCOS<br>6 (AOS1) | F                  | 2.34           | acre-yr       | Cobalt          | 1.79E-02 | lb/acre-yr | 2.10E-05        |
| , ,                | , ,                                              | , ,                  |                    |                |               | Lead            | 1.72E-02 | lb/acre-yr | 2.01E-05        |
|                    |                                                  |                      |                    |                |               | Manganese       | 2.91E-01 | lb/acre-yr | 3.40E-04        |
|                    |                                                  |                      |                    |                |               | Mercury         | 6.11E-04 | lb/acre-yr | 7.15E-07        |
|                    |                                                  |                      |                    |                |               | Nickel          | 2.45E-02 | lb/acre-yr | 2.87E-05        |
|                    |                                                  |                      |                    |                |               | Selenium        | 3.86E-03 | lb/acre-yr | 4.52E-06        |
| Sycamore M         | filling Operations (AOS1)                        |                      |                    |                |               |                 |          |            |                 |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 4.44E-06        |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 7.31E-05        |
|                    |                                                  |                      |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 5.12E-06        |
|                    |                                                  |                      |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 3.76E-06        |
| 000 7              |                                                  | 45.000               |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 1.47E-04        |
| 002-7<br>(AOS1)    | Dust Collector AE-008 (AOS1)                     | AE-008<br>(AOS1)     | NF                 | 26,280,000,000 | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 6.30E-05        |
| , ,                |                                                  | _ ` ′                |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 6.03E-05        |
|                    |                                                  |                      |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 1.02E-03        |
|                    |                                                  |                      |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 2.15E-06        |
|                    |                                                  |                      |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 8.61E-05        |
|                    |                                                  |                      |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 1.36E-05        |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 1.07E-06        |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 1.75E-05        |
|                    |                                                  |                      |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 1.23E-06        |
|                    |                                                  |                      |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 9.02E-07        |
| 000.0              |                                                  | 45.000               |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 3.52E-05        |
| 002-8<br>(AOS1)    | Dust Collector AE-009 (AOS1)                     | AE-009<br>(AOS1)     | NF                 | 6,307,200,000  | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 1.51E-05        |
| , ,                |                                                  | _ ` ′                |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 1.45E-05        |
|                    |                                                  |                      |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 2.45E-04        |
|                    |                                                  |                      |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 5.15E-07        |
|                    |                                                  |                      |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 2.07E-05        |
|                    |                                                  |                      |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 3.26E-06        |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 1.78E-06        |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 2.92E-05        |
|                    |                                                  |                      |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 2.05E-06        |
|                    |                                                  |                      |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 1.50E-06        |
| 000 0              |                                                  | 45.00                |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 5.87E-05        |
| 002-9<br>(AOS1)    | Dust Collector AE-010 (AOS1)                     | AE-010<br>(AOS1)     | NF                 | 10,512,000,000 | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 2.52E-05        |
| ` ′                |                                                  | ' '                  |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 2.41E-05        |
|                    |                                                  |                      |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 4.08E-04        |
|                    |                                                  |                      |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 8.59E-07        |
|                    |                                                  |                      |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 3.44E-05        |
|                    |                                                  |                      |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 5.43E-06        |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 1.07E-06        |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 1.75E-05        |
| 000 :-             |                                                  | 45.00                |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 1.23E-06        |
| 002-10<br>(AOS1)   | Dust Collector AE-011 (AOS1)                     | AE-011<br>(AOS1)     | NF                 | 6,307,200,000  | 0 dscf        | Cadmium         | 2.86E-13 | lb/dscf    | 9.02E-07        |
| l ` ′              |                                                  | ` ′                  | NF                 |                |               | Chromium        | 1.12E-11 | lb/dscf    | 3.52E-05        |
|                    |                                                  |                      |                    |                |               | Cobalt          | 4.80E-12 | lb/dscf    | 1.51E-05        |
|                    |                                                  |                      |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 1.45E-05        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

|                  |                                                                                         | Table G.10 Annual HAP Emissions - Potential Emission Calculations |                    |                    |               |             |                      |          |                      |
|------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|--------------------|---------------|-------------|----------------------|----------|----------------------|
| Process          | Process/Emission Unit Description                                                       | Process                                                           | Non-Fug.<br>(NF) / | Annual Process     | Rate Units    | HAP Informa | ition                |          | Emissions (tpy       |
| Number           | ·                                                                                       | Code                                                              | Fug. (F)           | Rate               |               | Name        | EF                   | EF Units |                      |
|                  |                                                                                         |                                                                   |                    |                    |               | Manganese   | 7.77E-11             | lb/dscf  | 2.45E-04             |
| 002-10<br>(AOS1) | Dust Collector AE-011 (AOS1) (cont'd)                                                   | AE-011<br>(AOS1)                                                  | NF                 | 6,307,200,000      | dscf (cont'd) | Mercury     | 1.63E-13             | lb/dscf  | 5.15E-07             |
| (cont'd)         |                                                                                         | (cont'd)                                                          | (cont'd)           | 3,221,223,222      | ()            | Nickel      | 6.55E-12             | lb/dscf  | 2.07E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Selenium    | 1.03E-12             | lb/dscf  | 3.26E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Antimony    | 3.38E-13             | lb/dscf  | 1.07E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Arsenic     | 5.56E-12             | lb/dscf  | 1.75E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Beryllium   | 3.90E-13             | lb/dscf  | 1.23E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Cadmium     | 2.86E-13             | lb/dscf  | 9.02E-07             |
| 002-11           |                                                                                         | AE-007                                                            |                    |                    |               | Chromium    | 1.12E-11             | lb/dscf  | 3.52E-05             |
| (AOS1)           | Dust Collector AE-007 (AOS1)                                                            | (AOS1)                                                            | NF                 | 6,307,200,000      | dscf          | Cobalt      | 4.80E-12             | lb/dscf  | 1.51E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Lead        | 4.59E-12             | lb/dscf  | 1.45E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Manganese   | 7.77E-11             | lb/dscf  | 2.45E-04             |
|                  |                                                                                         |                                                                   |                    |                    |               | Mercury     | 1.63E-13             | lb/dscf  | 5.15E-07             |
|                  |                                                                                         |                                                                   |                    |                    |               | Nickel      | 6.55E-12 lb/dscf     | 2.07E-05 |                      |
|                  |                                                                                         |                                                                   |                    |                    |               | Selenium    | 1.03E-12             | lb/dscf  | 3.26E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Antimony    | 3.38E-13             | lb/dscf  | 2.93E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Arsenic     | 5.56E-12             | lb/dscf  | 4.83E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Beryllium   | 3.90E-13             | lb/dscf  | 3.38E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Cadmium     | 2.86E-13             | lb/dscf  | 2.48E-06             |
| 002-12           |                                                                                         | AE-012                                                            |                    |                    |               | Chromium    | 1.12E-11             | lb/dscf  | 9.69E-05             |
| (AOS1)           | Dust Collector AE-012 (AOS1)                                                            | (AOS1)                                                            | NF                 | 17,344,800,000     | dscf          | Cobalt      | 4.80E-12             | lb/dscf  | 4.16E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Lead        | 4.59E-12             | lb/dscf  | 3.98E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Manganese   | 7.77E-11             | lb/dscf  | 6.74E-04             |
|                  |                                                                                         |                                                                   |                    |                    |               | Mercury     | 1.63E-13             | lb/dscf  | 1.42E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Nickel      | 6.55E-12             | lb/dscf  | 5.68E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Selenium    | 1.03E-12             | lb/dscf  | 8.95E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Antimony    | 3.38E-13             | lb/dscf  | 1.60E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Arsenic     | 5.56E-12             | lb/dscf  | 2.63E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Beryllium   | 3.90E-13             | lb/dscf  | 1.84E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               | Cadmium     | 2.86E-13             | lb/dscf  | 1.35E-06             |
| 002-13           | D 10 II 1 AF 040 (4004)                                                                 | AE-013                                                            | N.E                | 0 400 000 000      |               | Chromium    | 1.12E-11             | lb/dscf  | 5.29E-05             |
| (AOS1)           | Dust Collector AE-013 (AOS1)                                                            | (AOS1)                                                            | NF                 | 9,460,800,000      | dscf          | Cobalt      | 4.80E-12             | lb/dscf  | 2.27E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Lead        | 4.59E-12             | lb/dscf  | 2.17E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Manganese   | 7.77E-11<br>1.63E-13 | lb/dscf  | 3.68E-04             |
|                  |                                                                                         |                                                                   |                    |                    |               | Mercury     |                      | lb/dscf  | 7.73E-07             |
|                  |                                                                                         |                                                                   |                    |                    |               | Nickel      | 6.55E-12             | lb/dscf  | 3.10E-05             |
| Fotal of Non-    | <br>-Fugitive Emissions for Affected Emissions Ur                                       | ite - Prior to t                                                  | he Proposer        | I Indates:         |               | Selenium    | 1.03E-12             | lb/dscf  | 4.88E-06             |
|                  |                                                                                         |                                                                   |                    |                    |               |             |                      |          | 9.76E-03             |
|                  | tive Emissions for Affected Emissions UnitsFugitive and Fugitive Emissions for Affected |                                                                   |                    |                    | tes:          |             |                      |          | 6.30E-01<br>6.40E-01 |
|                  | nissions Units - Proposed Updated Design                                                |                                                                   | 1 1101 10          | and i roposed opda |               |             |                      |          | U.4UE-U1             |
|                  | ations (AOS1)                                                                           | - A001                                                            |                    |                    |               |             |                      |          |                      |
| 3 0 0010         |                                                                                         |                                                                   |                    |                    |               | Antimony    | 3.62E-06             | lb/hole  | 1.92E-04             |
|                  |                                                                                         |                                                                   |                    |                    |               | Arsenic     | 1.12E-05             | lb/hole  | 5.94E-04             |
|                  |                                                                                         |                                                                   |                    |                    |               | Beryllium   | 9.45E-07             | lb/hole  | 5.02E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Cadmium     | 4.24E-07             | lb/hole  | 2.25E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Chromium    | 2.55E-05             | lb/hole  | 1.35E-03             |
| 026-3            | Drilling (AOS1)                                                                         | Drilling                                                          | F                  | 106,219            | holes         | Cobalt      | 1.17E-05             | lb/hole  | 6.22E-04             |
| (AOS1)           | 2g (7.651)                                                                              | (AOS1)                                                            |                    | .55,215            |               | Lead        | 1.77E-05             | lb/hole  | 9.37E-04             |
|                  |                                                                                         |                                                                   |                    |                    |               | Manganese   | 1.90E-04             | lb/hole  | 1.01E-02             |
|                  |                                                                                         |                                                                   |                    |                    |               | Mercury     | 1.97E-07             | lb/hole  | 1.04E-05             |
|                  |                                                                                         |                                                                   |                    |                    |               | Nickel      | 1.67E-05             | lb/hole  | 8.87E-04             |
|                  |                                                                                         | 1                                                                 |                    |                    |               |             |                      | 10/11016 | J.0. L-04            |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process         | Process/Emission Unit Description        | Process             | Non-Fug.           | Annual Process                          | Rate Units | HAP Informati     | on                   |          | Emissions (tru)      |
|-----------------|------------------------------------------|---------------------|--------------------|-----------------------------------------|------------|-------------------|----------------------|----------|----------------------|
| Number          | Process/Emission Unit Description        | Code                | (NF) /<br>Fug. (F) | Rate                                    | Rate Units | Name              | EF                   | EF Units | Emissions (tpy)      |
|                 |                                          |                     |                    |                                         |            | POM               | 1.78E-02             | lb/blast | 2.32E-03             |
|                 |                                          |                     |                    |                                         |            | Formaldehyde      | 3.29E-01             | lb/blast | 4.28E-02             |
|                 |                                          |                     |                    |                                         |            | Antimony          | 9.03E-03             | lb/blast | 1.17E-03             |
|                 |                                          |                     |                    |                                         |            | Arsenic           | 3.08E-02             | lb/blast | 4.01E-03             |
|                 |                                          |                     |                    |                                         |            | Beryllium         | 4.56E-03             | lb/blast | 5.93E-04             |
|                 |                                          |                     |                    |                                         |            | Cadmium           | 3.26E-03             | lb/blast | 4.24E-04             |
| 026-2<br>(AOS1) | Blasting (AOS1)                          | ABlasting<br>(AOS1) | F                  | 260                                     | blasts     | Chromium          | 6.57E-02             | lb/blast | 8.54E-03             |
| ,               |                                          | ,                   |                    |                                         |            | Cobalt            | 2.92E-02             | lb/blast | 3.80E-03             |
|                 |                                          |                     |                    |                                         |            | Lead              | 5.07E-02             | lb/blast | 6.59E-03             |
|                 |                                          |                     |                    |                                         |            | Manganese         | 4.78E-01             | lb/blast | 6.22E-02             |
|                 |                                          |                     |                    |                                         |            | Mercury           | 2.70E-03             | lb/blast | 3.50E-04             |
|                 |                                          |                     |                    |                                         |            | Nickel            | 4.39E-02             | lb/blast | 5.70E-03             |
|                 |                                          |                     |                    |                                         |            | Selenium          | 1.55E-02             | lb/blast | 2.02E-03             |
|                 |                                          |                     |                    |                                         |            | Antimony          | 2.00E-05             | lb/VMT   | 7.09E-03             |
|                 |                                          |                     |                    |                                         |            | Arsenic           | 6.17E-05             | lb/VMT   | 2.19E-02             |
|                 |                                          |                     |                    |                                         |            | Beryllium         | 5.21E-06             | lb/VMT   | 1.85E-03             |
|                 |                                          |                     |                    |                                         |            | Cadmium           | 2.34E-06             | lb/VMT   | 8.31E-04             |
| 022-1           |                                          | ATroval             |                    |                                         |            | Chromium          | 1.40E-04             | lb/VMT   | 4.99E-02             |
| (AOS1)          | Haul Truck Travel Inside the Pit (AOS1)  | ATravel<br>(AOS1)   | F                  | 7,099,653                               | VMT        | Cobalt            | 6.47E-05             | lb/VMT   | 2.30E-02             |
|                 |                                          |                     |                    |                                         |            | Lead              | 9.74E-05             | lb/VMT   | 3.46E-02             |
|                 |                                          |                     |                    |                                         |            | Manganese         | 1.05E-03             | lb/VMT   | 3.72E-01             |
|                 |                                          |                     |                    |                                         |            | Mercury           | 1.09E-06             | lb/VMT   | 3.85E-04             |
|                 |                                          |                     |                    |                                         |            | Nickel            | 9.21E-05             | lb/VMT   | 3.27E-02             |
|                 |                                          |                     |                    |                                         |            | Selenium          | 9.94E-06             | lb/VMT   | 3.53E-03             |
|                 |                                          |                     |                    |                                         |            | Antimony          | 2.00E-05             | lb/VMT   | 2.36E-03             |
|                 |                                          |                     |                    |                                         |            | Arsenic           | 6.17E-05             | lb/VMT   | 7.30E-03             |
|                 |                                          |                     |                    |                                         |            | Beryllium         | 5.21E-06             | Ib/VMT   | 6.17E-04             |
|                 |                                          |                     |                    |                                         |            | Cadmium           | 2.34E-06             | lb/VMT   | 2.77E-04             |
| 022-2           |                                          | ATravel             | _                  | 0.000 554                               | \          | Chromium          | 1.40E-04             | lb/VMT   | 1.66E-02             |
| (AOS1)          | Haul Truck Travel Outside the Pit (AOS1) | (AOS1)              | F                  | 2,366,551                               | VMT        | Cobalt            | 6.47E-05             | Ib/VMT   | 7.65E-03             |
|                 |                                          |                     |                    |                                         |            | Lead              | 9.74E-05             | Ib/VMT   | 1.15E-02             |
|                 |                                          |                     |                    |                                         |            | Manganese         | 1.05E-03<br>1.09E-06 | lb/VMT   | 1.24E-01<br>1.28E-04 |
|                 |                                          |                     |                    |                                         |            | Mercury<br>Nickel | 9.21E-05             | Ib/VMT   | 1.20E-04<br>1.09E-02 |
|                 |                                          |                     |                    |                                         |            | Selenium          | 9.21E-03<br>9.94E-06 | Ib/VMT   | 1.18E-03             |
|                 |                                          |                     |                    |                                         |            |                   | 2.00E-05             | Ib/VMT   | 1.16E-03             |
|                 |                                          |                     |                    |                                         |            | Antimony Arsenic  | 6.17E-05             | Ib/VMT   | 4.34E-02             |
|                 |                                          |                     |                    |                                         |            | Beryllium         | 5.21E-06             | Ib/VMT   | 3.67E-03             |
|                 |                                          |                     |                    |                                         |            | Cadmium           | 2.34E-06             | Ib/VMT   | 1.65E-03             |
|                 |                                          |                     |                    |                                         |            | Chromium          | 1.40E-04             | Ib/VMT   | 9.89E-02             |
| 023-3           | Other Vehicle Travel (AOS1)              | ATravel             | F                  | 14,080,416                              | VMT        | Cobalt            | 6.47E-05             | lb/VMT   | 4.55E-02             |
| (AOS1)          | ,                                        | (AOS1)              |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | Lead              | 9.74E-05             | lb/VMT   | 6.86E-02             |
|                 |                                          |                     |                    |                                         |            | Manganese         | 1.05E-03             | lb/VMT   | 7.38E-01             |
|                 |                                          |                     |                    |                                         |            | Mercury           | 1.09E-06             | lb/VMT   | 7.64E-04             |
|                 |                                          |                     |                    |                                         |            | Nickel            | 9.21E-05             | lb/VMT   | 6.49E-02             |
|                 |                                          |                     |                    |                                         |            | Selenium          | 9.94E-06             | lb/VMT   | 7.00E-03             |
|                 |                                          |                     |                    |                                         |            | Antimony          | 7.45E-06             | lb/hr    | 4.96E-04             |
|                 |                                          |                     |                    |                                         |            | Arsenic           | 2.30E-05             | lb/hr    | 1.53E-03             |
|                 |                                          |                     |                    |                                         |            | Beryllium         | 1.94E-06             | lb/hr    | 1.30E-04             |
| 023-1           |                                          | Dozer               | _                  |                                         |            | Cadmium           | 8.73E-07             | lb/hr    | 5.82E-05             |
| (AOS1)          | Dozer Operation (AOS1)                   | (AOS1)              | F                  | 133,221                                 | hours      | Chromium          | 5.24E-05             | lb/hr    | 3.49E-03             |
|                 |                                          |                     | .                  | 100,221                                 |            | Cobalt            | 2.41E-05             | lb/hr    | 1.61E-03             |
|                 |                                          |                     |                    |                                         |            | Lead              | 3.63E-05             | lb/hr    | 2.42E-03             |
|                 |                                          |                     |                    |                                         |            | Manganese         | 3.91E-04             | lb/hr    | 2.60E-02             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process         | Pressor/Emission Unit Description              | Process                | Non-Fug.           | Annual Process | Rate Units        | HAP Information | on       |          | Emissions (tru) |
|-----------------|------------------------------------------------|------------------------|--------------------|----------------|-------------------|-----------------|----------|----------|-----------------|
| Number          | Process/Emission Unit Description              | Code                   | (NF) /<br>Fug. (F) | Rate           | Rate Offits       | Name            | EF       | EF Units | Emissions (tpy) |
| 023-1           |                                                | Dozor                  |                    |                |                   | Mercury         | 4.05E-07 | lb/hr    | 2.70E-05        |
| (AOS1)          | Dozer Operation (AOS1) (cont'd)                | Dozer<br>(AOS1)        | F (cont'd)         | 133,221        | hours<br>(cont'd) | Nickel          | 3.44E-05 | lb/hr    | 2.29E-03        |
| (cont'd)        |                                                | (cont'd)               |                    |                | (oontu)           | Selenium        | 3.71E-06 | lb/hr    | 2.47E-04        |
|                 |                                                |                        |                    |                |                   | Antimony        | 5.11E-06 | lb/VMT   | 1.07E-04        |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.58E-05 | lb/VMT   | 3.32E-04        |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.33E-06 | lb/VMT   | 2.81E-05        |
|                 |                                                |                        |                    |                |                   | Cadmium         | 5.99E-07 | lb/VMT   | 1.26E-05        |
|                 |                                                |                        |                    |                |                   | Chromium        | 3.59E-05 | lb/VMT   | 7.56E-04        |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                   | Grader<br>(AOS1)       | F                  | 420,480        | VMT               | Cobalt          | 1.65E-05 | lb/VMT   | 3.48E-04        |
|                 |                                                |                        |                    |                |                   | Lead            | 2.49E-05 | lb/VMT   | 5.24E-04        |
|                 |                                                |                        |                    |                |                   | Manganese       | 2.68E-04 | lb/VMT   | 5.64E-03        |
|                 |                                                |                        |                    |                |                   | Mercury         | 2.78E-07 | lb/VMT   | 5.84E-06        |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.36E-05 | lb/VMT   | 4.96E-04        |
|                 |                                                |                        |                    |                |                   | Selenium        | 2.54E-06 | lb/VMT   | 5.35E-05        |
|                 |                                                |                        |                    |                |                   | Antimony        | 5.79E-09 | lb/ton   | 7.38E-04        |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.79E-08 | lb/ton   | 2.28E-03        |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.51E-09 | lb/ton   | 1.93E-04        |
|                 |                                                |                        |                    |                |                   | Cadmium         | 6.78E-10 | lb/ton   | 8.64E-05        |
| 004.4           | Landing Minad Masterial into Hard Touris       | O4T-U                  |                    |                |                   | Chromium        | 4.07E-08 | lb/ton   | 5.19E-03        |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1) | Ore1TrUnpr<br>t (AOS1) | F                  | 254,833,922    | tons              | Cobalt          | 1.87E-08 | lb/ton   | 2.39E-03        |
|                 |                                                |                        |                    |                |                   | Lead            | 2.82E-08 | lb/ton   | 3.60E-03        |
|                 |                                                |                        |                    |                |                   | Manganese       | 3.04E-07 | lb/ton   | 3.87E-02        |
|                 |                                                |                        |                    |                |                   | Mercury         | 3.15E-10 | lb/ton   | 4.01E-05        |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.67E-08 | lb/ton   | 3.40E-03        |
|                 |                                                |                        |                    |                |                   | Selenium        | 2.88E-09 | lb/ton   | 3.67E-04        |
|                 |                                                |                        |                    |                |                   | Antimony        | 1.14E-09 | lb/ton   | 2.52E-05        |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.87E-08 | lb/ton   | 4.15E-04        |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.31E-09 | lb/ton   | 2.91E-05        |
|                 |                                                |                        |                    |                |                   | Cadmium         | 9.61E-10 | lb/ton   | 2.13E-05        |
| 001-6           |                                                | Ore2TrUnpr             |                    |                |                   | Chromium        | 3.75E-08 | lb/ton   | 8.34E-04        |
| (AOS1)          | Unloading Ore to Primary Crusher 1 (AOS1)      | t                      | F                  | 44,433,881     | tons              | Cobalt          | 1.61E-08 | lb/ton   | 3.58E-04        |
|                 |                                                |                        |                    |                |                   | Lead            | 1.54E-08 | lb/ton   | 3.42E-04        |
|                 |                                                |                        |                    |                |                   | Manganese       | 2.61E-07 | lb/ton   | 5.80E-03        |
|                 |                                                |                        |                    |                |                   | Mercury         | 5.49E-10 | lb/ton   | 1.22E-05        |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.20E-08 | lb/ton   | 4.89E-04        |
|                 |                                                |                        |                    |                |                   | Selenium        | 3.47E-09 | lb/ton   | 7.71E-05        |
|                 |                                                |                        |                    |                |                   | Antimony        | 1.14E-09 | lb/ton   | 1.85E-05        |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.87E-08 | lb/ton   | 3.05E-04        |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.31E-09 | lb/ton   | 2.14E-05        |
|                 |                                                |                        |                    |                |                   | Cadmium         | 9.61E-10 | lb/ton   | 1.57E-05        |
| 001-7           |                                                | Ore2TrlJnpr            |                    |                |                   | Chromium        | 3.75E-08 | lb/ton   | 6.12E-04        |
| (AOS1)          | Unloading Ore to Primary Crusher 2 (AOS1)      | t                      | F                  | 32,632,000     | tons              | Cobalt          | 1.61E-08 | lb/ton   | 2.63E-04        |
|                 |                                                |                        |                    |                |                   | Lead            | 1.54E-08 | lb/ton   | 2.51E-04        |
|                 |                                                |                        |                    |                |                   | Manganese       | 2.61E-07 | lb/ton   | 4.26E-03        |
|                 |                                                |                        |                    |                |                   | Mercury         | 5.49E-10 | lb/ton   | 8.96E-06        |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.20E-08 | lb/ton   | 3.59E-04        |
|                 |                                                |                        |                    |                |                   | Selenium        | 3.47E-09 | lb/ton   | 5.66E-05        |
|                 |                                                |                        |                    |                |                   | Antimony        | 0.00E+00 | lb/ton   | 0.00E+00        |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.50E-09 | lb/ton   | 6.91E-06        |
| 045-3           |                                                | Ore3TrUnpr             | _                  | 0.000.000      | 4                 | Beryllium       | 3.44E-09 | lb/ton   | 1.59E-05        |
| (AOS1)          | Unloading Ore to Leaching Areas (AOS1)         | t                      | F                  | 9,230,000      | tons              | Cadmium         | 0.00E+00 | lb/ton   | 0.00E+00        |
|                 |                                                |                        |                    |                |                   | Chromium        | 5.99E-09 | lb/ton   | 2.76E-05        |
|                 |                                                |                        |                    |                |                   | Cobalt          | 1.07E-08 | lb/ton   | 4.95E-05        |
|                 |                                                |                        |                    |                |                   | Lead            | 1.60E-08 | lb/ton   | 7.37E-05        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process            | Durance/Funication Unit Description                           | Process         | Non-Fug.           | Annual Process | Data Unita    | HAP Information |                      | Funitariana (tura) |                      |
|--------------------|---------------------------------------------------------------|-----------------|--------------------|----------------|---------------|-----------------|----------------------|--------------------|----------------------|
| Number             | Process/Emission Unit Description                             | Code            | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF                   | EF Units           | Emissions (tpy)      |
|                    |                                                               |                 |                    |                |               | Manganese       | 2.28E-07             | lb/ton             | 1.05E-03             |
| 045-3              | Unloading Ore to Leaching Areas (AOS1)                        | Ore3TrUnpr      |                    |                |               | Mercury         | 0.00E+00             | lb/ton             | 0.00E+00             |
| (AOS1)<br>(cont'd) | (cont'd)                                                      | t (cont'd)      | F (cont'd)         | 9,230,000      | tons (cont'd) | Nickel          | 8.73E-09             | lb/ton             | 4.03E-05             |
| , ,                |                                                               |                 |                    |                |               | Selenium        | 0.00E+00             | lb/ton             | 0.00E+00             |
|                    |                                                               |                 |                    |                |               | Antimony        | 8.24E-09             | lb/ton             | 6.94E-04             |
|                    |                                                               |                 |                    |                |               | Arsenic         | 1.84E-08             | lb/ton             | 1.55E-03             |
|                    |                                                               |                 |                    |                |               | Beryllium       | 1.50E-09             | lb/ton             | 1.26E-04             |
|                    |                                                               |                 |                    |                |               | Cadmium         | 5.86E-10             | lb/ton             | 4.94E-05             |
|                    |                                                               |                 |                    |                |               | Chromium        | 4.41E-08             | lb/ton             | 3.71E-03             |
| 045-1<br>(AOS1)    | Unloading Overburden/Low Grade Ore to<br>Storage Areas (AOS1) | Ore4TrUnpr<br>t | F                  | 168,538,041    | tons          | Cobalt          | 2.04E-08             | lb/ton             | 1.72E-03             |
| , ,                |                                                               |                 |                    |                |               | Lead            | 3.48E-08             | lb/ton             | 2.93E-03             |
|                    |                                                               |                 |                    |                |               | Manganese       | 3.28E-07             | lb/ton             | 2.76E-02             |
|                    |                                                               |                 |                    |                |               | Mercury         | 2.25E-10             | lb/ton             | 1.89E-05             |
|                    |                                                               |                 |                    |                |               | Nickel          | 2.98E-08             | lb/ton             | 2.51E-03             |
|                    |                                                               |                 |                    |                |               | Selenium        | 2.77E-09             | lb/ton             | 2.33E-04             |
| Primary Crus       | shing and Overland Conveying Operations (to                   | Bagdad Cond     | centrator) (A      | OS1)           |               |                 |                      |                    |                      |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.76E-12             | lb/dscf            | 6.92E-06             |
|                    |                                                               |                 |                    |                |               | Arsenic         | 2.89E-11             | lb/dscf            | 1.14E-04             |
|                    |                                                               |                 |                    |                |               | Beryllium       | 2.03E-12             | lb/dscf            | 7.98E-06             |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.49E-12             | lb/dscf            | 5.85E-06             |
| 004.5              |                                                               |                 |                    |                |               | Chromium        | 5.80E-11             | lb/dscf            | 2.29E-04             |
| 001-5<br>(AOS1)    | Dust Collector C51 (AOS1)                                     | C51 (AOS1)      | NF                 | 7,884,000,000  | dscf          | Cobalt          | 2.49E-11             | lb/dscf            | 9.81E-05             |
|                    |                                                               |                 |                    |                |               | Lead            | 2.38E-11             | lb/dscf            | 9.39E-05             |
|                    |                                                               |                 |                    |                |               | Manganese       | 4.03E-10             | lb/dscf            | 1.59E-03             |
|                    |                                                               |                 |                    |                |               | Mercury         | 8.49E-13             | lb/dscf            | 3.35E-06             |
|                    |                                                               |                 |                    |                |               | Nickel          | 3.40E-11             | lb/dscf            | 1.34E-04             |
|                    |                                                               |                 |                    |                |               | Selenium        | 5.36E-12             | lb/dscf            | 2.11E-05             |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.25E-10             | lb/ton             | 4.16E-07             |
|                    |                                                               |                 |                    |                |               | Arsenic         | 2.06E-09             | lb/ton             | 6.85E-06             |
|                    |                                                               |                 |                    |                |               | Beryllium       | 1.44E-10             | lb/ton             | 4.80E-07             |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.06E-10             | lb/ton             | 3.52E-07             |
| 001-2              | Overland Conveyor 3A (AOS1) to Overland                       |                 |                    |                |               | Chromium        | 4.13E-09             | lb/ton             | 1.37E-05             |
| (AOS1)             | Conveyor 3 (AOS1) to Overland                                 | Ore2TrPrt       | NF                 | 66,576,000     | tons          | Cobalt          | 1.77E-09             | lb/ton             | 5.90E-06             |
|                    |                                                               |                 |                    |                |               | Lead            | 1.70E-09             | lb/ton             | 5.64E-06             |
|                    |                                                               |                 |                    |                |               | Manganese       | 2.87E-08             | lb/ton             | 9.56E-05             |
|                    |                                                               |                 |                    |                |               | Mercury         | 6.04E-11             | lb/ton             | 2.01E-07             |
|                    |                                                               |                 |                    |                |               | Nickel          | 2.42E-09             | lb/ton             | 8.06E-06             |
|                    |                                                               |                 |                    |                |               | Selenium        | 3.82E-10             | lb/ton             | 1.27E-06             |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.25E-10             | lb/ton             | 4.16E-07             |
|                    |                                                               |                 |                    |                |               | Arsenic         | 2.06E-09             | lb/ton             | 6.85E-06             |
|                    |                                                               |                 |                    |                |               | Beryllium       | 1.44E-10             | lb/ton             | 4.80E-07             |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.06E-10             | lb/ton             | 3.52E-07             |
| 001-8              | Overland Conveyor 3 (AOS1) to Overland                        | Orest-D-        | NE                 | 66 576 000     | tons          | Chromium        | 4.13E-09             | lb/ton             | 1.37E-05             |
| (AOS1)             | Conveyor 4 (AOS1)                                             | Ore2TrPrt       | NF                 | 66,576,000     | tons          | Cobalt          | 1.77E-09             | lb/ton             | 5.90E-06             |
|                    |                                                               |                 |                    |                |               | Lead            | 1.70E-09             | lb/ton             | 5.64E-06             |
|                    |                                                               |                 |                    |                |               | Manganese       | 2.87E-08             | lb/ton             | 9.56E-05             |
|                    |                                                               |                 |                    |                |               | Mercury         | 6.04E-11             | lb/ton             | 2.01E-07             |
|                    |                                                               |                 |                    |                |               | Nickel          | 2.42E-09             | lb/ton             | 8.06E-06             |
|                    |                                                               |                 |                    |                |               | Selenium        | 3.82E-10             | lb/ton             | 1.27E-06             |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.25E-10<br>2.06E-09 | lb/ton             | 4.16E-07<br>6.85E-06 |
| 001-9              | Overland Conveyor 4 (AOS1) to Radial                          | Ore2TrPrt       | NF                 | 66,576,000     | tons          | Arsenic         |                      | lb/ton             |                      |
| (AOS1)             | Stacker 5 (AOS1)                                              | OlezilFil       | INF                | 00,576,000     | IONS          | Beryllium       | 1.44E-10             | lb/ton             | 4.80E-07             |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.06E-10             | lb/ton             | 3.52E-07             |
|                    |                                                               |                 | <u> </u>           |                |               | Chromium        | 4.13E-09             | lb/ton             | 1.37E-05             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process            | Dragge / Emission Unit Description                             | Process         | Non-Fug.           | Annual Process | Bata Unita    | HAP Information      | on                   |                  | Emissions (tru)      |
|--------------------|----------------------------------------------------------------|-----------------|--------------------|----------------|---------------|----------------------|----------------------|------------------|----------------------|
| Number             | Process/Emission Unit Description                              | Code            | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name                 | EF                   | EF Units         | Emissions (tpy)      |
|                    |                                                                |                 |                    |                |               | Cobalt               | 1.77E-09             | lb/ton           | 5.90E-06             |
|                    |                                                                |                 |                    |                |               | Lead                 | 1.70E-09             | lb/ton           | 5.64E-06             |
| 001-9              | Overland Conveyor 4 (AOS1) to Radial                           | Ore2TrPrt       | NF                 |                |               | Manganese            | 2.87E-08             | lb/ton           | 9.56E-05             |
| (AOS1)<br>(cont'd) | Stacker 5 (AOS1) (cont'd)                                      | (cont'd)        | (cont'd)           | 66,576,000     | tons (cont'd) | Mercury              | 6.04E-11             | lb/ton           | 2.01E-07             |
| ` ′                |                                                                |                 |                    |                |               | Nickel               | 2.42E-09             | lb/ton           | 8.06E-06             |
|                    |                                                                |                 |                    |                |               | Selenium             | 3.82E-10             | lb/ton           | 1.27E-06             |
|                    |                                                                |                 |                    |                |               | Antimony             | 1.14E-09             | lb/ton           | 3.02E-05             |
|                    |                                                                |                 |                    |                |               | Arsenic              | 1.87E-08             | lb/ton           | 4.98E-04             |
|                    |                                                                |                 |                    |                |               | Beryllium            | 1.31E-09             | lb/ton           | 3.49E-05             |
|                    |                                                                |                 |                    |                |               | Cadmium              | 9.61E-10             | lb/ton           | 2.56E-05             |
|                    |                                                                |                 |                    |                |               | Chromium             | 3.75E-08             | lb/ton           | 1.00E-03             |
| 001-4<br>(AOS1)    | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Ore2TrUnpr<br>t | F                  | 53,260,800     | tons          | Cobalt               | 1.61E-08             | lb/ton           | 4.29E-04             |
| , ,                |                                                                |                 |                    |                |               | Lead                 | 1.54E-08             | lb/ton           | 4.10E-04             |
|                    |                                                                |                 |                    |                |               | Manganese            | 2.61E-07             | lb/ton           | 6.95E-03             |
|                    |                                                                |                 |                    |                |               | Mercury              | 5.49E-10             | lb/ton           | 1.46E-05             |
|                    |                                                                |                 |                    |                |               | Nickel               | 2.20E-08             | lb/ton           | 5.86E-04             |
|                    |                                                                |                 |                    |                |               | Selenium             | 3.47E-09             | lb/ton           | 9.24E-05             |
|                    |                                                                |                 |                    |                |               | Antimony             | 1.14E-09             | lb/ton           | 7.56E-06             |
|                    |                                                                |                 |                    |                |               | Arsenic              | 1.87E-08             | lb/ton           | 1.24E-04             |
|                    |                                                                |                 |                    |                |               | Beryllium            | 1.31E-09             | lb/ton           | 8.72E-06             |
|                    |                                                                |                 |                    |                |               | Cadmium              | 9.61E-10             | lb/ton           | 6.40E-06             |
| 001-10             | Radial Stacker 5 (AOS1) to Free-Standing                       | Ore2TrUnpr      |                    |                |               | Chromium             | 3.75E-08             | lb/ton           | 2.50E-04             |
| (AOS1)             | Stacker 6 (AOS1)                                               | t               | F                  | 13,315,200     | tons          | Cobalt               | 1.61E-08             | lb/ton           | 1.07E-04             |
|                    |                                                                |                 |                    |                |               | Lead                 | 1.54E-08             | lb/ton           | 1.03E-04             |
|                    |                                                                |                 |                    |                |               | Manganese            | 2.61E-07             | lb/ton           | 1.74E-03             |
|                    |                                                                |                 |                    |                |               | Mercury              | 5.49E-10             | lb/ton           | 3.66E-06             |
|                    |                                                                |                 |                    |                |               | Nickel               | 2.20E-08             | lb/ton           | 1.47E-04             |
|                    |                                                                |                 |                    |                |               | Selenium             | 3.47E-09             | lb/ton           | 2.31E-05             |
|                    |                                                                |                 |                    |                |               | Antimony             | 1.14E-09             | lb/ton           | 7.56E-06             |
|                    |                                                                |                 |                    |                |               | Arsenic              | 1.87E-08             | lb/ton           | 1.24E-04             |
|                    |                                                                |                 |                    |                |               | Beryllium            | 1.31E-09             | lb/ton           | 8.72E-06             |
|                    |                                                                |                 |                    |                |               | Cadmium              | 9.61E-10             | lb/ton           | 6.40E-06             |
| 001-3              | Free-Standing Stacker 6 (AOS1) to Coarse                       | Ore2TrUnpr      | F                  | 12 215 200     | tons          |                      | 3.75E-08             | lb/ton           | 2.50E-04             |
| (AOS1)             | Ore Stockpile 5 (AOS1)                                         | t               | 「                  | 13,315,200     | toris         | Cobalt               | 1.61E-08             | lb/ton           | 1.07E-04             |
|                    |                                                                |                 |                    |                |               | Lead                 | 1.54E-08<br>2.61E-07 | lb/ton           | 1.03E-04             |
|                    |                                                                |                 |                    |                |               | Manganese<br>Mercury | 5.49E-10             | lb/ton<br>lb/ton | 1.74E-03<br>3.66E-06 |
|                    |                                                                |                 |                    |                |               |                      |                      |                  |                      |
|                    |                                                                |                 |                    |                |               | Nickel<br>Selenium   | 2.20E-08<br>3.47E-09 | lb/ton<br>lb/ton | 1.47E-04<br>2.31E-05 |
|                    |                                                                |                 |                    |                |               | Antimony             | 1.26E-03             | lb/acre-yr       | 3.91E-06             |
|                    |                                                                |                 |                    |                |               | Arsenic              | 2.08E-02             | lb/acre-yr       | 6.43E-05             |
|                    |                                                                |                 |                    |                |               | Beryllium            | 1.46E-03             | lb/acre-yr       | 4.51E-06             |
|                    |                                                                |                 |                    |                |               | Cadmium              | 1.07E-03             | lb/acre-yr       | 3.31E-06             |
|                    |                                                                |                 |                    |                |               | Chromium             | 4.18E-02             | lb/acre-yr       | 1.29E-04             |
| 027-1              | Wind Erosion of Coarse Ore Stockpiles 1/5                      | AWindCOS        | F                  | 6.18           | acre-yr       | Cobalt               | 1.79E-02             | lb/acre-yr       | 5.54E-05             |
| (AOS1)             | (AOS1)                                                         | 1/5 (AOS1)      | F                  |                | ,             | Lead                 | 1.72E-02             | lb/acre-yr       | 5.30E-05             |
|                    |                                                                |                 |                    |                |               | Manganese            | 2.91E-01             | lb/acre-yr       | 8.98E-04             |
|                    |                                                                |                 |                    |                |               | Mercury              | 6.11E-04             | lb/acre-yr       | 1.89E-06             |
|                    |                                                                |                 |                    |                |               | Nickel               | 2.45E-02             | lb/acre-yr       | 7.57E-05             |
|                    |                                                                |                 |                    |                |               | Selenium             | 3.86E-03             | lb/acre-yr       | 1.19E-05             |
| Primary Crus       | I<br>shing and Overland Conveying Operations (to               | Sycamore Co     | oncentrator)       | (AOS1)         |               |                      |                      | · · ·            | -                    |
|                    |                                                                |                 |                    |                |               | Antimony             | 2.99E-13             | lb/dscf          | 1.14E-06             |
| 001-12<br>(AOS1)   | PC1 Dust Collector 1 (AOS1)                                    | SDC1<br>(AOS1)  | NF                 | 7,621,200,000  | dscf          | Arsenic              | 4.92E-12             | lb/dscf          | 1.88E-05             |
| (AUSI)             |                                                                | (AUS1)          |                    |                |               | Beryllium            | 3.45E-13             | lb/dscf          | 1.31E-06             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Droces             | Process Process/Emission Unit Description | Process            | Non-Fug.           | Annual Process | Rate Units    | HAP Information |              |            |                 |
|--------------------|-------------------------------------------|--------------------|--------------------|----------------|---------------|-----------------|--------------|------------|-----------------|
| Number             | Process/Emission Unit Description         | Code               | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF           | EF Units   | Emissions (tpy) |
|                    |                                           |                    |                    |                |               | Cadmium         | 2.53E-13     | lb/dscf    | 9.64E-07        |
|                    |                                           |                    |                    |                |               | Chromium        | 9.88E-12     | lb/dscf    | 3.77E-05        |
|                    |                                           |                    |                    |                |               | Cobalt          | 4.24E-12     | lb/dscf    | 1.62E-05        |
| 001-12             |                                           | SDC1               | NF NF              |                |               | Lead            | 4.06E-12     | lb/dscf    | 1.55E-05        |
| (AOS1)<br>(cont'd) | PC1 Dust Collector 1 (AOS1) (cont'd)      | (AOS1)<br>(cont'd) | (cont'd)           | 7,621,200,000  | dscf (cont'd) | Manganese       | 6.87E-11     | lb/dscf    | 2.62E-04        |
| ()                 |                                           | ()                 |                    |                |               | Mercury         | 1.45E-13     | lb/dscf    | 5.51E-07        |
|                    |                                           |                    |                    |                |               | Nickel          | 5.80E-12     | lb/dscf    | 2.21E-05        |
|                    |                                           |                    |                    |                |               | Selenium        | 9.13E-13     | lb/dscf    | 3.48E-06        |
|                    |                                           |                    |                    |                |               | Antimony        | 2.99E-13     | lb/dscf    | 1.31E-06        |
|                    |                                           |                    |                    |                |               | Arsenic         | 4.92E-12     | lb/dscf    | 2.16E-05        |
|                    |                                           |                    |                    |                |               | Beryllium       | 3.45E-13     | lb/dscf    | 1.51E-06        |
|                    |                                           |                    |                    |                |               | Cadmium         | 2.53E-13     | lb/dscf    | 1.11E-06        |
|                    |                                           |                    |                    |                |               | Chromium        | 9.88E-12     | lb/dscf    | 4.34E-05        |
| 001-13             | PC1 CCC1 Dust Collector 2 (AOS1)          | SDC2               | NF                 | 8,777,520,000  | dscf          | Cobalt          | 4.24E-12     | lb/dscf    | 1.86E-05        |
| (AOS1)             | , ,                                       | (AOS1)             |                    |                |               | Lead            | 4.06E-12     | lb/dscf    | 1.78E-05        |
|                    |                                           |                    |                    |                |               | Manganese       | 6.87E-11     | lb/dscf    | 3.02E-04        |
|                    |                                           |                    |                    |                |               | Mercury         | 1.45E-13     | lb/dscf    | 6.34E-07        |
|                    |                                           |                    |                    |                |               | Nickel          | 5.80E-12     | lb/dscf    | 2.54E-05        |
|                    |                                           |                    |                    |                |               | Selenium        | 9.13E-13     | lb/dscf    | 4.01E-06        |
|                    |                                           |                    |                    |                |               | Antimony        | 2.99E-13     | lb/dscf    | 1.31E-06        |
|                    |                                           |                    |                    |                |               | Arsenic         | 4.92E-12     | lb/dscf    | 2.16E-05        |
|                    |                                           |                    |                    |                |               |                 | 3.45E-13     | lb/dscf    | 1.51E-06        |
|                    |                                           |                    |                    |                |               | Beryllium       | <del> </del> |            |                 |
|                    |                                           |                    |                    |                |               | Cadmium         | 2.53E-13     | lb/dscf    | 1.11E-06        |
| 001-14             | DO4 0000 Dust Callastes 2 (A004)          | SDC3               | NF                 | 8,777,520,000  | dscf          | Chromium        | 9.88E-12     | lb/dscf    | 4.34E-05        |
| (AOS1)             | PC1 CCC2 Dust Collector 3 (AOS1)          | (AOS1)             |                    |                |               | Cobalt          | 4.24E-12     | lb/dscf    | 1.86E-05        |
|                    |                                           |                    |                    |                |               | Lead            | 4.06E-12     | lb/dscf    | 1.78E-05        |
|                    |                                           |                    |                    |                |               | Manganese       | 6.87E-11     | lb/dscf    | 3.02E-04        |
|                    |                                           |                    |                    |                |               | Mercury         | 1.45E-13     | lb/dscf    | 6.34E-07        |
|                    |                                           |                    |                    |                |               | Nickel          | 5.80E-12     | lb/dscf    | 2.54E-05        |
|                    |                                           |                    |                    |                |               | Selenium        | 9.13E-13     | lb/dscf    | 4.01E-06        |
|                    |                                           |                    |                    |                |               | Antimony        | 2.99E-13     | lb/dscf    | 1.31E-06        |
|                    |                                           |                    |                    |                |               | Arsenic         | 4.92E-12     | lb/dscf    | 2.16E-05        |
|                    |                                           |                    |                    |                |               | Beryllium       | 3.45E-13     | lb/dscf    | 1.51E-06        |
|                    |                                           |                    |                    |                |               | Cadmium         | 2.53E-13     | lb/dscf    | 1.11E-06        |
| 001-15             |                                           | SDC4               |                    |                |               | Chromium        | 9.88E-12     | lb/dscf    | 4.34E-05        |
| (AOS1)             | PC1 CCC3 Dust Collector 4 (AOS1)          | (AOS1)             | NF                 | 8,777,520,000  | dscf          | Cobalt          | 4.24E-12     | lb/dscf    | 1.86E-05        |
|                    |                                           |                    |                    |                |               | Lead            | 4.06E-12     | lb/dscf    | 1.78E-05        |
|                    |                                           |                    |                    |                |               | Manganese       | 6.87E-11     | lb/dscf    | 3.02E-04        |
|                    |                                           |                    |                    |                |               | Mercury         | 1.45E-13     | lb/dscf    | 6.34E-07        |
|                    |                                           |                    |                    |                |               | Nickel          | 5.80E-12     | lb/dscf    | 2.54E-05        |
|                    |                                           |                    |                    |                |               | Selenium        | 9.13E-13     | lb/dscf    | 4.01E-06        |
|                    |                                           |                    |                    |                |               | Antimony        | 1.14E-09     | lb/ton     | 3.98E-05        |
|                    |                                           |                    |                    |                |               | Arsenic         | 1.87E-08     | lb/ton     | 6.55E-04        |
|                    |                                           |                    |                    |                |               | Beryllium       | 1.31E-09     | lb/ton     | 4.59E-05        |
|                    |                                           |                    |                    |                |               | Cadmium         | 9.61E-10     | lb/ton     | 3.37E-05        |
|                    |                                           |                    |                    |                |               | Chromium        | 3.75E-08     | lb/ton     | 1.32E-03        |
| 001-20<br>(AOS1)   |                                           | F                  | 70,080,000         | tons           | Cobalt        | 1.61E-08        | lb/ton       | 5.64E-04   |                 |
| ,                  |                                           |                    |                    |                |               | Lead            | 1.54E-08     | lb/ton     | 5.40E-04        |
|                    |                                           |                    |                    |                |               | Manganese       | 2.61E-07     | lb/ton     | 9.15E-03        |
|                    |                                           |                    |                    |                |               | Mercury         | 5.49E-10     | lb/ton     | 1.92E-05        |
|                    |                                           |                    |                    |                |               | Nickel          | 2.20E-08     | lb/ton     | 7.71E-04        |
|                    |                                           |                    |                    |                |               | Selenium        | 3.47E-09     | lb/ton     | 1.22E-04        |
| 027-7              | Wind Erosion of Coarse Ore Stockpile 6    | AWindCOS           |                    |                |               | Antimony        | 1.26E-03     | lb/acre-yr | 1.92E-06        |
| (AOS1)             | (AOS1)                                    | 6 (AOS1)           | F                  | 3.04           | acre-yr       | Arsenic         | 2.08E-02     | lb/acre-yr | 3.16E-05        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| D                                            | Process Process/Emission Unit Description                   |                      | Non-Fug.           |                | Rate Units | HAP Informat         |                      |            |                      |
|----------------------------------------------|-------------------------------------------------------------|----------------------|--------------------|----------------|------------|----------------------|----------------------|------------|----------------------|
| Number                                       | Process/Emission Unit Description                           | Process<br>Code      | (NF) /<br>Fug. (F) | Rate           | Rate Units | Name                 | EF                   | EF Units   | Emissions (tpy)      |
|                                              |                                                             |                      |                    |                |            | Beryllium            | 1.46E-03             | lb/acre-yr | 2.22E-06             |
|                                              |                                                             |                      |                    |                |            | Cadmium              | 1.07E-03             | lb/acre-yr | 1.63E-06             |
|                                              |                                                             |                      |                    |                |            | Chromium             | 4.18E-02             | lb/acre-yr | 6.35E-05             |
| 007.7                                        |                                                             | A14" 1000            |                    |                |            | Cobalt               | 1.79E-02             | lb/acre-yr | 2.73E-05             |
| 027-7<br>(AOS1)                              | Wind Erosion of Coarse Ore Stockpile 6                      | AWindCOS<br>6 (AOS1) | F (cont'd)         | 3.04           | acre-yr    | Lead                 | 1.72E-02             | lb/acre-yr | 2.61E-05             |
| (cont'd)                                     | (AOS1) (cont'd)                                             | (cont'd)             | ` ´                |                | (cont'd)   | Manganese            | 2.91E-01             | lb/acre-yr | 4.42E-04             |
|                                              |                                                             |                      |                    |                |            | Mercury              | 6.11E-04             | lb/acre-yr | 9.29E-07             |
|                                              |                                                             |                      |                    |                |            | Nickel               | 2.45E-02             | lb/acre-yr | 3.73E-05             |
|                                              |                                                             |                      |                    |                |            | Selenium             | 3.86E-03             | lb/acre-yr | 5.87E-06             |
| Sycamore M                                   | I<br>filling Operations (AOS1)                              |                      |                    |                |            |                      |                      |            |                      |
| -,                                           | 3 - 1 - 1 - 1 - 1                                           |                      |                    |                |            | Antimony             | 2.99E-13             | lb/dscf    | 1.73E-06             |
|                                              |                                                             |                      |                    |                |            | Arsenic              | 4.92E-12             | lb/dscf    | 2.85E-05             |
|                                              |                                                             |                      |                    |                |            | Beryllium            | 3.45E-13             | lb/dscf    | 1.99E-06             |
|                                              |                                                             |                      |                    |                |            | Cadmium              | 2.53E-13             | lb/dscf    | 1.46E-06             |
|                                              |                                                             |                      |                    |                |            | Chromium             | 9.88E-12             | lb/dscf    | 5.71E-05             |
| 002-7                                        | Coarse Ore Reclaim Conveyor 1 Dust                          | SDC5                 | NF                 | 11,563,200,000 | dscf       | Cobalt               | 4.24E-12             | lb/dscf    | 2.45E-05             |
| (AOS1)                                       | Collector 5 (AOS1)                                          | (AOS1)               | "                  | 11,505,200,000 | usci       | Lead                 | 4.24E-12<br>4.06E-12 | lb/dscf    | 2.45E-05<br>2.35E-05 |
|                                              |                                                             |                      |                    |                |            |                      | 6.87E-11             | lb/dscf    | 3.97E-04             |
|                                              |                                                             |                      |                    |                |            | Manganese<br>Mercury | 1.45E-13             | lb/dscf    |                      |
|                                              |                                                             |                      |                    |                |            | ,                    |                      |            | 8.36E-07             |
|                                              |                                                             |                      |                    |                |            | Nickel               | 5.80E-12             | lb/dscf    | 3.35E-05             |
|                                              |                                                             |                      |                    |                |            | Selenium             | 9.13E-13             | lb/dscf    | 5.28E-06             |
|                                              |                                                             |                      |                    |                |            | Antimony             | 2.99E-13             | lb/dscf    | 1.73E-06             |
|                                              |                                                             |                      |                    |                |            | Arsenic              | 4.92E-12             | lb/dscf    | 2.85E-05             |
|                                              |                                                             |                      |                    |                |            | Beryllium            | 3.45E-13             | lb/dscf    | 1.99E-06             |
|                                              |                                                             |                      |                    |                |            | Cadmium              | 2.53E-13             | lb/dscf    | 1.46E-06             |
| 002-8                                        | Coarse Ore Reclaim Conveyor 2 Dust<br>Collector 6 (AOS1)    | SDC6<br>(AOS1)       | NF                 | 11,563,200,000 | dscf       | Chromium             | 9.88E-12             | lb/dscf    | 5.71E-05             |
| (AOS1)                                       |                                                             |                      |                    |                |            | Cobalt               | 4.24E-12             | lb/dscf    | 2.45E-05             |
|                                              |                                                             |                      |                    |                |            | Lead                 | 4.06E-12             | lb/dscf    | 2.35E-05             |
|                                              |                                                             |                      |                    |                |            | Manganese            | 6.87E-11             | lb/dscf    | 3.97E-04             |
|                                              |                                                             |                      |                    |                |            | Mercury              | 1.45E-13             | lb/dscf    | 8.36E-07             |
|                                              |                                                             |                      |                    |                |            | Nickel               | 5.80E-12             | lb/dscf    | 3.35E-05             |
|                                              |                                                             |                      |                    |                |            | Selenium             | 9.13E-13             | lb/dscf    | 5.28E-06             |
|                                              |                                                             |                      |                    |                |            | Antimony             | 2.99E-13             | lb/dscf    | 1.81E-06             |
|                                              |                                                             |                      |                    |                |            | Arsenic              | 4.92E-12             | lb/dscf    | 2.98E-05             |
|                                              |                                                             |                      |                    |                |            | Beryllium            | 3.45E-13             | lb/dscf    | 2.09E-06             |
|                                              |                                                             |                      |                    |                |            | Cadmium              | 2.53E-13             | lb/dscf    | 1.53E-06             |
| 002-9                                        |                                                             | SDC7                 |                    |                |            | Chromium             | 9.88E-12             | lb/dscf    | 5.97E-05             |
| (AOS1)                                       | HPGR Discharge Dust Collector 7 (AOS1)                      | (AOS1)               | NF                 | 12,088,800,000 | dscf       | Cobalt               | 4.24E-12             | lb/dscf    | 2.56E-05             |
|                                              |                                                             |                      |                    |                |            | Lead                 | 4.06E-12             | lb/dscf    | 2.45E-05             |
|                                              |                                                             |                      |                    |                |            | Manganese            | 6.87E-11             | lb/dscf    | 4.15E-04             |
|                                              |                                                             |                      |                    |                |            | Mercury              | 1.45E-13             | lb/dscf    | 8.74E-07             |
|                                              |                                                             |                      |                    |                |            | Nickel               | 5.80E-12             | lb/dscf    | 3.50E-05             |
|                                              |                                                             |                      |                    |                |            | Selenium             | 9.13E-13             | lb/dscf    | 5.52E-06             |
|                                              |                                                             |                      |                    |                |            | Antimony             | 2.99E-13             | lb/dscf    | 2.12E-06             |
|                                              |                                                             |                      |                    |                |            | Arsenic              | 4.92E-12             | lb/dscf    | 3.49E-05             |
|                                              |                                                             |                      |                    |                |            | Beryllium            | 3.45E-13             | lb/dscf    | 2.45E-06             |
|                                              |                                                             |                      |                    |                |            | Cadmium              | 2.53E-13             | lb/dscf    | 1.80E-06             |
| 000 10                                       | Lunga Bir Lunga Tara Tara                                   | 05.00                |                    |                |            | Chromium             | 9.88E-12             | lb/dscf    | 7.01E-05             |
| 002-10<br>(AOS1)                             | HPGR Discharge Conveyor Transfer Dust<br>Collector 8 (AOS1) | SDC8<br>(AOS1)       | NF                 | 14,191,200,000 | dscf       | Cobalt               | 4.24E-12             | lb/dscf    | 3.01E-05             |
| <b>\</b> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                             | ` ′                  |                    |                |            | Lead                 | 4.06E-12             | lb/dscf    | 2.88E-05             |
|                                              |                                                             |                      |                    |                | -          | Manganese            | 6.87E-11             | lb/dscf    | 4.88E-04             |
|                                              |                                                             |                      |                    |                |            | Mercury              | 1.45E-13             | lb/dscf    | 1.03E-06             |
|                                              |                                                             |                      |                    |                |            | Nickel               | 5.80E-12             | lb/dscf    | 4.11E-05             |
|                                              |                                                             |                      |                    |                |            | Selenium             | 9.13E-13             | lb/dscf    | 6.48E-06             |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process          | Dragge / Emission Unit Description                                          | Process         | Non-Fug.           | Annual Process | Data Unita | HAP Information | on       |          | Emissions (tnu) |
|------------------|-----------------------------------------------------------------------------|-----------------|--------------------|----------------|------------|-----------------|----------|----------|-----------------|
| Number           | Process/Emission Unit Description                                           | Code            | (NF) /<br>Fug. (F) | Rate           | Rate Units | Name            | EF       | EF Units | Emissions (tpy) |
|                  |                                                                             |                 |                    |                |            | Antimony        | 2.99E-13 | lb/dscf  | 1.96E-06        |
|                  |                                                                             |                 |                    |                |            | Arsenic         | 4.92E-12 | lb/dscf  | 3.23E-05        |
|                  |                                                                             |                 |                    |                |            | Beryllium       | 3.45E-13 | lb/dscf  | 2.27E-06        |
|                  |                                                                             |                 |                    |                |            | Cadmium         | 2.53E-13 | lb/dscf  | 1.66E-06        |
|                  |                                                                             |                 |                    |                |            | Chromium        | 9.88E-12 | lb/dscf  | 6.49E-05        |
| 002-11<br>(AOS1) | HPGR Product Bin Dust Collector 9 (AOS1)                                    | SDC9<br>(AOS1)  | NF                 | 13,140,000,000 | dscf       | Cobalt          | 4.24E-12 | lb/dscf  | 2.79E-05        |
| (1.00.)          |                                                                             | (7.00.)         |                    |                |            | Lead            | 4.06E-12 | lb/dscf  | 2.67E-05        |
|                  |                                                                             |                 |                    |                |            | Manganese       | 6.87E-11 | lb/dscf  | 4.52E-04        |
|                  |                                                                             |                 |                    |                |            | Mercury         | 1.45E-13 | lb/dscf  | 9.50E-07        |
|                  |                                                                             |                 |                    |                |            | Nickel          | 5.80E-12 | lb/dscf  | 3.81E-05        |
|                  |                                                                             |                 |                    |                |            | Selenium        | 9.13E-13 | lb/dscf  | 6.00E-06        |
|                  |                                                                             |                 |                    |                |            | Antimony        | 2.99E-13 | lb/dscf  | 7.86E-07        |
|                  |                                                                             |                 |                    |                |            | Arsenic         | 4.92E-12 | lb/dscf  | 1.29E-05        |
|                  |                                                                             |                 |                    |                |            | Beryllium       | 3.45E-13 | lb/dscf  | 9.07E-07        |
|                  |                                                                             |                 |                    |                |            | Cadmium         | 2.53E-13 | lb/dscf  | 6.65E-07        |
| 000.40           | LIDOD D. L. LT C. D. LO II. L. 40.                                          | 00040           |                    |                |            | Chromium        | 9.88E-12 | lb/dscf  | 2.60E-05        |
| 002-12<br>(AOS1) | HPGR Product Transfer Dust Collector 10 (AOS1)                              | SDC10<br>(AOS1) | NF                 | 5,256,000,000  | dscf       | Cobalt          | 4.24E-12 | lb/dscf  | 1.11E-05        |
|                  | , ,                                                                         | , ,             |                    |                |            | Lead            | 4.06E-12 | lb/dscf  | 1.07E-05        |
|                  |                                                                             |                 |                    |                |            | Manganese       | 6.87E-11 | lb/dscf  | 1.81E-04        |
|                  |                                                                             |                 |                    |                |            | Mercury         | 1.45E-13 | lb/dscf  | 3.80E-07        |
|                  |                                                                             |                 |                    |                |            | Nickel          | 5.80E-12 | lb/dscf  | 1.52E-05        |
|                  |                                                                             |                 |                    |                |            | Selenium        | 9.13E-13 | lb/dscf  | 2.40E-06        |
|                  |                                                                             |                 |                    |                |            | Antimony        | 2.99E-13 | lb/dscf  | 7.86E-07        |
|                  |                                                                             |                 |                    |                |            | Arsenic         | 4.92E-12 | lb/dscf  | 1.29E-05        |
|                  |                                                                             |                 |                    |                |            | Beryllium       | 3.45E-13 | lb/dscf  | 9.07E-07        |
|                  | UIDOD Deaduct Torrafor Duct Callada 44                                      | 60044           |                    | 5,256,000,000  | dscf       | Cadmium         | 2.53E-13 | lb/dscf  | 6.65E-07        |
|                  |                                                                             |                 |                    |                |            | Chromium        | 9.88E-12 | lb/dscf  | 2.60E-05        |
| 002-13<br>(AOS1) | HPGR Product Transfer Dust Collector 11 (AOS1)                              | SDC11<br>(AOS1) | NF                 |                |            | Cobalt          | 4.24E-12 | lb/dscf  | 1.11E-05        |
| , ,              | , ,                                                                         | , ,             |                    |                |            | Lead            | 4.06E-12 | lb/dscf  | 1.07E-05        |
|                  |                                                                             |                 |                    |                |            | Manganese       | 6.87E-11 | lb/dscf  | 1.81E-04        |
|                  |                                                                             |                 |                    |                |            | Mercury         | 1.45E-13 | lb/dscf  | 3.80E-07        |
|                  |                                                                             |                 |                    |                |            | Nickel          | 5.80E-12 | lb/dscf  | 1.52E-05        |
|                  |                                                                             |                 |                    |                |            | Selenium        | 9.13E-13 | lb/dscf  | 2.40E-06        |
| Sycamore B       | ulk and Molybdenum Flotation Operations (AC                                 | S1)             |                    |                |            |                 |          |          | _               |
|                  |                                                                             |                 |                    |                |            | Benzene         | 8.67E-06 | lb/ton   | 2.24E-03        |
| 044.0            | Conserved Bully and Market decrees Flatetian                                |                 |                    |                |            | Ethylbenzene    | 1.46E-05 | lb/ton   | 3.78E-03        |
| 044-2<br>(AOS1)  | Sycamore Bulk and Molybdenum Flotation<br>Equipment                         | MFE             | F                  | 517,716        | tons       | Hexane          | 1.83E-06 | lb/ton   | 4.72E-04        |
|                  |                                                                             |                 |                    |                |            | Toluene         | 1.04E-04 | lb/ton   | 2.70E-02        |
|                  |                                                                             |                 |                    |                |            | m-Xylene        | 2.72E-04 | lb/ton   | 7.05E-02        |
| Sycamore C       | oncentrate Handling Operations (AOS1)                                       |                 |                    |                | <b>.</b>   |                 |          |          |                 |
|                  |                                                                             |                 |                    |                |            | Antimony        | 1.14E-08 | lb/ton   | 2.85E-06        |
|                  |                                                                             |                 |                    |                |            | Arsenic         | 1.23E-08 | lb/ton   | 3.08E-06        |
|                  |                                                                             |                 |                    |                |            | Beryllium       | 2.37E-10 | lb/ton   | 5.91E-08        |
|                  |                                                                             |                 |                    |                |            | Cadmium         | 8.88E-10 | lb/ton   | 2.22E-07        |
| 006-11           | Copper Concentrate Filters 1/2 (AOS1) to                                    |                 |                    |                |            | Chromium        | 4.93E-10 | lb/ton   | 1.23E-07        |
| (AOS1)           | Copper Concentrate Filter Drop Storage (AOS1)                               | CCTrPrt         | F                  | 499,320        | tons       | Cobalt          | 2.35E-09 | lb/ton   | 5.86E-07        |
|                  | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                     |                 |                    |                |            | Lead            | 1.73E-08 | lb/ton   | 4.31E-06        |
|                  |                                                                             |                 |                    |                |            | Manganese       | 1.05E-09 | lb/ton   | 2.61E-07        |
|                  |                                                                             |                 |                    |                |            | Mercury         | 1.58E-10 | lb/ton   | 3.95E-08        |
|                  |                                                                             |                 |                    |                |            | Nickel          | 2.25E-09 | lb/ton   | 5.61E-07        |
|                  |                                                                             |                 |                    |                |            | Selenium        | 3.91E-09 | lb/ton   | 9.75E-07        |
| 006 10           | Copper Concentrate Filter Drop Storage                                      |                 |                    |                |            | Antimony        | 1.14E-08 | lb/ton   | 2.85E-06        |
| 006-12<br>(AOS1) | (AOS1) to Copper Concentrate Loadout<br>Storage (AOS1) via Front-End Loader | CCTrPrt         | F                  | 499,320        | tons       | Arsenic         | 1.23E-08 | lb/ton   | 3.08E-06        |
|                  | Storage (AOST) via Front-End Loader                                         |                 |                    |                |            | Beryllium       | 2.37E-10 | lb/ton   | 5.91E-08        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| _                 |                                                                                                                   | _                   | Non-Fug.           |                        |               | HAP Informatio |          |            |                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|------------------------|---------------|----------------|----------|------------|-----------------|
| Process<br>Number | Process/Emission Unit Description                                                                                 | Process<br>Code     | (NF) /<br>Fug. (F) | Annual Process<br>Rate | Rate Units    | Name           | EF       | EF Units   | Emissions (tpy) |
|                   |                                                                                                                   |                     |                    |                        |               | Cadmium        | 8.88E-10 | lb/ton     | 2.22E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Cadmium        | 4.93E-10 | lb/ton     | 1.23E-07        |
|                   |                                                                                                                   |                     |                    |                        |               |                |          |            |                 |
| 006-12            | Copper Concentrate Filter Drop Storage                                                                            |                     |                    |                        |               | Cobalt         | 2.35E-09 | lb/ton     | 5.86E-07        |
| (AOS1)            | (AOS1) to Copper Concentrate Loadout<br>Storage (AOS1) via Front-End Loader                                       | CCTrPrt<br>(cont'd) | F (cont'd)         | 499,320                | tons (cont'd) | Lead           | 1.73E-08 | lb/ton     | 4.31E-06        |
| (cont'd)          | (cont'd)                                                                                                          | ()                  |                    |                        |               | Manganese      | 1.05E-09 | lb/ton     | 2.61E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Mercury        | 1.58E-10 | lb/ton     | 3.95E-08        |
|                   |                                                                                                                   |                     |                    |                        |               | Nickel         | 2.25E-09 | lb/ton     | 5.61E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Selenium       | 3.91E-09 | lb/ton     | 9.75E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Antimony       | 1.14E-08 | lb/ton     | 2.85E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Arsenic        | 1.23E-08 | lb/ton     | 3.08E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Beryllium      | 2.37E-10 | lb/ton     | 5.91E-08        |
|                   |                                                                                                                   |                     |                    |                        |               | Cadmium        | 8.88E-10 | lb/ton     | 2.22E-07        |
| 006-13            | Copper Concentrate Loadout Storage                                                                                |                     |                    |                        |               | Chromium       | 4.93E-10 | lb/ton     | 1.23E-07        |
| (AOS1)            | (AOS1) to Trucks via Front-End Loader                                                                             | CCTrPrt             | F                  | 499,320                | tons          | Cobalt         | 2.35E-09 | lb/ton     | 5.86E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Lead           | 1.73E-08 | lb/ton     | 4.31E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Manganese      | 1.05E-09 | lb/ton     | 2.61E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Mercury        | 1.58E-10 | lb/ton     | 3.95E-08        |
|                   |                                                                                                                   |                     |                    |                        |               | Nickel         | 2.25E-09 | lb/ton     | 5.61E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Selenium       | 3.91E-09 | lb/ton     | 9.75E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Antimony       | 8.70E+00 | lb/acre-yr | 3.26E-04        |
|                   |                                                                                                                   |                     |                    |                        |               | Arsenic        | 9.40E+00 | lb/acre-yr | 3.53E-04        |
|                   |                                                                                                                   |                     |                    |                        |               | Beryllium      | 1.80E-01 | lb/acre-yr | 6.76E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Cadmium        | 6.76E-01 | lb/acre-yr | 2.53E-05        |
| 027-8<br>(AOS1)   | Wind Erosion of Copper Concentrate Filter<br>Drop Storage (AOS1) and Copper<br>Concentrate Loadout Storage (AOS1) | AWindSCC<br>(AOS1)  |                    | 0.30                   | acre-yr       | Chromium       | 3.75E-01 | lb/acre-yr | 1.41E-05        |
|                   |                                                                                                                   |                     | F                  |                        |               | Cobalt         | 1.79E+00 | lb/acre-yr | 6.70E-05        |
| (1001)            |                                                                                                                   |                     |                    |                        |               | Lead           | 1.32E+01 | lb/acre-yr | 4.93E-04        |
|                   |                                                                                                                   |                     |                    |                        |               | Manganese      | 7.96E-01 | lb/acre-yr | 2.99E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Mercury        | 1.21E-01 | lb/acre-yr | 4.52E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Nickel         | 1.71E+00 | lb/acre-yr | 6.42E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Selenium       | 2.97E+00 | lb/acre-yr | 1.12E-04        |
|                   |                                                                                                                   |                     |                    |                        |               | Antimony       | 3.04E-05 | lb/hr      | 1.33E-04        |
|                   |                                                                                                                   |                     |                    |                        |               | Arsenic        | 9.89E-06 | lb/hr      | 4.33E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Beryllium      | 6.31E-07 | lb/hr      | 2.76E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Cadmium        | 2.36E-06 | lb/hr      | 1.04E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Chromium       | 1.31E-06 | lb/hr      | 5.75E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Cobalt         | 6.25E-06 | lb/hr      | 2.74E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Lead           | 9.67E-06 | lb/hr      | 4.23E-05        |
| 050.0             |                                                                                                                   | MENTER              |                    |                        |               |                | 2.79E-06 | lb/hr      | 1.22E-05        |
| 052-2<br>(AOS1)   | Molybdenum Dryer Wet Scrubber System<br>(AOS1)                                                                    | (AOS1)              | NF                 | 8,760                  | hours         | Manganese      | 4.22E-07 |            | 1.85E-06        |
| . ,               | . ,                                                                                                               | ` ′                 |                    |                        |               | Mercury        | 5.99E-06 | lb/hr      | 2.62E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Nickel         |          | lb/hr      |                 |
|                   |                                                                                                                   |                     |                    |                        |               | Selenium       | 1.61E-05 | lb/hr      | 7.04E-05        |
|                   |                                                                                                                   |                     |                    |                        |               | Benzene        | 3.48E-03 | lb/hr      | 1.52E-02        |
|                   |                                                                                                                   |                     |                    |                        |               | Ethylbenzene   | 5.86E-03 | lb/hr      | 2.56E-02        |
|                   |                                                                                                                   |                     |                    |                        |               | Hexane         | 7.32E-04 | lb/hr      | 3.21E-03        |
|                   |                                                                                                                   |                     |                    |                        |               | Toluene        | 4.19E-02 | lb/hr      | 1.84E-01        |
|                   |                                                                                                                   |                     |                    |                        |               | m-Xylene       | 1.09E-01 | lb/hr      | 4.79E-01        |
|                   |                                                                                                                   |                     |                    |                        |               | Antimony       | 4.83E-07 | lb/ton     | 4.44E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Arsenic        | 1.57E-07 | lb/ton     | 1.45E-06        |
|                   | <b></b>                                                                                                           |                     |                    |                        |               | Beryllium      | 1.00E-08 | lb/ton     | 9.21E-08        |
| 052-3             | Molybdenum Concentrate Dryer (AOS1) to<br>Dried Molybdenum Concentrate Storage Bin                                | MC4TrPrt            | NF                 | 18,396                 | tons          | Cadmium        | 3.76E-08 | lb/ton     | 3.45E-07        |
| (AOS1)            | (AOS1)                                                                                                            |                     |                    | .5,555                 |               | Chromium       | 2.09E-08 | lb/ton     | 1.92E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Cobalt         | 9.93E-08 | lb/ton     | 9.14E-07        |
|                   |                                                                                                                   |                     |                    |                        |               | Lead           | 1.54E-07 | lb/ton     | 1.41E-06        |
|                   |                                                                                                                   |                     |                    |                        |               | Manganese      | 4.42E-08 | lb/ton     | 4.07E-07        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process         |                                                                                               | Process              | Non-Fug.           | Annual Process | B. (1.11.2)   | HAP Information        | on                   |          | <b>-</b>        |
|-----------------|-----------------------------------------------------------------------------------------------|----------------------|--------------------|----------------|---------------|------------------------|----------------------|----------|-----------------|
| Number          | Process/Emission Unit Description                                                             | Code                 | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name                   | EF                   | EF Units | Emissions (tpy) |
| 052-3           | Molybdenum Concentrate Dryer (AOS1) to                                                        |                      |                    |                |               | Mercury                | 6.70E-09             | lb/ton   | 6.16E-08        |
| (AOS1)          | Dried Molybdenum Concentrate Storage Bin                                                      | MC4TrPrt<br>(cont'd) | NF<br>(cont'd)     | 18,396         | tons (cont'd) | Nickel                 | 9.51E-08             | lb/ton   | 8.75E-07        |
| (cont'd)        | (AOS1) (cont'd)                                                                               | (55.11.4)            | (00.11.4)          |                |               | Selenium               | 2.55E-07             | lb/ton   | 2.35E-06        |
|                 |                                                                                               |                      |                    |                |               | Antimony               | 4.83E-07             | lb/ton   | 4.44E-06        |
|                 |                                                                                               |                      |                    |                |               | Arsenic                | 1.57E-07             | lb/ton   | 1.45E-06        |
|                 |                                                                                               |                      |                    |                |               | Beryllium              | 1.00E-08             | lb/ton   | 9.21E-08        |
|                 |                                                                                               |                      |                    |                |               | Cadmium                | 3.76E-08             | lb/ton   | 3.45E-07        |
|                 | Dried Molybdenum Concentrate Storage Bin                                                      |                      |                    |                |               | Chromium               | 2.09E-08             | lb/ton   | 1.92E-07        |
| 052-4<br>(AOS1) | (AOS1) to Molybdenum Concentrate                                                              | MC4TrPrt             | F                  | 18,396         | tons          | Cobalt                 | 9.93E-08             | lb/ton   | 9.14E-07        |
| (A001)          | Bagging System (AOS1)                                                                         |                      |                    |                |               | Lead                   | 1.54E-07             | lb/ton   | 1.41E-06        |
|                 |                                                                                               |                      |                    |                |               | Manganese              | 4.42E-08             | lb/ton   | 4.07E-07        |
|                 |                                                                                               |                      |                    |                |               | Mercury                | 6.70E-09             | lb/ton   | 6.16E-08        |
|                 |                                                                                               |                      |                    |                |               | Nickel                 | 9.51E-08             | lb/ton   | 8.75E-07        |
|                 |                                                                                               |                      |                    |                |               | Selenium               | 2.55E-07             | lb/ton   | 2.35E-06        |
| Sycamore Li     | I<br>ime and Other Regent Operations (AOS1)                                                   |                      |                    |                |               |                        |                      |          |                 |
|                 | Xanthate Mix Tank (AOS1), Xanthate                                                            |                      |                    |                |               |                        |                      |          |                 |
| 053-2<br>(AOS1) | Holding Tank (AOS1), Test Reagent Mix<br>Tank (AOS1), and Test Reagent Holding<br>Tank (AOS1) | SXMS                 | NF                 | 213            | tons          | Carbon Disulfide       | 1.23E+01             | lb/ton   | 1.31E+00        |
| Sycamore E      | mergency ICE (AOS1)                                                                           |                      |                    |                |               |                        |                      |          |                 |
|                 |                                                                                               |                      |                    |                |               | Benzene                | 5.43E-06             | lb/hp-hr | 8.27E-04        |
|                 |                                                                                               |                      |                    |                |               | Toluene                | 1.97E-06             | lb/hp-hr | 2.99E-04        |
|                 |                                                                                               |                      |                    |                |               | Xylenes                | 1.35E-06             | lb/hp-hr | 2.06E-04        |
|                 |                                                                                               |                      |                    |                |               | Formaldehyde           | 5.52E-07             | lb/hp-hr | 8.41E-05        |
|                 |                                                                                               |                      |                    |                |               | Acetaldehyde           | 1.76E-07             | lb/hp-hr | 2.69E-05        |
|                 |                                                                                               |                      |                    |                |               | Acrolein               | 5.52E-08             | lb/hp-hr | 8.40E-06        |
|                 |                                                                                               |                      |                    |                |               | Naphthalene            | 9.10E-07             | lb/hp-hr | 1.39E-04        |
|                 |                                                                                               |                      |                    |                |               | Acenaphthylene         | 6.46E-08             | lb/hp-hr | 9.84E-06        |
|                 |                                                                                               |                      |                    |                |               | Acenaphthene           | 3.28E-08             | lb/hp-hr | 4.99E-06        |
|                 |                                                                                               |                      |                    |                |               | Fluorene               | 8.96E-08             | lb/hp-hr | 1.36E-05        |
| 049-59          | Sycamore Diesel Emergency Generator 1                                                         | Tier3-               |                    |                | hp-hr         | Phenanthrene           | 2.86E-07             | lb/hp-hr | 4.35E-05        |
| (AOS1)          | (AOS1) (609 hp engine)                                                                        | 450/560-D            | NF                 | 304,500        |               | Anthracene             | 8.61E-09             | lb/hp-hr | 1.31E-06        |
|                 |                                                                                               |                      |                    |                |               | Fluoranthene           | 2.82E-08             | lb/hp-hr | 4.29E-06        |
|                 |                                                                                               |                      |                    |                |               | Pyrene                 | 2.60E-08             | lb/hp-hr | 3.95E-06        |
|                 |                                                                                               |                      |                    |                |               | Benz(a)anthracene      | 4.35E-09             | lb/hp-hr | 6.63E-07        |
|                 |                                                                                               |                      |                    |                |               | Chrysene               | 1.07E-08             | lb/hp-hr | 1.63E-06        |
|                 |                                                                                               |                      |                    |                |               | Benzo(b)fluoranthene   | 7.77E-09             | lb/hp-hr | 1.18E-06        |
|                 |                                                                                               |                      |                    |                |               | Benzo(k)fluoranthene   | 1.53E-09             | lb/hp-hr | 2.32E-07        |
|                 |                                                                                               |                      |                    |                |               | Benzo(a)pyrene         | 1.80E-09             | lb/hp-hr | 2.74E-07        |
|                 |                                                                                               |                      |                    |                |               | Indeno(1,2,3-cd)pyrene | 2.90E-09             | lb/hp-hr | 4.41E-07        |
|                 |                                                                                               |                      |                    |                |               | Dibenz(a,h)anthracene  | 2.42E-09             | lb/hp-hr | 3.69E-07        |
|                 |                                                                                               |                      |                    |                |               | Benzo(g,h,i)perylene   | 3.89E-09             | lb/hp-hr | 5.93E-07        |
|                 |                                                                                               |                      |                    |                |               | Benzene                | 5.43E-06             | lb/hp-hr | 1.03E-03        |
|                 |                                                                                               |                      |                    |                |               | Toluene                | 1.97E-06             | lb/hp-hr | 3.75E-04        |
|                 |                                                                                               |                      |                    |                |               | Xylenes                | 1.97E-06<br>1.35E-06 | lb/hp-hr | 2.57E-04        |
|                 |                                                                                               |                      |                    |                |               | •                      | 5.52E-07             |          | 1.05E-04        |
|                 |                                                                                               |                      |                    |                |               | Formaldehyde           |                      | lb/hp-hr |                 |
|                 |                                                                                               |                      |                    |                |               | Acetaldehyde           | 1.76E-07             | lb/hp-hr | 3.36E-05        |
| 049-60          | Sycamore Diesel Emergency Generator 2                                                         | Tier2-560-D          | NF                 | 391 000        | hn hr         | Acrolein               | 5.52E-08             | lb/hp-hr | 1.05E-05        |
| (AOS1)          | (AOS1) (762 hp engine)                                                                        | 1161∠-360-D          | INF                | 381,000        | hp-hr         | Naphthalene            | 9.10E-07             | lb/hp-hr | 1.73E-04        |
|                 |                                                                                               |                      |                    |                |               | Acenaphthylene         | 6.46E-08             | lb/hp-hr | 1.23E-05        |
|                 |                                                                                               |                      |                    |                |               | Acenaphthene           | 3.28E-08             | lb/hp-hr | 6.24E-06        |
|                 |                                                                                               |                      |                    |                |               | Fluorene               | 8.96E-08             | lb/hp-hr | 1.71E-05        |
|                 |                                                                                               |                      |                    |                |               | Phenanthrene           | 2.86E-07             | lb/hp-hr | 5.44E-05        |
|                 |                                                                                               |                      |                    |                |               | Anthracene             | 8.61E-09             | lb/hp-hr | 1.64E-06        |
|                 |                                                                                               |                      |                    |                |               | Fluoranthene           | 2.82E-08             | lb/hp-hr | 5.37E-06        |

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process  | Durance/Funication Unit Description                                      | Process                 | Non-Fug.           | Annual Process | Data Unita     | HAP Information                  |                      | Fusinaione (turk |                      |
|----------|--------------------------------------------------------------------------|-------------------------|--------------------|----------------|----------------|----------------------------------|----------------------|------------------|----------------------|
| Number   | Process/Emission Unit Description                                        | Code                    | (NF) /<br>Fug. (F) | Rate           | Rate Units     | Name                             | EF                   | EF Units         | Emissions (tpy)      |
|          |                                                                          |                         |                    |                |                | Pyrene                           | 2.60E-08             | lb/hp-hr         | 4.95E-06             |
|          |                                                                          |                         |                    |                |                | Benz(a)anthracene                | 4.35E-09             | lb/hp-hr         | 8.29E-07             |
|          |                                                                          |                         |                    |                |                | Chrysene                         | 1.07E-08             | lb/hp-hr         | 2.04E-06             |
| 049-60   |                                                                          |                         |                    |                |                | Benzo(b)fluoranthene             | 7.77E-09             | lb/hp-hr         | 1.48E-06             |
| (AOS1)   | Sycamore Diesel Emergency Generator 2<br>(AOS1) (762 hp engine) (cont'd) | Tier2-560-D<br>(cont'd) | NF<br>(cont'd)     | 381,000        | hp-hr (cont'd) | Benzo(k)fluoranthene             | 1.53E-09             | lb/hp-hr         | 2.91E-07             |
| (cont'd) | (AOS1) (702 tip engine) (conta)                                          | (conta)                 | (conta)            |                |                | Benzo(a)pyrene                   | 1.80E-09             | lb/hp-hr         | 3.43E-07             |
|          |                                                                          |                         |                    |                |                | Indeno(1,2,3-cd)pyrene           | 2.90E-09             | lb/hp-hr         | 5.52E-07             |
|          |                                                                          |                         |                    |                |                | Dibenz(a,h)anthracene            | 2.42E-09             | lb/hp-hr         | 4.61E-07             |
|          |                                                                          |                         |                    |                |                | Benzo(g,h,i)perylene             | 3.89E-09             | lb/hp-hr         | 7.41E-07             |
|          |                                                                          |                         |                    |                |                | 1,1,2,2-Tetrachloroethane        | 2.66E-07             | lb/hp-hr         | 5.63E-06             |
|          |                                                                          |                         |                    |                |                | 1,1,2-Trichloroethane            | 1.61E-07             | lb/hp-hr         | 3.40E-06             |
|          |                                                                          |                         |                    |                |                | 1,1-Dichloroethane               | 1.19E-07             | lb/hp-hr         | 2.51E-06             |
|          |                                                                          |                         |                    |                |                | 1,2-Dichloroethane               | 1.19E-07             | lb/hp-hr         | 2.51E-06             |
|          |                                                                          |                         |                    |                |                | 1,2-Dichloropropane              | 1.37E-07             | lb/hp-hr         | 2.89E-06             |
|          |                                                                          |                         |                    |                |                | 1,3-Butadiene                    | 6.96E-06             | lb/hp-hr         | 1.47E-04             |
|          |                                                                          |                         |                    |                |                | 1,3-Dichloropropene              | 1.33E-07             | lb/hp-hr         | 2.82E-06             |
|          |                                                                          |                         |                    |                |                | Acetaldehyde                     | 2.93E-05             | lb/hp-hr         | 6.20E-04             |
|          |                                                                          |                         |                    |                |                | Acrolein                         | 2.76E-05             | lb/hp-hr         | 5.85E-04             |
|          |                                                                          |                         |                    |                |                | Benzene                          | 1.66E-05             | lb/hp-hr         | 3.51E-04             |
|          |                                                                          |                         |                    |                |                | Carbon Tetrachloride             | 1.86E-07             | lb/hp-hr         | 3.94E-06             |
| 049-61   | Sycamore Propane Emergency Generator 1                                   | SEG-P                   |                    |                |                | Chlorobenzene                    | 1.35E-07             | lb/hp-hr         | 2.87E-06             |
| (AOS1)   | (AOS1) (84.7 hp engine)                                                  |                         | NF                 | 42,350         | hp-hr          | Chloroform                       | 1.44E-07             | lb/hp-hr         | 3.05E-06             |
|          |                                                                          |                         |                    |                |                | Ethylbenzene                     | 2.60E-07             | lb/hp-hr         | 5.51E-06             |
|          |                                                                          |                         |                    |                |                | Ethylene Dibromide               | 2.24E-07             | lb/hp-hr         | 4.74E-06             |
|          |                                                                          |                         |                    |                |                | Formaldehyde                     | 2.15E-04             | lb/hp-hr         | 4.56E-03             |
|          |                                                                          |                         |                    |                |                | Methanol                         | 3.21E-05             | lb/hp-hr         | 6.80E-04             |
|          |                                                                          |                         |                    |                |                | Methylene Chloride               | 4.33E-07             | lb/hp-hr         | 9.16E-06             |
|          |                                                                          |                         |                    |                |                | Naphthalene                      | 1.02E-06             | lb/hp-hr         | 2.16E-05             |
|          |                                                                          |                         |                    |                |                | Polycyclic Aromatic Hydrocarbons | 1.48E-06             | lb/hp-hr         | 3.13E-05             |
|          |                                                                          |                         |                    |                |                | Styrene                          | 1.25E-07             | lb/hp-hr         | 2.65E-06             |
|          |                                                                          |                         |                    |                |                | Toluene                          | 5.86E-06             | lb/hp-hr         | 1.24E-04             |
|          |                                                                          |                         |                    |                |                | Vinyl Chloride                   | 7.54E-08             | lb/hp-hr         | 1.60E-06             |
|          |                                                                          |                         |                    |                |                | Xylene                           | 2.05E-06             | lb/hp-hr         | 4.34E-05             |
|          |                                                                          |                         |                    |                |                | 1,1,2,2-Tetrachloroethane        | 2.66E-07             | lb/hp-hr         | 5.63E-06             |
|          |                                                                          |                         |                    |                |                | 1,1,2-Trichloroethane            | 1.61E-07             | lb/hp-hr         | 3.40E-06             |
|          |                                                                          |                         |                    |                |                | 1,1-Dichloroethane               | 1.19E-07             | lb/hp-hr         | 2.51E-06             |
|          |                                                                          |                         |                    |                |                | 1,2-Dichloroethane               | 1.19E-07             | lb/hp-hr         | 2.51E-06             |
|          |                                                                          |                         |                    |                |                | 1,2-Dichloropropane              | 1.19E-07<br>1.37E-07 | lb/hp-hr         | 2.89E-06             |
|          |                                                                          |                         |                    |                |                | 1,3-Butadiene                    | 6.96E-06             | lb/hp-hr         | 1.47E-04             |
|          |                                                                          |                         |                    |                |                | 1,3-Dichloropropene              | 1.33E-07             | lb/hp-hr         | 2.82E-06             |
|          |                                                                          |                         |                    |                |                | Acetaldehyde                     | 2.93E-05             | lb/hp-hr         | 6.20E-04             |
|          |                                                                          |                         |                    |                |                | Acrolein                         | 2.93E-05<br>2.76E-05 | lb/hp-hr         | 5.85E-04             |
|          |                                                                          |                         |                    |                |                | Benzene                          | 1.66E-05             | lb/hp-hr         | 3.51E-04             |
| 049-62   | Sycamore Propane Emergency Generator 2                                   | SEG-P                   | NF                 | 42,350         | hp-hr          | Carbon Tetrachloride             | 1.86E-07             | lb/hp-hr         | 3.94E-06             |
| (AOS1)   | (AOS1) (84.7 hp engine)                                                  | 525-1                   | '''                | 72,000         | "' 4"          | Chlorobenzene                    | 1.35E-07             |                  | 2.87E-06             |
|          |                                                                          |                         |                    |                |                | Chloroform                       | 1.35E-07<br>1.44E-07 | lb/hp-hr         | 3.05E-06             |
|          |                                                                          |                         |                    |                |                |                                  | 2.60E-07             | lb/hp-hr         | 5.51E-06             |
|          |                                                                          |                         |                    |                |                | Ethylbenzene Ethylene Dibromide  |                      | lb/hp-hr         | 5.51E-06<br>4.74E-06 |
|          |                                                                          |                         |                    |                |                | Ethylene Dibromide               | 2.24E-07             | lb/hp-hr         | 4.74E-06<br>4.56E-03 |
|          |                                                                          |                         |                    |                |                | Formaldehyde                     | 2.15E-04             | lb/hp-hr         |                      |
|          |                                                                          |                         |                    |                |                | Methanol  Mathylana Chlorida     | 3.21E-05             | lb/hp-hr         | 6.80E-04             |
| 1        |                                                                          |                         |                    |                |                | Methylene Chloride               | 4.33E-07             | lb/hp-hr         | 9.16E-06             |
| 1        |                                                                          |                         |                    |                |                | Naphthalene                      | 1.02E-06             | lb/hp-hr         | 2.16E-05             |
| 1        |                                                                          |                         |                    |                |                | Polycyclic Aromatic Hydrocarbons | 1.48E-06             | lb/hp-hr         | 3.13E-05             |
|          |                                                                          |                         |                    |                |                | Styrene                          | 1.25E-07             | lb/hp-hr         | 2.65E-06             |

## Emission Inventory Tables for Potential Emission Calculations

July 2023

Table G.10 Annual HAP Emissions - Potential Emission Calculations

| Process       | Process/Emission Unit Description                                          | Process           | Non-Fug.           | Annual Process    | Rate Units     | HAP Informatio |          | F        |                 |
|---------------|----------------------------------------------------------------------------|-------------------|--------------------|-------------------|----------------|----------------|----------|----------|-----------------|
| Number        | Process/Emission onli Description                                          | Code              | (NF) /<br>Fug. (F) | Rate              | Rate Offics    | Name           | EF       | EF Units | Emissions (tpy) |
| 049-62        |                                                                            |                   |                    |                   |                | Toluene        | 5.86E-06 | lb/hp-hr | 1.24E-04        |
| (AOS1)        | Sycamore Propane Emergency Generator 2<br>(AOS1) (84.7 hp engine) (cont'd) | SEG-P<br>(cont'd) | NF<br>(cont'd)     | 42,350            | hp-hr (cont'd) | Vinyl Chloride | 7.54E-08 | lb/hp-hr | 1.60E-06        |
| (cont'd)      |                                                                            | ,                 | ` ′                |                   |                | Xylene         | 2.05E-06 | lb/hp-hr | 4.34E-05        |
| Total of Non  | -Fugitive Emissions for Affected Emissions Un                              | its - Following   | the Propos         | ed Updates:       |                |                |          |          | 2.05E+00        |
| Total of Fugi | itive Emissions for Affected Emissions Units - I                           | ollowing the      | Proposed U         | pdates:           |                |                |          |          | 2.27E+00        |
| Total of Non  | -Fugitive and Fugitive Emissions for Affected E                            | Emissions Un      | its - Followir     | g the Proposed Up | dates:         |                |          |          | 4.32E+00        |
| Total Chang   | ge in Non-Fugitive Emissions:                                              |                   |                    |                   |                |                |          |          | 2.04E+00        |
| Total Chang   | ge in Fugitive Emissions:                                                  |                   |                    |                   |                |                |          |          | 1.64E+00        |
| Total Chang   | ge in Non-Fugitive and Fugitive Emissions:                                 |                   |                    |                   |                |                |          |          | 3.68E+00        |
| Total Chang   | ge in FMBI Facility-Wide PTE (includes all n                               | on-fugitive       | and fugitive       | emissions):       |                |                |          |          | 3.68E+00        |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process         |                                             | Process             | Non-Fug.           | Hourly Process |            | HAP Information   | on                   |                      | Emissions            |
|-----------------|---------------------------------------------|---------------------|--------------------|----------------|------------|-------------------|----------------------|----------------------|----------------------|
| Number          | Process/Emission Unit Description           | Code                | (NF) /<br>Fug. (F) | Rate           | Rate Units | Name              | EF                   | EF Units             | (lb/hr)              |
| Affected Em     | nissions Units - Design of AOS1 in Class II | Air Quality P       | Permit #774        | 14             |            |                   |                      |                      |                      |
| Mining Opera    | ations (AOS1)                               |                     |                    |                |            |                   |                      |                      |                      |
|                 |                                             |                     |                    |                |            | Antimony          | 3.12E-06             | lb/hole              | 6.24E-04             |
|                 |                                             |                     |                    |                |            | Arsenic           | 1.01E-05             | lb/hole              | 2.02E-03             |
|                 |                                             |                     |                    |                |            | Beryllium         | 1.07E-06             | lb/hole              | 2.13E-04             |
|                 |                                             |                     |                    |                |            | Cadmium           | 3.86E-07             | lb/hole              | 7.73E-05             |
| 026-3           |                                             | Drilling            | _                  |                |            | Chromium          | 2.31E-05             | lb/hole              | 4.62E-03             |
| (AOS1)          | Drilling (AOS1)                             | (AOS1-C)            | F                  | 200            | holes      | Cobalt            | 1.11E-05             | lb/hole              | 2.22E-03             |
|                 |                                             |                     |                    |                |            | Lead              | 1.65E-05             | lb/hole              | 3.30E-03             |
|                 |                                             |                     |                    |                |            | Manganese         | 1.84E-04             | lb/hole              | 3.68E-02             |
|                 |                                             |                     |                    |                |            | Mercury           | 1.82E-07             | lb/hole              | 3.63E-05             |
|                 |                                             |                     |                    |                |            | Nickel            | 1.54E-05             | lb/hole              | 3.08E-03             |
|                 |                                             |                     |                    |                |            | Selenium<br>POM   | 1.63E-06             | lb/hole              | 3.25E-04             |
|                 |                                             |                     |                    |                |            | Formaldehyde      | 5.67E-03<br>1.05E-01 | lb/blast<br>lb/blast | 5.67E-03<br>1.05E-01 |
|                 |                                             |                     |                    |                |            | Antimony          | 2.61E-03             | lb/blast             | 2.61E-03             |
|                 |                                             |                     |                    |                |            | Arsenic           | 9.38E-03             | lb/blast             | 9.38E-03             |
|                 |                                             |                     |                    |                |            | Beryllium         | 1.59E-03             | lb/blast             | 1.59E-03             |
|                 |                                             |                     |                    |                |            | Cadmium           | 1.02E-03             | lb/blast             | 1.02E-03             |
| 026-2           | Blasting (AOS1)                             | HBlasting           | F                  | 1              | blasts     | Chromium          | 2.00E-02             | lb/blast             | 2.00E-02             |
| (AOS1)          | J ,                                         | (AOS1-C)            |                    |                |            | Cobalt            | 9.29E-03             | lb/blast             | 9.29E-03             |
|                 |                                             |                     |                    |                |            | Lead              | 1.59E-02             | lb/blast             | 1.59E-02             |
|                 |                                             |                     |                    |                |            | Manganese         | 1.55E-01             | lb/blast             | 1.55E-01             |
|                 |                                             |                     |                    |                |            | Mercury           | 8.54E-04             | lb/blast             | 8.54E-04             |
|                 |                                             |                     |                    |                |            | Nickel            | 1.36E-02             | lb/blast             | 1.36E-02             |
|                 |                                             |                     |                    |                |            | Selenium          | 4.87E-03             | lb/blast             | 4.87E-03             |
|                 |                                             |                     |                    |                |            | Antimony          | 2.36E-05             | lb/VMT               | 1.12E-03             |
|                 |                                             |                     |                    |                |            | Arsenic           | 7.66E-05             | lb/VMT               | 3.62E-03             |
|                 |                                             |                     |                    |                |            | Beryllium         | 8.08E-06             | lb/VMT               | 3.82E-04             |
|                 |                                             |                     |                    |                |            | Cadmium           | 2.92E-06             | lb/VMT               | 1.38E-04             |
|                 |                                             |                     |                    |                |            | Chromium          | 1.75E-04             | lb/VMT               | 8.25E-03             |
| 022-1<br>(AOS1) | Haul Truck Travel Inside the Pit (AOS1)     | HTravel<br>(AOS1-C) | F                  | 473            | VMT        | Cobalt            | 8.42E-05             | lb/VMT               | 3.98E-03             |
| , ,             |                                             |                     |                    |                |            | Lead              | 1.25E-04             | lb/VMT               | 5.91E-03             |
|                 |                                             |                     |                    |                |            | Manganese         | 1.39E-03             | lb/VMT               | 6.57E-02             |
|                 |                                             |                     |                    |                |            | Mercury           | 1.38E-06             | lb/VMT               | 6.50E-05             |
|                 |                                             |                     |                    |                |            | Nickel            | 1.16E-04             | lb/VMT               | 5.50E-03             |
|                 |                                             |                     |                    |                |            | Selenium          | 1.23E-05             | lb/VMT               | 5.81E-04             |
|                 |                                             |                     |                    |                |            | Antimony          | 2.36E-05             | lb/VMT               | 3.72E-04             |
|                 |                                             |                     |                    |                |            | Arsenic           | 7.66E-05             | lb/VMT               | 1.21E-03             |
|                 |                                             |                     |                    |                |            | Beryllium         | 8.08E-06             | Ib/VMT               | 1.27E-04             |
|                 |                                             |                     |                    |                |            | Cadmium           | 2.92E-06             | Ib/VMT               | 4.61E-05             |
| 022-2           | Hard Tarrell Tarrell O. 111 H. By (1999)    | HTravel             | _                  | 450            | \/A4T      | Chromium          | 1.75E-04             | Ib/VMT               | 2.75E-03             |
| (AOS1)          | Haul Truck Travel Outside the Pit (AOS1)    | (AOS1-C)            | F                  | 158            | VMT        | Cobalt            | 8.42E-05             | Ib/VMT               | 1.33E-03             |
|                 |                                             |                     |                    |                |            | Lead              | 1.25E-04             | Ib/VMT               | 1.97E-03             |
|                 |                                             |                     |                    |                |            | Manganese         | 1.39E-03             | Ib/VMT               | 2.19E-02             |
|                 |                                             |                     |                    |                |            | Mercury           | 1.38E-06             | Ib/VMT               | 2.17E-05             |
|                 |                                             |                     |                    |                |            | Nickel            | 1.16E-04             | Ib/VMT               | 1.83E-03<br>1.94E-04 |
|                 |                                             |                     |                    |                |            | Selenium          | 1.23E-05<br>2.36E-05 | lb/VMT               | 1.94E-04<br>1.15E-03 |
|                 |                                             |                     |                    |                |            | Antimony  Arsenic | 7.66E-05             | Ib/VMT               | 3.72E-03             |
| 000.0           |                                             |                     |                    |                |            | Beryllium         | 8.08E-06             | Ib/VMT               | 3.72E-03<br>3.93E-04 |
| 023-3<br>(AOS1) | Other Vehicle Travel (AOS1)                 | HTravel<br>(AOS1-C) | F                  | 486            | VMT        | Cadmium           | 2.92E-06             | lb/VMT               | 1.42E-04             |
|                 |                                             |                     |                    |                |            | Chromium          | 1.75E-04             | lb/VMT               | 8.49E-03             |
|                 |                                             |                     |                    |                |            | Cobalt            | 8.42E-05             | lb/VMT               | 4.09E-03             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process         | Dragge / Emission Unit Description             | Process                  | Non-Fug.           | Hourly Process | Bata Unita   | HAP Information |          | Emissions |          |
|-----------------|------------------------------------------------|--------------------------|--------------------|----------------|--------------|-----------------|----------|-----------|----------|
| Number          | Process/Emission Unit Description              | Code                     | (NF) /<br>Fug. (F) | Rate           | Rate Units   | Name            | EF       | EF Units  | (lb/hr)  |
|                 |                                                |                          |                    |                |              | Lead            | 1.25E-04 | lb/VMT    | 6.08E-03 |
| 023-3           |                                                | HTravel                  |                    |                |              | Manganese       | 1.39E-03 | lb/VMT    | 6.76E-02 |
| (AOS1)          | Other Vehicle Travel (AOS1) (cont'd)           | (AOS1-C)                 | F (cont'd)         | 486            | VMT (cont'd) | Mercury         | 1.38E-06 | lb/VMT    | 6.69E-05 |
| (cont'd)        |                                                | (cont'd)                 |                    |                |              | Nickel          | 1.16E-04 | lb/VMT    | 5.66E-03 |
|                 |                                                |                          |                    |                |              | Selenium        | 1.23E-05 | lb/VMT    | 5.98E-04 |
|                 |                                                |                          |                    |                |              | Antimony        | 6.43E-06 | lb/hr     | 1.03E-04 |
|                 |                                                |                          |                    |                |              | Arsenic         | 2.08E-05 | lb/hr     | 3.33E-04 |
|                 |                                                |                          |                    |                |              | Beryllium       | 2.20E-06 | lb/hr     | 3.52E-05 |
|                 |                                                |                          |                    |                |              | Cadmium         | 7.95E-07 | lb/hr     | 1.27E-05 |
| 000.4           |                                                | D                        |                    |                |              | Chromium        | 4.75E-05 | lb/hr     | 7.60E-04 |
| 023-1<br>(AOS1) | Dozer Operation (AOS1)                         | Dozer<br>(AOS1-C)        | F                  | 16.00          | hours        | Cobalt          | 2.29E-05 | lb/hr     | 3.66E-04 |
|                 |                                                |                          |                    |                |              | Lead            | 3.40E-05 | lb/hr     | 5.44E-04 |
|                 |                                                |                          |                    |                |              | Manganese       | 3.78E-04 | lb/hr     | 6.06E-03 |
|                 |                                                |                          |                    |                |              | Mercury         | 3.74E-07 | lb/hr     | 5.99E-06 |
|                 |                                                |                          |                    |                |              | Nickel          | 3.17E-05 | lb/hr     | 5.07E-04 |
|                 |                                                |                          |                    |                |              | Selenium        | 3.35E-06 | lb/hr     | 5.35E-05 |
|                 |                                                |                          |                    |                |              | Antimony        | 4.41E-06 | lb/VMT    | 1.32E-05 |
|                 |                                                |                          |                    |                |              | Arsenic         | 1.43E-05 | lb/VMT    | 4.29E-05 |
|                 |                                                |                          |                    |                |              | Beryllium       | 1.51E-06 | lb/VMT    | 4.52E-06 |
|                 |                                                |                          |                    |                |              | Cadmium         | 5.46E-07 | lb/VMT    | 1.64E-06 |
| 000.0           |                                                |                          |                    |                |              | Chromium        | 3.26E-05 | lb/VMT    | 9.78E-05 |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                   | Grader<br>(AOS1-C)       | F                  | 30.00          | VMT          | Cobalt          | 1.57E-05 | lb/VMT    | 4.71E-05 |
| , ,             |                                                | , ,                      |                    |                |              | Lead            | 2.33E-05 | lb/VMT    | 7.00E-05 |
|                 |                                                |                          |                    |                | -            | Manganese       | 2.60E-04 | lb/VMT    | 7.79E-04 |
|                 |                                                |                          |                    |                |              | Mercury         | 2.57E-07 | lb/VMT    | 7.70E-07 |
|                 |                                                |                          |                    |                |              | Nickel          | 2.17E-05 | lb/VMT    | 6.52E-05 |
|                 |                                                |                          |                    |                |              | Selenium        | 2.30E-06 | lb/VMT    | 6.89E-06 |
|                 |                                                |                          |                    |                |              | Antimony        | 4.99E-09 | lb/ton    | 1.52E-04 |
|                 |                                                |                          |                    |                |              | Arsenic         | 1.62E-08 | lb/ton    | 4.94E-04 |
|                 |                                                |                          |                    |                |              | Beryllium       | 1.71E-09 | lb/ton    | 5.21E-05 |
|                 |                                                |                          |                    |                |              | Cadmium         | 6.18E-10 | lb/ton    | 1.89E-05 |
| 004.4           |                                                | 0 47.11                  |                    |                |              | Chromium        | 3.69E-08 | lb/ton    | 1.13E-03 |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1) | Ore1TrUnpr<br>t (AOS1-C) | F                  | 30,515         | tons         | Cobalt          | 1.78E-08 | lb/ton    | 5.43E-04 |
|                 |                                                |                          |                    |                |              | Lead            | 2.64E-08 | lb/ton    | 8.07E-04 |
|                 |                                                |                          |                    |                |              | Manganese       | 2.94E-07 | lb/ton    | 8.97E-03 |
|                 |                                                |                          |                    |                |              | Mercury         | 2.91E-10 | lb/ton    | 8.87E-06 |
|                 |                                                |                          |                    |                |              | Nickel          | 2.46E-08 | lb/ton    | 7.51E-04 |
|                 |                                                |                          |                    |                |              | Selenium        | 2.60E-09 | lb/ton    | 7.94E-05 |
|                 |                                                |                          |                    |                |              | Antimony        | 1.14E-09 | lb/ton    | 6.66E-06 |
|                 |                                                |                          |                    |                |              | Arsenic         | 1.87E-08 | lb/ton    | 1.10E-04 |
|                 |                                                |                          |                    |                |              | Beryllium       | 1.31E-09 | lb/ton    | 7.68E-06 |
|                 |                                                |                          |                    |                |              | Cadmium         | 9.61E-10 | lb/ton    | 5.64E-06 |
| 001-6           |                                                | Ore2TrUnpr               |                    |                |              | Chromium        | 3.75E-08 | lb/ton    | 2.20E-04 |
| (AOS1)          | Unloading Ore to Primary Crusher 1 (AOS1)      | t                        | F                  | 5,865          | tons         | Cobalt          | 1.61E-08 | lb/ton    | 9.45E-05 |
|                 |                                                |                          |                    |                |              | Lead            | 1.54E-08 | lb/ton    | 9.04E-05 |
|                 |                                                |                          |                    |                |              | Manganese       | 2.61E-07 | lb/ton    | 1.53E-03 |
|                 |                                                |                          |                    |                |              | Mercury         | 5.49E-10 | lb/ton    | 3.22E-06 |
|                 |                                                |                          |                    |                |              | Nickel          | 2.20E-08 | lb/ton    | 1.29E-04 |
|                 |                                                |                          |                    |                |              | Selenium        | 3.47E-09 | lb/ton    | 2.03E-05 |
|                 |                                                |                          |                    |                |              | Antimony        | 1.14E-09 | lb/ton    | 7.95E-06 |
| 001-7           |                                                | Ore2Trl Inne             |                    |                |              | Arsenic         | 1.87E-08 | lb/ton    | 1.31E-04 |
| (AOS1)          | Unloading Ore to Primary Crusher 2 (AOS1)      | Ore2TrUnpr<br>t          | F                  | 7,000          | tons         | Beryllium       | 1.31E-09 | lb/ton    | 9.17E-06 |
|                 |                                                |                          |                    |                |              | Cadmium         | 9.61E-10 | lb/ton    | 6.73E-06 |
|                 |                                                |                          |                    |                |              | Chromium        | 3.75E-08 | lb/ton    | 2.63E-04 |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process                                 | Durance/Funication Unit December            | Process                                 | Non-Fug.           | Hourly Process | Data Unita    | HAP Information | on                   |          | Emissions            |
|-----------------------------------------|---------------------------------------------|-----------------------------------------|--------------------|----------------|---------------|-----------------|----------------------|----------|----------------------|
| Number                                  | Process/Emission Unit Description           | Code                                    | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF                   | EF Units | (lb/hr)              |
|                                         |                                             |                                         |                    |                |               | Cobalt          | 1.61E-08             | lb/ton   | 1.13E-04             |
|                                         |                                             |                                         |                    |                |               | Lead            | 1.54E-08             | lb/ton   | 1.08E-04             |
| 001-7                                   | Unloading Ore to Primary Crusher 2 (AOS1)   | Ore2TrUnpr                              |                    |                |               | Manganese       | 2.61E-07             | lb/ton   | 1.83E-03             |
| (AOS1)<br>(cont'd)                      | (cont'd)                                    | t (cont'd)                              | F (cont'd)         | 7,000          | tons (cont'd) | Mercury         | 5.49E-10             | lb/ton   | 3.84E-06             |
| ()                                      |                                             |                                         |                    |                |               | Nickel          | 2.20E-08             | lb/ton   | 1.54E-04             |
|                                         |                                             |                                         |                    |                |               | Selenium        | 3.47E-09             | lb/ton   | 2.43E-05             |
|                                         |                                             |                                         |                    |                |               | Antimony        | 0.00E+00             | lb/ton   | 0.00E+00             |
|                                         |                                             |                                         |                    |                |               | Arsenic         | 1.50E-09             | lb/ton   | 5.14E-06             |
|                                         |                                             |                                         |                    |                |               | Beryllium       | 3.44E-09             | lb/ton   | 1.18E-05             |
|                                         |                                             |                                         |                    |                |               | Cadmium         | 0.00E+00             | lb/ton   | 0.00E+00             |
|                                         |                                             |                                         |                    |                |               | Chromium        | 5.99E-09             | lb/ton   | 2.06E-05             |
| 045-3                                   | Unloading Ore to Leaching Areas (AOS1)      | Ore3TrUnpr                              | F                  | 3,433          | tons          | Cobalt          | 1.07E-08             | lb/ton   | 3.68E-05             |
| (AOS1)                                  |                                             | t                                       |                    | .,             |               | Lead            | 1.60E-08             | lb/ton   | 5.48E-05             |
|                                         |                                             |                                         |                    |                |               | Manganese       | 2.28E-07             | lb/ton   | 7.82E-04             |
|                                         |                                             |                                         |                    |                |               | Mercury         | 0.00E+00             | lb/ton   | 0.00E+00             |
|                                         |                                             |                                         |                    |                |               | Nickel          | 8.73E-09             | lb/ton   | 3.00E-05             |
|                                         |                                             |                                         |                    |                |               |                 |                      |          |                      |
|                                         |                                             |                                         |                    |                |               | Selenium        | 0.00E+00             | lb/ton   | 0.00E+00             |
|                                         |                                             |                                         |                    |                |               | Antimony        | 8.24E-09             | lb/ton   | 1.17E-04             |
|                                         |                                             |                                         |                    |                |               | Arsenic         | 1.84E-08             | lb/ton   | 2.62E-04             |
|                                         |                                             |                                         |                    |                |               | Beryllium       | 1.50E-09             | lb/ton   | 2.13E-05             |
|                                         |                                             |                                         |                    |                |               | Cadmium         | 5.86E-10             | lb/ton   | 8.34E-06             |
| 045-1                                   | Unloading Overburden/Low Grade Ore to       | Ore4TrUnpr                              | _                  |                |               | Chromium        | 4.41E-08             | lb/ton   | 6.27E-04             |
| (AOS1)                                  | Storage Areas (AOS1)                        | t                                       | F                  | 14,217         | tons          | Cobalt          | 2.04E-08             | lb/ton   | 2.90E-04             |
|                                         |                                             |                                         |                    | 40\$1)         |               | Lead            | 3.48E-08             | lb/ton   | 4.94E-04             |
|                                         |                                             |                                         |                    |                |               | Manganese       | 3.28E-07             | lb/ton   | 4.66E-03             |
|                                         |                                             |                                         |                    |                |               | Mercury         | 2.25E-10             | lb/ton   | 3.19E-06             |
|                                         |                                             |                                         |                    |                |               | Nickel          | 2.98E-08             | lb/ton   | 4.24E-04             |
| Primary Cru                             | shing and Overland Conveying Operations (to | Pagdad Con                              | contrator) (A      |                |               | Selenium        | 2.77E-09             | lb/ton   | 3.94E-05             |
| Filliary Crus                           | shing and Overland Conveying Operations (to | Baguau Cont                             | entrator) (A       |                |               | Antimony        | 1.76E-12             | lb/dscf  | 1.58E-06             |
|                                         |                                             |                                         |                    |                |               | Arsenic         | 2.89E-11             | lb/dscf  | 2.60E-05             |
|                                         |                                             |                                         |                    |                |               | Beryllium       | 2.03E-12             | lb/dscf  | 1.82E-06             |
|                                         |                                             |                                         |                    |                |               | Cadmium         | 1.49E-12             | lb/dscf  | 1.34E-06             |
|                                         |                                             |                                         |                    |                |               | Chromium        | 5.80E-11             | lb/dscf  | 5.22E-05             |
| 001-5                                   | Dust Collector C51 (AOS1)                   | C51 (AOS1)                              | NF                 | 900,000        | dscf          | Cobalt          | 2.49E-11             | lb/dscf  | 2.24E-05             |
| (AOS1)                                  | Bust delicated Con (ACCT)                   | (4001)                                  | '\                 | 300,000        | usoi          |                 | 2.49E-11<br>2.38E-11 |          | 2.24E-05<br>2.14E-05 |
|                                         |                                             |                                         |                    |                |               | Lead            |                      | lb/dscf  |                      |
|                                         |                                             |                                         |                    |                |               | Manganese       | 4.03E-10             | lb/dscf  | 3.63E-04             |
|                                         |                                             |                                         |                    |                |               | Mercury         | 8.49E-13             | lb/dscf  | 7.64E-07             |
|                                         |                                             |                                         |                    |                |               | Nickel          | 3.40E-11             | lb/dscf  | 3.06E-05             |
|                                         |                                             |                                         |                    |                |               | Selenium        | 5.36E-12             | lb/dscf  | 4.83E-06             |
|                                         |                                             |                                         |                    |                |               | Antimony        | 3.38E-13             | lb/dscf  | 4.06E-07             |
|                                         |                                             |                                         |                    |                |               | Arsenic         | 5.56E-12             | lb/dscf  | 6.68E-06             |
|                                         |                                             |                                         |                    |                |               | Beryllium       | 3.90E-13             | lb/dscf  | 4.68E-07             |
|                                         |                                             |                                         |                    |                |               | Cadmium         | 2.86E-13             | lb/dscf  | 3.43E-07             |
| 001-16                                  |                                             | AE-001                                  |                    |                |               | Chromium        | 1.12E-11             | lb/dscf  | 1.34E-05             |
| (AOS1)                                  | Dust Collector AE-001 (AOS1)                | (AOS1)                                  | NF                 | 1,200,000      | dscf          | Cobalt          | 4.80E-12             | lb/dscf  | 5.75E-06             |
|                                         |                                             |                                         |                    |                |               | Lead            | 4.59E-12             | lb/dscf  | 5.50E-06             |
|                                         |                                             |                                         |                    |                |               | Manganese       | 7.77E-11             | lb/dscf  | 9.32E-05             |
|                                         |                                             |                                         |                    |                |               | Mercury         | 1.63E-13             | lb/dscf  | 1.96E-07             |
|                                         |                                             |                                         |                    |                |               | Nickel          | 6.55E-12             | lb/dscf  | 7.86E-06             |
|                                         |                                             |                                         |                    |                |               | Selenium        | 1.03E-12             | lb/dscf  | 1.24E-06             |
|                                         |                                             |                                         |                    |                |               | Antimony        | 3.38E-13             | lb/dscf  | 2.43E-07             |
| 001-17<br>(AOS1)                        | Dust Collector AE-014 (AOS1)                | AE-014<br>(AOS1)                        | NF                 | 720,000        | dscf          | Arsenic         | 5.56E-12             | lb/dscf  | 4.01E-06             |
| (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                             | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | I                  |                |               | Beryllium       | 3.90E-13             | lb/dscf  | 2.81E-07             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process            |                                           | Process            | Non-Fug.           | Hourly Process |               | HAP Information | on       |            | Emissions |
|--------------------|-------------------------------------------|--------------------|--------------------|----------------|---------------|-----------------|----------|------------|-----------|
| Number             | Process/Emission Unit Description         | Code               | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF       | EF Units   | (lb/hr)   |
|                    |                                           |                    |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 2.06E-07  |
|                    |                                           |                    |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 8.04E-06  |
|                    |                                           |                    |                    |                |               | Cobalt          | 4.80E-12 | lb/dscf    | 3.45E-06  |
| 001-17             |                                           | AE-014             | NF                 |                |               | Lead            | 4.59E-12 | lb/dscf    | 3.30E-06  |
| (AOS1)<br>(cont'd) | Dust Collector AE-014 (AOS1) (cont'd)     | (AOS1)<br>(cont'd) | (cont'd)           | 720,000        | dscf (cont'd) | Manganese       | 7.77E-11 | lb/dscf    | 5.59E-05  |
| ()                 |                                           | ()                 |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 1.18E-07  |
|                    |                                           |                    |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 4.72E-06  |
|                    |                                           |                    |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 7.43E-07  |
|                    |                                           |                    |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 2.43E-07  |
|                    |                                           |                    |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 4.01E-06  |
|                    |                                           |                    |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 2.81E-07  |
|                    |                                           |                    |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 2.06E-07  |
|                    |                                           |                    |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 8.04E-06  |
| 001-18             | Dust Collector AE-015 (AOS1)              | AE-015<br>(AOS1)   | NF                 | 720,000        | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 3.45E-06  |
| (AOS1)             |                                           | (AUS1)             | INF                |                |               | Lead            | 4.59E-12 | lb/dscf    | 3.30E-06  |
|                    |                                           |                    |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 5.59E-05  |
|                    |                                           |                    |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 1.18E-07  |
|                    |                                           |                    |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 4.72E-06  |
|                    |                                           |                    |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 7.43E-07  |
|                    |                                           |                    |                    |                |               | Antimony        | 1.14E-09 | lb/ton     | 8.63E-06  |
|                    |                                           |                    |                    |                |               | Arsenic         | 1.87E-08 | lb/ton     | 1.42E-04  |
|                    |                                           |                    |                    |                |               | Beryllium       | 1.31E-09 | lb/ton     | 9.96E-06  |
|                    |                                           |                    |                    |                |               | Cadmium         | 9.61E-10 | lb/ton     | 7.30E-06  |
|                    |                                           |                    | r F                | 7,600          |               | Chromium        | 3.75E-08 | lb/ton     | 2.85E-04  |
| 001-4              | Radial Stacker 5 (AOS1) to Coarse Ore     | Ore2TrUnpr<br>t    |                    |                | tons          | Cobalt          | 1.61E-08 | lb/ton     | 1.22E-04  |
| (AOS1)             | Stockpiles 1/4 (AOS1)                     |                    |                    |                |               | Lead            | 1.54E-08 | lb/ton     | 1.17E-04  |
|                    |                                           |                    |                    |                |               | Manganese       | 2.61E-07 | lb/ton     | 1.98E-03  |
|                    |                                           |                    |                    |                |               | Mercury         | 5.49E-10 | lb/ton     | 4.17E-06  |
|                    |                                           |                    |                    |                |               | Nickel          | 2.20E-08 | lb/ton     | 1.67E-04  |
|                    |                                           |                    |                    |                |               | Selenium        | 3.47E-09 | lb/ton     | 2.64E-05  |
|                    |                                           |                    |                    |                |               | Antimony        | 1.14E-09 | lb/ton     | 4.50E-06  |
|                    |                                           |                    |                    |                |               | Arsenic         | 1.87E-08 | lb/ton     | 7.41E-05  |
|                    |                                           |                    |                    |                |               | Beryllium       | 1.31E-09 | lb/ton     | 5.19E-06  |
|                    |                                           |                    |                    |                |               | Cadmium         | 9.61E-10 | lb/ton     | 3.81E-06  |
|                    |                                           |                    |                    |                |               | Chromium        | 3.75E-08 | lb/ton     | 1.49E-04  |
| 001-19             | Radial Stacker C-10 (AOS1) to Coarse Ore  |                    | F                  | 3,965          | tons          | Cobalt          | 1.61E-08 | lb/ton     | 6.39E-05  |
| (AOS1)             | Stockpile 5 (AOS1)                        | t                  |                    |                |               | Lead            | 1.54E-08 | lb/ton     | 6.11E-05  |
|                    |                                           |                    |                    |                |               | Manganese       | 2.61E-07 | lb/ton     | 1.03E-03  |
|                    |                                           |                    |                    |                |               | Mercury         | 5.49E-10 | lb/ton     | 2.18E-06  |
|                    |                                           |                    |                    |                |               | Nickel          | 2.20E-08 | lb/ton     | 8.73E-05  |
|                    |                                           |                    |                    |                |               | Selenium        | 3.47E-09 | lb/ton     | 1.38E-05  |
|                    |                                           |                    |                    |                |               | Antimony        | 1.44E-07 | lb/acre-hr | 9.93E-07  |
|                    |                                           |                    |                    |                |               | Arsenic         | 2.38E-06 | lb/acre-hr | 1.63E-05  |
|                    |                                           |                    |                    |                |               | Beryllium       | 1.67E-07 | lb/acre-hr | 1.15E-06  |
|                    |                                           |                    |                    |                |               | Cadmium         | 1.22E-07 | lb/acre-hr | 8.40E-07  |
|                    |                                           |                    |                    |                |               | Chromium        | 4.77E-06 | lb/acre-hr | 3.28E-05  |
| 027-1              | Wind Erosion of Coarse Ore Stockpiles 1/5 | HWindCOS           | F                  | 6.88           | acre-yr       | Cobalt          | 2.05E-06 | lb/acre-hr | 1.41E-05  |
| (AOS1)             | (AOS1)                                    | 1/5 (AOS1)         |                    |                |               | Lead            | 1.96E-06 | lb/acre-hr | 1.35E-05  |
|                    |                                           |                    |                    |                |               | Manganese       | 3.32E-05 | lb/acre-hr | 2.28E-04  |
|                    |                                           |                    |                    |                |               | Mercury         | 6.98E-08 | lb/acre-hr | 4.80E-07  |
|                    |                                           |                    |                    |                |               | Nickel          | 2.80E-06 | lb/acre-hr | 1.92E-05  |
|                    |                                           |                    |                    |                |               | Selenium        | 4.41E-07 | lb/acre-hr | 3.03E-06  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process          |                                                         | Process          | Non-Fug.           | Hourly Process |            | HAP Information   | on                   |                    | Emissions            |
|------------------|---------------------------------------------------------|------------------|--------------------|----------------|------------|-------------------|----------------------|--------------------|----------------------|
| Number           | Process/Emission Unit Description                       | Code             | (NF) /<br>Fug. (F) | Rate           | Rate Units | Name              | EF                   | EF Units           | (lb/hr)              |
| Primary Crus     | shing and Overland Conveying Operations (to             | Sycamore Co      | oncentrator)       | (AOS1)         |            |                   |                      |                    |                      |
|                  |                                                         |                  |                    |                |            | Antimony          | 3.38E-13             | lb/dscf            | 2.43E-07             |
|                  |                                                         |                  |                    |                |            | Arsenic           | 5.56E-12             | lb/dscf            | 4.01E-06             |
|                  |                                                         |                  |                    |                |            | Beryllium         | 3.90E-13             | lb/dscf            | 2.81E-07             |
|                  |                                                         |                  |                    |                |            | Cadmium           | 2.86E-13             | lb/dscf            | 2.06E-07             |
|                  |                                                         |                  |                    |                |            | Chromium          | 1.12E-11             | lb/dscf            | 8.04E-06             |
| 001-12<br>(AOS1) | Dust Collector AE-002 (AOS1)                            | AE-002<br>(AOS1) | NF                 | 720,000        | dscf       | Cobalt            | 4.80E-12             | lb/dscf            | 3.45E-06             |
|                  |                                                         |                  |                    |                |            | Lead              | 4.59E-12             | lb/dscf            | 3.30E-06             |
|                  |                                                         |                  |                    |                |            | Manganese         | 7.77E-11             | lb/dscf            | 5.59E-05             |
|                  |                                                         |                  |                    |                |            | Mercury           | 1.63E-13             | lb/dscf            | 1.18E-07             |
|                  |                                                         |                  |                    |                |            | Nickel            | 6.55E-12             | lb/dscf            | 4.72E-06             |
|                  |                                                         |                  |                    |                |            | Selenium          | 1.03E-12             | lb/dscf            | 7.43E-07             |
|                  |                                                         |                  |                    |                |            | Antimony          | 3.38E-13             | lb/dscf            | 3.04E-07             |
|                  |                                                         |                  |                    |                |            | Arsenic           | 5.56E-12             | lb/dscf            | 5.01E-06             |
|                  |                                                         |                  |                    |                |            | Beryllium         | 3.90E-13             | lb/dscf            | 3.51E-07             |
|                  |                                                         |                  |                    |                |            | Cadmium           | 2.86E-13             | lb/dscf            | 2.57E-07             |
| 001-13           |                                                         | AE-003           | NF                 | 900,000        |            | Chromium          | 1.12E-11             | lb/dscf            | 1.01E-05             |
| (AOS1)           | Dust Collector AE-003 (AOS1)                            | (AOS1)           |                    |                | dscf       | Cobalt            | 4.80E-12             | lb/dscf            | 4.32E-06             |
|                  |                                                         |                  |                    |                |            | Lead              | 4.59E-12             | lb/dscf            | 4.13E-06             |
|                  |                                                         |                  |                    |                |            | Manganese         | 7.77E-11             | lb/dscf            | 6.99E-05             |
|                  |                                                         |                  |                    |                |            | Mercury           | 1.63E-13             | lb/dscf            | 1.47E-07             |
|                  |                                                         |                  |                    |                |            | Nickel            | 6.55E-12             | lb/dscf            | 5.90E-06             |
|                  |                                                         |                  |                    |                |            | Selenium          | 1.03E-12             | lb/dscf            | 9.29E-07             |
|                  |                                                         |                  |                    |                |            | Antimony          | 3.38E-13             | lb/dscf            | 2.43E-07             |
|                  |                                                         |                  |                    |                |            | Arsenic           | 5.56E-12             | lb/dscf            | 4.01E-06             |
|                  |                                                         |                  |                    | 720,000        | dscf       | Beryllium         | 3.90E-13             | lb/dscf            | 2.81E-07             |
|                  |                                                         |                  |                    |                |            | Cadmium           | 2.86E-13             | lb/dscf            | 2.06E-07             |
| 001-14           | Dust Collector AE 016 (AOS1)                            | AE-016           | NE                 |                |            | Chromium          | 1.12E-11             | lb/dscf            | 8.04E-06             |
| (AOS1)           | Dust Collector AE-016 (AOS1)                            | (AOS1)           | NF                 |                |            | Cobalt            | 4.80E-12             | lb/dscf            | 3.45E-06             |
|                  |                                                         |                  |                    |                |            | Lead              | 4.59E-12             | lb/dscf            | 3.30E-06             |
|                  |                                                         |                  |                    |                |            | Manganese         | 7.77E-11<br>1.63E-13 | lb/dscf<br>lb/dscf | 5.59E-05<br>1.18E-07 |
|                  |                                                         |                  |                    |                |            | Mercury<br>Nickel | 6.55E-12             | lb/dscf            | 4.72E-06             |
|                  |                                                         |                  |                    |                |            | Selenium          | 1.03E-12             | lb/dscf            | 7.43E-07             |
|                  |                                                         |                  |                    |                |            | Antimony          | 3.38E-13             | lb/dscf            | 2.43E-07             |
|                  |                                                         |                  |                    |                |            | Arsenic           | 5.56E-12             | lb/dscf            | 4.01E-06             |
|                  |                                                         |                  |                    |                |            | Beryllium         | 3.90E-13             | lb/dscf            | 2.81E-07             |
|                  |                                                         |                  |                    |                |            | Cadmium           | 2.86E-13             | lb/dscf            | 2.06E-07             |
|                  |                                                         |                  |                    |                |            | Chromium          | 1.12E-11             | lb/dscf            | 8.04E-06             |
| 001-15           | Dust Collector AE-017 (AOS1)                            | AE-017           | NF                 | 720,000        | dscf       | Cobalt            | 4.80E-12             | lb/dscf            | 3.45E-06             |
| (AOS1)           | , ,                                                     | (AOS1)           |                    |                |            | Lead              | 4.59E-12             | lb/dscf            | 3.30E-06             |
|                  |                                                         |                  |                    |                |            | Manganese         | 7.77E-11             | lb/dscf            | 5.59E-05             |
|                  |                                                         |                  |                    |                |            | Mercury           | 1.63E-13             | lb/dscf            | 1.18E-07             |
|                  |                                                         |                  |                    |                |            | Nickel            | 6.55E-12             | lb/dscf            | 4.72E-06             |
|                  |                                                         |                  |                    |                |            | Selenium          | 1.03E-12             | lb/dscf            | 7.43E-07             |
|                  |                                                         |                  |                    |                |            | Antimony          | 1.14E-09             | lb/ton             | 2.16E-06             |
|                  |                                                         |                  |                    |                |            | Arsenic           | 1.87E-08             | lb/ton             | 3.55E-05             |
|                  |                                                         |                  |                    |                |            | Beryllium         | 1.31E-09             | lb/ton             | 2.49E-06             |
|                  |                                                         |                  |                    |                |            | Cadmium           | 9.61E-10             | lb/ton             | 1.83E-06             |
| 001-20<br>(AOS1) | Radial Stacker C-10 (AOS1) to Coarse Ore<br>Stockpile 6 | Ore2TrUnpr<br>t  | F                  | 1,900          | tons       | Chromium          | 3.75E-08             | lb/ton             | 7.13E-05             |
| (1001)           | Glockfile 0                                             |                  |                    |                |            | Cobalt            | 1.61E-08             | lb/ton             | 3.06E-05             |
|                  |                                                         |                  |                    |                |            | Lead              | 1.54E-08             | lb/ton             | 2.93E-05             |
|                  |                                                         |                  |                    |                |            | Manganese         | 2.61E-07             | lb/ton             | 4.96E-04             |
| 1                |                                                         |                  |                    |                |            | Mercury           | 5.49E-10             | lb/ton             | 1.04E-06             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process            |                                                  | Process              | Non-Fug.           | Hourly Process |               | HAP Information | on       |            | Emissions |
|--------------------|--------------------------------------------------|----------------------|--------------------|----------------|---------------|-----------------|----------|------------|-----------|
| Number             | Process/Emission Unit Description                | Code                 | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF       | EF Units   | (lb/hr)   |
| 001-20             | Radial Stacker C-10 (AOS1) to Coarse Ore         | Ore2TrUnpr           | -,                 |                |               | Nickel          | 2.20E-08 | lb/ton     | 4.18E-05  |
| (AOS1)<br>(cont'd) | Stockpile 6 (cont'd)                             | t (cont'd)           | F (cont'd)         | 1,900          | tons (cont'd) | Selenium        | 3.47E-09 | lb/ton     | 6.59E-06  |
|                    |                                                  |                      |                    |                |               | Antimony        | 1.44E-07 | lb/acre-hr | 3.38E-07  |
|                    |                                                  |                      |                    |                |               | Arsenic         | 2.38E-06 | lb/acre-hr | 5.56E-06  |
|                    |                                                  |                      |                    |                |               | Beryllium       | 1.67E-07 | lb/acre-hr | 3.90E-07  |
|                    |                                                  |                      |                    |                |               | Cadmium         | 1.22E-07 | lb/acre-hr | 2.86E-07  |
|                    |                                                  |                      |                    |                |               | Chromium        | 4.77E-06 | lb/acre-hr | 1.12E-05  |
| 027-7<br>(AOS1)    | Wind Erosion of Coarse Ore Stockpile 6<br>(AOS1) | HWindCOS<br>6 (AOS1) | F                  | 2.34           | acre-yr       | Cobalt          | 2.05E-06 | lb/acre-hr | 4.79E-06  |
|                    |                                                  |                      |                    |                |               | Lead            | 1.96E-06 | lb/acre-hr | 4.58E-06  |
|                    |                                                  |                      |                    |                |               | Manganese       | 3.32E-05 | lb/acre-hr | 7.76E-05  |
|                    |                                                  |                      |                    |                |               | Mercury         | 6.98E-08 | lb/acre-hr | 1.63E-07  |
|                    |                                                  |                      |                    |                |               | Nickel          | 2.80E-06 | lb/acre-hr | 6.55E-06  |
|                    |                                                  |                      |                    |                |               | Selenium        | 4.41E-07 | lb/acre-hr | 1.03E-06  |
| Sycamore M         | filling Operations (AOS1)                        |                      |                    |                |               |                 |          |            |           |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 1.01E-06  |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 1.67E-05  |
|                    |                                                  |                      |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 1.17E-06  |
|                    |                                                  |                      |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 8.58E-07  |
| 000.7              |                                                  | 45.000               |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 3.35E-05  |
| 002-7<br>(AOS1)    | Dust Collector AE-008 (AOS1)                     | AE-008<br>(AOS1)     | NF                 | 3,000,000      | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 1.44E-05  |
| , ,                |                                                  | , ,                  |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 1.38E-05  |
|                    |                                                  |                      |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 2.33E-04  |
|                    |                                                  |                      |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 4.90E-07  |
|                    |                                                  |                      |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 1.97E-05  |
|                    |                                                  |                      |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 3.10E-06  |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 2.43E-07  |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 4.01E-06  |
|                    |                                                  |                      |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 2.81E-07  |
|                    |                                                  |                      |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 2.06E-07  |
| 000.0              |                                                  | 45.000               |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 8.04E-06  |
| 002-8<br>(AOS1)    | Dust Collector AE-009 (AOS1)                     | AE-009<br>(AOS1)     | NF                 | 720,000        | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 3.45E-06  |
|                    |                                                  | , ,                  |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 3.30E-06  |
|                    |                                                  |                      |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 5.59E-05  |
|                    |                                                  |                      |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 1.18E-07  |
|                    |                                                  |                      |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 4.72E-06  |
|                    |                                                  |                      |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 7.43E-07  |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 4.06E-07  |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 6.68E-06  |
|                    |                                                  |                      |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 4.68E-07  |
|                    |                                                  |                      |                    |                |               | Cadmium         | 2.86E-13 | lb/dscf    | 3.43E-07  |
| 002.0              |                                                  | AE 040               |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 1.34E-05  |
| 002-9<br>(AOS1)    | Dust Collector AE-010 (AOS1)                     | AE-010<br>(AOS1)     | NF                 | 1,200,000      | dscf          | Cobalt          | 4.80E-12 | lb/dscf    | 5.75E-06  |
|                    |                                                  |                      |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 5.50E-06  |
|                    |                                                  |                      |                    |                |               | Manganese       | 7.77E-11 | lb/dscf    | 9.32E-05  |
|                    |                                                  |                      |                    |                |               | Mercury         | 1.63E-13 | lb/dscf    | 1.96E-07  |
|                    |                                                  |                      |                    |                |               | Nickel          | 6.55E-12 | lb/dscf    | 7.86E-06  |
|                    |                                                  |                      |                    |                |               | Selenium        | 1.03E-12 | lb/dscf    | 1.24E-06  |
|                    |                                                  |                      |                    |                |               | Antimony        | 3.38E-13 | lb/dscf    | 2.43E-07  |
|                    |                                                  |                      |                    |                |               | Arsenic         | 5.56E-12 | lb/dscf    | 4.01E-06  |
| 000.40             |                                                  | AE 044               |                    |                |               | Beryllium       | 3.90E-13 | lb/dscf    | 2.81E-07  |
| 002-10<br>(AOS1)   | Dust Collector AE-011 (AOS1)                     | AE-011<br>(AOS1)     | NF                 | 720,000        | dscf          | Cadmium         | 2.86E-13 | lb/dscf    | 2.06E-07  |
|                    |                                                  |                      |                    |                |               | Chromium        | 1.12E-11 | lb/dscf    | 8.04E-06  |
| 1                  |                                                  |                      |                    |                |               | Cobalt          | 4.80E-12 | lb/dscf    | 3.45E-06  |
|                    |                                                  |                      |                    |                |               | Lead            | 4.59E-12 | lb/dscf    | 3.30E-06  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

|                    |                                                    |                    | Non-Fug.           |                        |               | Emission Calculations  HAP Informa | ition    |          |                      |
|--------------------|----------------------------------------------------|--------------------|--------------------|------------------------|---------------|------------------------------------|----------|----------|----------------------|
| Process<br>Number  | Process/Emission Unit Description                  | Process<br>Code    | (NF) /<br>Fug. (F) | Hourly Process<br>Rate | Rate Units    | Name                               | EF       | EF Units | Emissions<br>(lb/hr) |
|                    |                                                    |                    |                    |                        |               | Manganese                          | 7.77E-11 | lb/dscf  | 5.59E-05             |
| 002-10             |                                                    | AE-011             | NF                 |                        |               | Mercury                            | 1.63E-13 | lb/dscf  | 1.18E-07             |
| (AOS1)<br>(cont'd) | Dust Collector AE-011 (AOS1) (cont'd)              | (AOS1)<br>(cont'd) | (cont'd)           | 720,000                | dscf (cont'd) | Nickel                             | 6.55E-12 | lb/dscf  | 4.72E-06             |
| (oonta)            |                                                    | (oontu)            |                    |                        |               | Selenium                           | 1.03E-12 | lb/dscf  | 7.43E-07             |
|                    |                                                    |                    |                    |                        |               | Antimony                           | 3.38E-13 | lb/dscf  | 2.43E-07             |
|                    |                                                    |                    |                    |                        |               | Arsenic                            | 5.56E-12 | lb/dscf  | 4.01E-06             |
|                    |                                                    |                    |                    |                        |               | Beryllium                          | 3.90E-13 | lb/dscf  | 2.81E-07             |
|                    |                                                    |                    |                    |                        |               | Cadmium                            | 2.86E-13 | lb/dscf  | 2.06E-07             |
|                    |                                                    |                    |                    |                        |               | Chromium                           | 1.12E-11 | lb/dscf  | 8.04E-06             |
| 002-11             | Dust Collector AE-007 (AOS1)                       | AE-007             | NF                 | 720,000                | dscf          | Cobalt                             | 4.80E-12 | lb/dscf  | 3.45E-06             |
| (AOS1)             | , ,                                                | (AOS1)             |                    |                        |               | Lead                               | 4.59E-12 | lb/dscf  | 3.30E-06             |
|                    |                                                    |                    |                    |                        |               | Manganese                          | 7.77E-11 | lb/dscf  | 5.59E-05             |
|                    |                                                    |                    |                    |                        |               | Mercury                            | 1.63E-13 | lb/dscf  | 1.18E-07             |
|                    |                                                    |                    |                    |                        |               | Nickel                             | 6.55E-12 | lb/dscf  | 4.72E-06             |
|                    |                                                    |                    |                    |                        |               | Selenium                           | 1.03E-12 | lb/dscf  | 7.43E-07             |
|                    |                                                    |                    |                    |                        |               | Antimony                           | 3.38E-13 | lb/dscf  | 6.69E-07             |
|                    |                                                    |                    |                    |                        |               | Arsenic                            | 5.56E-12 | lb/dscf  | 1.10E-05             |
|                    |                                                    |                    |                    |                        |               | Beryllium                          | 3.90E-13 | lb/dscf  | 7.72E-07             |
|                    |                                                    |                    |                    |                        |               | Cadmium                            | 2.86E-13 | lb/dscf  | 5.66E-07             |
|                    |                                                    |                    |                    |                        |               | Chromium                           | 1.12E-11 | lb/dscf  | 2.21E-05             |
| 002-12             | Dust Collector AE-012 (AOS1)                       | AE-012             | NF                 | 1,980,000              | dscf          | Cobalt                             | 4.80E-12 | lb/dscf  | 9.49E-06             |
| (AOS1)             | , ,                                                | (AOS1)             |                    |                        |               | Lead                               | 4.59E-12 | lb/dscf  | 9.08E-06             |
|                    |                                                    |                    |                    |                        |               | Manganese                          | 7.77E-11 | lb/dscf  | 1.54E-04             |
|                    |                                                    |                    |                    |                        |               | Mercury                            | 1.63E-13 | lb/dscf  | 3.24E-07             |
|                    |                                                    |                    |                    |                        |               | Nickel                             | 6.55E-12 | lb/dscf  | 1.30E-05             |
|                    |                                                    |                    |                    |                        |               | Selenium                           | 1.03E-12 | lb/dscf  | 2.04E-06             |
|                    |                                                    |                    |                    |                        |               | Antimony                           | 3.38E-13 | lb/dscf  | 3.65E-07             |
|                    |                                                    |                    |                    |                        |               | Arsenic                            | 5.56E-12 | lb/dscf  | 6.01E-06             |
|                    |                                                    |                    |                    |                        |               | Beryllium                          | 3.90E-13 | lb/dscf  | 4.21E-07             |
|                    |                                                    |                    |                    |                        |               | Cadmium                            | 2.86E-13 | lb/dscf  | 3.09E-07             |
|                    |                                                    |                    |                    |                        |               | Chromium                           | 1.12E-11 | lb/dscf  | 1.21E-05             |
| 002-13             | Dust Collector AE-013 (AOS1)                       | AE-013             | NF                 | 1,080,000              | dscf          | Cobalt                             | 4.80E-12 | lb/dscf  | 5.18E-06             |
| (AOS1)             | , ,                                                | (AOS1)             |                    |                        |               | Lead                               | 4.59E-12 | lb/dscf  | 4.95E-06             |
|                    |                                                    |                    |                    |                        |               | Manganese                          | 7.77E-11 | lb/dscf  | 8.39E-05             |
|                    |                                                    |                    |                    |                        |               | Mercury                            | 1.63E-13 | lb/dscf  | 1.77E-07             |
|                    |                                                    |                    |                    |                        |               | Nickel                             | 6.55E-12 | lb/dscf  | 7.08E-06             |
|                    |                                                    |                    |                    |                        |               | Selenium                           | 1.03E-12 | lb/dscf  | 1.12E-06             |
| otal of Non-       | I<br>-Fugitive Emissions for Affected Emissions Ur | nits - Prior to t  | he Proposed        | Updates:               | l .           | I                                  |          |          | 2.23E-03             |
|                    | tive Emissions for Affected Emissions Units -      |                    |                    |                        |               |                                    |          |          | 6.64E-01             |
|                    | Fugitive and Fugitive Emissions for Affected I     |                    |                    |                        | tes:          |                                    |          |          | 6.66E-01             |
|                    | nissions Units - Proposed Updated Design           |                    |                    | <u> </u>               |               |                                    |          |          |                      |
| Mining Opera       | ations (AOS1)                                      |                    |                    |                        |               |                                    |          |          |                      |
|                    |                                                    |                    |                    |                        |               | Antimony                           | 3.62E-06 | lb/hole  | 1.77E-03             |
|                    |                                                    |                    |                    |                        |               | Arsenic                            | 1.12E-05 | lb/hole  | 5.48E-03             |
|                    |                                                    |                    |                    |                        |               | Beryllium                          | 9.45E-07 | lb/hole  | 4.63E-04             |
|                    |                                                    |                    |                    |                        |               | Cadmium                            | 4.24E-07 | lb/hole  | 2.08E-04             |
|                    |                                                    |                    |                    |                        |               | Chromium                           | 2.55E-05 | lb/hole  | 1.25E-02             |
| 026-3              | Drilling (AOS1)                                    | Drilling           | F                  | 490                    | holes         | Cobalt                             | 1.17E-05 | lb/hole  | 5.74E-03             |
| (AOS1)             |                                                    | (AOS1)             |                    |                        |               | Lead                               | 1.77E-05 | lb/hole  | 8.65E-03             |
|                    |                                                    |                    |                    |                        |               | Manganese                          | 1.90E-04 | lb/hole  | 9.31E-02             |
|                    |                                                    |                    |                    |                        |               | Mercury                            | 1.97E-07 | lb/hole  | 9.64E-05             |
|                    |                                                    |                    |                    |                        |               | Nickel                             | 1.67E-05 | lb/hole  | 8.18E-03             |
|                    |                                                    |                    |                    |                        |               | Selenium                           | 1.80E-06 | lb/hole  | 8.83E-04             |
|                    |                                                    | 1                  |                    | l                      |               | Scientium                          | 1.002-00 | 15/11016 | 0.00L-04             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process         | Parameter Heit Parameter                 | Process             | Non-Fug.           | Hourly Process | Data Unita | HAP Information      | on                   |          | Emissions            |
|-----------------|------------------------------------------|---------------------|--------------------|----------------|------------|----------------------|----------------------|----------|----------------------|
| Number          | Process/Emission Unit Description        | Code                | (NF) /<br>Fug. (F) | Rate           | Rate Units | Name                 | EF                   | EF Units | (lb/hr)              |
|                 |                                          |                     |                    |                |            | POM                  | 2.14E-02             | lb/blast | 2.14E-02             |
|                 |                                          |                     |                    |                |            | Formaldehyde         | 3.95E-01             | lb/blast | 3.95E-01             |
|                 |                                          |                     |                    |                |            | Antimony             | 1.19E-02             | lb/blast | 1.19E-02             |
|                 |                                          |                     |                    |                |            | Arsenic              | 4.02E-02             | lb/blast | 4.02E-02             |
|                 |                                          |                     |                    |                |            | Beryllium            | 5.74E-03             | lb/blast | 5.74E-03             |
|                 |                                          |                     |                    |                |            | Cadmium              | 4.04E-03             | lb/blast | 4.04E-03             |
| 026-2<br>(AOS1) | Blasting (AOS1)                          | HBlasting<br>(AOS1) | F                  | 1              | blasts     | Chromium             | 8.61E-02             | lb/blast | 8.61E-02             |
| (1221)          |                                          | ( ,                 |                    |                |            | Cobalt               | 3.84E-02             | lb/blast | 3.84E-02             |
|                 |                                          |                     |                    |                |            | Lead                 | 6.58E-02             | lb/blast | 6.58E-02             |
|                 |                                          |                     |                    |                |            | Manganese            | 6.28E-01             | lb/blast | 6.28E-01             |
|                 |                                          |                     |                    |                |            | Mercury              | 3.29E-03             | lb/blast | 3.29E-03             |
|                 |                                          |                     |                    |                |            | Nickel               | 5.74E-02             | lb/blast | 5.74E-02             |
|                 |                                          |                     |                    |                |            | Selenium             | 1.91E-02             | lb/blast | 1.91E-02             |
|                 |                                          |                     |                    |                |            | Antimony             | 2.68E-05             | lb/VMT   | 6.00E-03             |
|                 |                                          |                     |                    |                |            | Arsenic              | 8.27E-05             | lb/VMT   | 1.85E-02             |
|                 |                                          |                     |                    |                |            | Beryllium            | 6.99E-06             | lb/VMT   | 1.57E-03             |
|                 |                                          |                     |                    |                |            | Cadmium              | 3.14E-06             | lb/VMT   | 7.03E-04             |
| 022-1           |                                          | HTravel<br>(AOS1)   |                    |                |            | Chromium             | 1.88E-04             | lb/VMT   | 4.22E-02             |
| (AOS1)          | Haul Truck Travel Inside the Pit (AOS1)  |                     | F                  | 2,239          | VMT        | Cobalt               | 8.67E-05             | lb/VMT   | 1.94E-02             |
|                 |                                          |                     |                    |                |            | Lead                 | 1.31E-04             | lb/VMT   | 2.93E-02             |
|                 |                                          |                     |                    |                |            | Manganese            | 1.41E-03             | lb/VMT   | 3.15E-01             |
|                 |                                          |                     |                    |                |            | Mercury              | 1.46E-06             | lb/VMT   | 3.26E-04             |
|                 |                                          |                     |                    |                |            | Nickel               | 1.24E-04             | lb/VMT   | 2.77E-02             |
|                 |                                          |                     |                    |                |            | Selenium             | 1.33E-05             | lb/VMT   | 2.98E-03             |
|                 |                                          |                     |                    |                |            | Antimony             | 2.68E-05             | lb/VMT   | 2.00E-03             |
|                 |                                          |                     |                    |                |            | Arsenic              | 8.27E-05             | lb/VMT   | 6.17E-03             |
|                 |                                          |                     |                    |                |            | Beryllium            | 6.99E-06             | lb/VMT   | 5.22E-04             |
|                 |                                          |                     |                    | 746            | VAAT       | Cadmium              | 3.14E-06             | lb/VMT   | 2.34E-04             |
| 022-2           |                                          | HTravel             | _                  |                |            | Chromium             | 1.88E-04             | lb/VMT   | 1.41E-02             |
| (AOS1)          | Haul Truck Travel Outside the Pit (AOS1) | (AOS1)              | F                  |                | VMT        | Cobalt               | 8.67E-05             | Ib/VMT   | 6.47E-03             |
|                 |                                          |                     |                    |                |            | Lead                 | 1.31E-04             | Ib/VMT   | 9.75E-03             |
|                 |                                          |                     |                    |                |            | Manganese            | 1.41E-03             | Ib/VMT   | 1.05E-01             |
|                 |                                          |                     |                    |                |            | Mercury              | 1.46E-06<br>1.24E-04 | Ib/VMT   | 1.09E-04             |
|                 |                                          |                     |                    |                |            | Nickel               |                      | Ib/VMT   | 9.22E-03             |
|                 |                                          |                     |                    |                |            | Selenium             | 1.33E-05             | Ib/VMT   | 9.95E-04             |
|                 |                                          |                     |                    |                |            | Antimony<br>Arsenic  | 2.68E-05<br>8.27E-05 | lb/VMT   | 5.86E-03<br>1.81E-02 |
|                 |                                          |                     |                    |                |            |                      |                      |          | 1.81E-02<br>1.53E-03 |
|                 |                                          |                     |                    |                |            | Beryllium<br>Cadmium | 6.99E-06<br>3.14E-06 | lb/VMT   | 6.87E-04             |
|                 |                                          |                     |                    |                |            | Chromium             | 1.88E-04             | Ib/VMT   | 4.12E-02             |
| 023-3           | Other Vehicle Travel (AOS1)              | HTravel             | F                  | 2,188          | VMT        | Cobalt               | 8.67E-05             | lb/VMT   | 1.90E-02             |
| (AOS1)          |                                          | (AOS1)              | '                  |                |            | Lead                 | 1.31E-04             | Ib/VMT   | 2.86E-02             |
|                 |                                          |                     |                    |                |            | Manganese            | 1.41E-03             | Ib/VMT   | 3.08E-01             |
|                 |                                          |                     |                    |                |            | Mercury              | 1.46E-06             | Ib/VMT   | 3.18E-04             |
|                 |                                          |                     |                    |                |            | Nickel               | 1.24E-04             | Ib/VMT   | 2.70E-02             |
|                 |                                          |                     |                    |                |            | Selenium             | 1.33E-05             | Ib/VMT   | 2.92E-03             |
|                 |                                          |                     |                    |                |            | Antimony             | 7.45E-06             | lb/hr    | 1.64E-04             |
|                 |                                          |                     |                    |                |            | Arsenic              | 2.30E-05             | lb/hr    | 5.06E-04             |
|                 |                                          |                     |                    |                |            | Beryllium            | 1.94E-06             | lb/hr    | 4.28E-05             |
| 023-1           |                                          | Dozer               |                    |                |            | Cadmium              | 8.73E-07             | lb/hr    | 1.92E-05             |
| (AOS1)          | Dozer Operation (AOS1)                   | (AOS1)              | F                  | 22.00          | hours      | Chromium             | 5.24E-05             | lb/hr    | 1.15E-03             |
| ı               |                                          |                     |                    |                |            | Cobalt               | 2.41E-05             | lb/hr    | 5.31E-04             |
| ı               |                                          |                     |                    |                |            | Lead                 | 3.63E-05             | lb/hr    | 7.99E-04             |
|                 |                                          |                     |                    |                |            | Manganese            | 3.91E-04             | lb/hr    | 8.60E-03             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process         | B                                              | Process                | Non-Fug.           | Hourly Process | B. (. 11.%)       | HAP Information | on       |          | Emissions |
|-----------------|------------------------------------------------|------------------------|--------------------|----------------|-------------------|-----------------|----------|----------|-----------|
| Number          | Process/Emission Unit Description              | Code                   | (NF) /<br>Fug. (F) | Rate           | Rate Units        | Name            | EF       | EF Units | (lb/hr)   |
| 023-1           |                                                | Dozor                  |                    |                |                   | Mercury         | 4.05E-07 | lb/hr    | 8.91E-06  |
| (AOS1)          | Dozer Operation (AOS1) (cont'd)                | Dozer<br>(AOS1)        | F (cont'd)         | 22.00          | hours<br>(cont'd) | Nickel          | 3.44E-05 | lb/hr    | 7.56E-04  |
| (cont'd)        |                                                | (cont'd)               |                    |                | (conta)           | Selenium        | 3.71E-06 | lb/hr    | 8.16E-05  |
|                 |                                                |                        |                    |                |                   | Antimony        | 5.11E-06 | lb/VMT   | 2.45E-05  |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.58E-05 | lb/VMT   | 7.58E-05  |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.33E-06 | lb/VMT   | 6.40E-06  |
|                 |                                                |                        |                    |                |                   | Cadmium         | 5.99E-07 | lb/VMT   | 2.87E-06  |
|                 |                                                |                        |                    |                |                   | Chromium        | 3.59E-05 | lb/VMT   | 1.73E-04  |
| 023-2<br>(AOS1) | Road Grader Operation (AOS1)                   | Grader<br>(AOS1)       | F                  | 48.00          | VMT               | Cobalt          | 1.65E-05 | lb/VMT   | 7.94E-05  |
| , ,             |                                                | , ,                    |                    |                |                   | Lead            | 2.49E-05 | lb/VMT   | 1.20E-04  |
|                 |                                                |                        |                    |                |                   | Manganese       | 2.68E-04 | lb/VMT   | 1.29E-03  |
|                 |                                                |                        |                    |                |                   | Mercury         | 2.78E-07 | lb/VMT   | 1.33E-06  |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.36E-05 | lb/VMT   | 1.13E-04  |
|                 |                                                |                        |                    |                |                   | Selenium        | 2.54E-06 | lb/VMT   | 1.22E-05  |
|                 |                                                |                        |                    |                |                   | Antimony        | 5.79E-09 | lb/ton   | 2.28E-04  |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.79E-08 | lb/ton   | 7.04E-04  |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.51E-09 | lb/ton   | 5.95E-05  |
|                 |                                                |                        |                    |                |                   | Cadmium         | 6.78E-10 | lb/ton   | 2.67E-05  |
|                 |                                                |                        |                    |                |                   | Chromium        | 4.07E-08 | lb/ton   | 1.60E-03  |
| 021-1<br>(AOS1) | Loading Mined Material into Haul Trucks (AOS1) | Ore1TrUnpr<br>t (AOS1) | r F                | 39,352         | tons              | Cobalt          | 1.87E-08 | lb/ton   | 7.38E-04  |
| (7.00.)         | (1331)                                         |                        |                    |                |                   | Lead            | 2.82E-08 | lb/ton   | 1.11E-03  |
|                 |                                                |                        |                    |                |                   | Manganese       | 3.04E-07 | lb/ton   | 1.20E-02  |
|                 |                                                |                        |                    |                |                   | Mercury         | 3.15E-10 | lb/ton   | 1.24E-05  |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.67E-08 | lb/ton   | 1.05E-03  |
|                 |                                                |                        |                    |                |                   | Selenium        | 2.88E-09 | lb/ton   | 1.13E-04  |
|                 |                                                |                        |                    |                |                   | Antimony        | 1.14E-09 | lb/ton   | 9.08E-06  |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.87E-08 | lb/ton   | 1.50E-04  |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.31E-09 | lb/ton   | 1.05E-05  |
|                 |                                                |                        |                    |                |                   | Cadmium         | 9.61E-10 | lb/ton   | 7.69E-06  |
|                 |                                                |                        |                    |                |                   | Chromium        | 3.75E-08 | lb/ton   | 3.00E-04  |
| 001-6<br>(AOS1) | Unloading Ore to Primary Crusher 1 (AOS1)      | Ore2TrUnpr<br>t        | F                  | 8,000          | tons              | Cobalt          | 1.61E-08 | lb/ton   | 1.29E-04  |
| (*****)         |                                                | -                      |                    |                |                   | Lead            | 1.54E-08 | lb/ton   | 1.23E-04  |
|                 |                                                |                        |                    |                |                   | Manganese       | 2.61E-07 | lb/ton   | 2.09E-03  |
|                 |                                                |                        |                    |                |                   | Mercury         | 5.49E-10 | lb/ton   | 4.39E-06  |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.20E-08 | lb/ton   | 1.76E-04  |
|                 |                                                |                        |                    |                |                   | Selenium        | 3.47E-09 | lb/ton   | 2.78E-05  |
|                 |                                                |                        |                    |                |                   | Antimony        | 1.14E-09 | lb/ton   | 7.95E-06  |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.87E-08 | lb/ton   | 1.31E-04  |
|                 |                                                |                        |                    |                |                   | Beryllium       | 1.31E-09 | lb/ton   | 9.17E-06  |
|                 |                                                |                        |                    |                |                   | Cadmium         | 9.61E-10 | lb/ton   | 6.73E-06  |
|                 |                                                |                        |                    |                |                   | Chromium        | 3.75E-08 | lb/ton   | 2.63E-04  |
| 001-7<br>(AOS1) | Unloading Ore to Primary Crusher 2 (AOS1)      | Ore2TrUnpr<br>t        | F                  | 7,000          | tons              | Cobalt          | 1.61E-08 | lb/ton   | 1.13E-04  |
| ·/              |                                                |                        |                    |                |                   | Lead            | 1.54E-08 | lb/ton   | 1.08E-04  |
|                 |                                                |                        |                    |                |                   | Manganese       | 2.61E-07 | lb/ton   | 1.83E-03  |
|                 |                                                |                        |                    |                |                   | Mercury         | 5.49E-10 | lb/ton   | 3.84E-06  |
|                 |                                                |                        |                    |                |                   | Nickel          | 2.20E-08 | lb/ton   | 1.54E-04  |
|                 |                                                |                        |                    |                |                   | Selenium        | 3.47E-09 | lb/ton   | 2.43E-05  |
|                 |                                                |                        |                    |                |                   | Antimony        | 0.00E+00 | lb/ton   | 0.00E+00  |
|                 |                                                |                        |                    |                |                   | Arsenic         | 1.50E-09 | lb/ton   | 1.89E-06  |
|                 |                                                |                        |                    |                |                   | Beryllium       | 3.44E-09 | lb/ton   | 4.35E-06  |
| 045-3<br>(AOS1) | Unloading Ore to Leaching Areas (AOS1)         | Ore3TrUnpr<br>t        | F                  | 1,264          | tons              | Cadmium         | 0.00E+00 | lb/ton   | 0.00E+00  |
| ,,,,,,,         |                                                | `                      |                    |                |                   | Chromium        | 5.99E-09 | lb/ton   | 7.57E-06  |
|                 |                                                |                        |                    |                |                   | Cobalt          | 1.07E-08 | lb/ton   | 1.36E-05  |
|                 |                                                |                        |                    |                |                   | Lead            | 1.60E-08 | lb/ton   | 2.02E-05  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process            | B                                                             | Process         | Non-Fug.           | Hourly Process | B. (. 11.%)   | HAP Information | on       |          | Emissions |
|--------------------|---------------------------------------------------------------|-----------------|--------------------|----------------|---------------|-----------------|----------|----------|-----------|
| Number             | Process/Emission Unit Description                             | Code            | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF       | EF Units | (lb/hr)   |
|                    |                                                               |                 |                    |                |               | Manganese       | 2.28E-07 | lb/ton   | 2.88E-04  |
| 045-3              | Unloading Ore to Leaching Areas (AOS1)                        | Ore3TrUnpr      |                    |                |               | Mercury         | 0.00E+00 | lb/ton   | 0.00E+00  |
| (AOS1)<br>(cont'd) | (cont'd)                                                      | t (cont'd)      | F (cont'd)         | 1,264          | tons (cont'd) | Nickel          | 8.73E-09 | lb/ton   | 1.10E-05  |
| , ,                |                                                               |                 |                    |                |               | Selenium        | 0.00E+00 | lb/ton   | 0.00E+00  |
|                    |                                                               |                 |                    |                |               | Antimony        | 8.24E-09 | lb/ton   | 1.90E-04  |
|                    |                                                               |                 |                    |                |               | Arsenic         | 1.84E-08 | lb/ton   | 4.25E-04  |
|                    |                                                               |                 |                    |                |               | Beryllium       | 1.50E-09 | lb/ton   | 3.46E-05  |
|                    |                                                               |                 |                    |                |               | Cadmium         | 5.86E-10 | lb/ton   | 1.35E-05  |
|                    |                                                               |                 |                    |                |               | Chromium        | 4.41E-08 | lb/ton   | 1.02E-03  |
| 045-1<br>(AOS1)    | Unloading Overburden/Low Grade Ore to<br>Storage Areas (AOS1) | Ore4TrUnpr<br>t | F                  | 23,087         | tons          | Cobalt          | 2.04E-08 | lb/ton   | 4.71E-04  |
| , ,                |                                                               |                 |                    |                |               | Lead            | 3.48E-08 | lb/ton   | 8.03E-04  |
|                    |                                                               |                 |                    |                |               | Manganese       | 3.28E-07 | lb/ton   | 7.56E-03  |
|                    |                                                               |                 |                    |                |               | Mercury         | 2.25E-10 | lb/ton   | 5.19E-06  |
|                    |                                                               |                 |                    |                |               | Nickel          | 2.98E-08 | lb/ton   | 6.89E-04  |
|                    |                                                               |                 |                    |                |               | Selenium        | 2.77E-09 | lb/ton   | 6.40E-05  |
| Primary Crus       | shing and Overland Conveying Operations (to                   | Bagdad Cond     | centrator) (A      | OS1)           |               |                 |          |          |           |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.76E-12 | lb/dscf  | 1.58E-06  |
|                    |                                                               |                 |                    |                |               | Arsenic         | 2.89E-11 | lb/dscf  | 2.60E-05  |
|                    |                                                               |                 |                    |                |               | Beryllium       | 2.03E-12 | lb/dscf  | 1.82E-06  |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.49E-12 | lb/dscf  | 1.34E-06  |
|                    |                                                               |                 |                    |                |               | Chromium        | 5.80E-11 | lb/dscf  | 5.22E-05  |
| 001-5<br>(AOS1)    | Dust Collector C51 (AOS1)                                     | C51 (AOS1)      | NF                 | 900,000        | dscf          | Cobalt          | 2.49E-11 | lb/dscf  | 2.24E-05  |
| , ,                |                                                               |                 |                    |                |               | Lead            | 2.38E-11 | lb/dscf  | 2.14E-05  |
|                    |                                                               |                 |                    |                |               | Manganese       | 4.03E-10 | lb/dscf  | 3.63E-04  |
|                    |                                                               |                 |                    |                |               | Mercury         | 8.49E-13 | lb/dscf  | 7.64E-07  |
|                    |                                                               |                 |                    |                |               | Nickel          | 3.40E-11 | lb/dscf  | 3.06E-05  |
|                    |                                                               |                 |                    |                |               | Selenium        | 5.36E-12 | lb/dscf  | 4.83E-06  |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.25E-10 | lb/ton   | 9.50E-08  |
|                    |                                                               |                 |                    |                |               | Arsenic         | 2.06E-09 | lb/ton   | 1.56E-06  |
|                    |                                                               |                 |                    |                |               | Beryllium       | 1.44E-10 | lb/ton   | 1.10E-07  |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.06E-10 | lb/ton   | 8.03E-08  |
|                    |                                                               |                 |                    |                |               | Chromium        | 4.13E-09 | lb/ton   | 3.14E-06  |
| 001-2<br>(AOS1)    | Overland Conveyor 3A (AOS1) to Overland<br>Conveyor 3 (AOS1)  | Ore2TrPrt       | NF                 | 7,600          | tons          | Cobalt          | 1.77E-09 | lb/ton   | 1.35E-06  |
| , ,                |                                                               |                 |                    |                |               | Lead            | 1.70E-09 | lb/ton   | 1.29E-06  |
|                    |                                                               |                 |                    |                |               | Manganese       | 2.87E-08 | lb/ton   | 2.18E-05  |
|                    |                                                               |                 |                    |                |               | Mercury         | 6.04E-11 | lb/ton   | 4.59E-08  |
|                    |                                                               |                 |                    |                |               | Nickel          | 2.42E-09 | lb/ton   | 1.84E-06  |
|                    |                                                               |                 |                    |                |               | Selenium        | 3.82E-10 | lb/ton   | 2.90E-07  |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.25E-10 | lb/ton   | 9.50E-08  |
|                    |                                                               |                 |                    |                |               | Arsenic         | 2.06E-09 | lb/ton   | 1.56E-06  |
|                    |                                                               |                 |                    |                |               | Beryllium       | 1.44E-10 | lb/ton   | 1.10E-07  |
|                    |                                                               |                 |                    |                |               | Cadmium         | 1.06E-10 | lb/ton   | 8.03E-08  |
|                    |                                                               |                 |                    |                |               | Chromium        | 4.13E-09 | lb/ton   | 3.14E-06  |
| 001-8<br>(AOS1)    | Overland Conveyor 3 (AOS1) to Overland<br>Conveyor 4 (AOS1)   | Ore2TrPrt       | NF                 | 7,600          | tons          | Cobalt          | 1.77E-09 | lb/ton   | 1.35E-06  |
|                    |                                                               |                 |                    |                |               | Lead            | 1.70E-09 | lb/ton   | 1.29E-06  |
|                    |                                                               |                 |                    |                |               | Manganese       | 2.87E-08 | lb/ton   | 2.18E-05  |
|                    |                                                               |                 |                    |                |               | Mercury         | 6.04E-11 | lb/ton   | 4.59E-08  |
|                    |                                                               |                 |                    |                |               | Nickel          | 2.42E-09 | lb/ton   | 1.84E-06  |
|                    |                                                               |                 |                    |                |               | Selenium        | 3.82E-10 | lb/ton   | 2.90E-07  |
|                    |                                                               |                 |                    |                |               | Antimony        | 1.25E-10 | lb/ton   | 9.50E-08  |
| 001.0              | 0                                                             |                 |                    |                |               | Arsenic         | 2.06E-09 | lb/ton   | 1.56E-06  |
| 001-9<br>(AOS1)    | Overland Conveyor 4 (AOS1) to Radial<br>Stacker 5 (AOS1)      | Ore2TrPrt       | NF                 | 7,600          | tons          | Beryllium       | 1.44E-10 | lb/ton   | 1.10E-07  |
| ,                  | , ,                                                           |                 |                    |                |               | Cadmium         | 1.06E-10 | lb/ton   | 8.03E-08  |
|                    |                                                               |                 |                    |                |               | Chromium        | 4.13E-09 | lb/ton   | 3.14E-06  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| <b></b>            |                                                                |                 | Non-Fug.           |                        |               | HAP Informati       | on                   |                  | F                    |
|--------------------|----------------------------------------------------------------|-----------------|--------------------|------------------------|---------------|---------------------|----------------------|------------------|----------------------|
| Process<br>Number  | Process/Emission Unit Description                              | Process<br>Code | (NF) /<br>Fug. (F) | Hourly Process<br>Rate | Rate Units    | Name                | EF                   | EF Units         | Emissions<br>(lb/hr) |
|                    |                                                                |                 |                    |                        |               | Cobalt              | 1.77E-09             | lb/ton           | 1.35E-06             |
|                    |                                                                |                 |                    |                        |               | Lead                | 1.70E-09             | lb/ton           | 1.29E-06             |
| 001-9              | Overland Conveyor 4 (AOS1) to Radial                           | Ore2TrPrt       | NF                 |                        |               | Manganese           | 2.87E-08             | lb/ton           | 2.18E-05             |
| (AOS1)<br>(cont'd) | Stacker 5 (AOS1) (cont'd)                                      | (cont'd)        | (cont'd)           | 7,600                  | tons (cont'd) | Mercury             | 6.04E-11             | lb/ton           | 4.59E-08             |
| ,                  |                                                                |                 |                    |                        |               | Nickel              | 2.42E-09             | lb/ton           | 1.84E-06             |
|                    |                                                                |                 |                    |                        |               | Selenium            | 3.82E-10             | lb/ton           | 2.90E-07             |
|                    |                                                                |                 |                    |                        |               | Antimony            | 1.14E-09             | lb/ton           | 8.63E-06             |
|                    |                                                                |                 |                    |                        |               | Arsenic             | 1.87E-08             | lb/ton           | 1.42E-04             |
|                    |                                                                |                 |                    |                        |               | Beryllium           | 1.31E-09             | lb/ton           | 9.96E-06             |
|                    |                                                                |                 |                    |                        |               | Cadmium             | 9.61E-10             | lb/ton           | 7.30E-06             |
|                    |                                                                |                 |                    |                        |               | Chromium            | 3.75E-08             | lb/ton           | 2.85E-04             |
| 001-4<br>(AOS1)    | Radial Stacker 5 (AOS1) to Coarse Ore<br>Stockpiles 1/4 (AOS1) | Ore2TrUnpr<br>t | F                  | 7,600                  | tons          | Cobalt              | 1.61E-08             | lb/ton           | 1.22E-04             |
|                    |                                                                |                 |                    |                        |               | Lead                | 1.54E-08             | lb/ton           | 1.17E-04             |
|                    |                                                                |                 |                    |                        |               | Manganese           | 2.61E-07             | lb/ton           | 1.98E-03             |
|                    |                                                                |                 |                    |                        |               | Mercury             | 5.49E-10             | lb/ton           | 4.17E-06             |
|                    |                                                                |                 |                    |                        |               | Nickel              | 2.20E-08             | lb/ton           | 1.67E-04             |
|                    |                                                                |                 |                    |                        |               | Selenium            | 3.47E-09             | lb/ton           | 2.64E-05             |
|                    |                                                                |                 |                    |                        |               | Antimony            | 1.14E-09             | lb/ton           | 8.63E-06             |
|                    |                                                                |                 |                    |                        |               | Arsenic             | 1.87E-08             | lb/ton           | 1.42E-04             |
|                    |                                                                |                 |                    |                        |               | Beryllium           | 1.31E-09             | lb/ton           | 9.96E-06             |
|                    |                                                                |                 |                    |                        |               | Cadmium             | 9.61E-10             | lb/ton           | 7.30E-06             |
| 001-10             | Radial Stacker 5 (AOS1) to Free-Standing                       | Ore2TrUnpr      |                    |                        |               | Chromium            | 3.75E-08             | lb/ton           | 2.85E-04             |
| (AOS1)             | Stacker 6 (AOS1)                                               | t               | F 7,60             | 7,600                  | tons          | Cobalt              | 1.61E-08             | lb/ton           | 1.22E-04             |
|                    |                                                                |                 |                    |                        |               | Lead                | 1.54E-08             | lb/ton           | 1.17E-04             |
|                    |                                                                |                 |                    |                        |               | Manganese           | 2.61E-07             | lb/ton           | 1.98E-03             |
|                    |                                                                |                 |                    |                        | Mercury       | 5.49E-10            | lb/ton               | 4.17E-06         |                      |
|                    |                                                                |                 |                    |                        |               | Nickel              | 2.20E-08             | lb/ton           | 1.67E-04             |
|                    |                                                                |                 |                    |                        |               | Selenium            | 3.47E-09             | lb/ton           | 2.64E-05             |
|                    |                                                                |                 |                    |                        |               | Antimony            | 1.14E-09             | lb/ton           | 8.63E-06             |
|                    |                                                                |                 |                    |                        |               | Arsenic             | 1.87E-08             | lb/ton           | 1.42E-04             |
|                    |                                                                |                 |                    |                        |               | Beryllium           | 1.31E-09             | lb/ton           | 9.96E-06             |
|                    |                                                                |                 |                    |                        |               | Cadmium<br>Chromium | 9.61E-10<br>3.75E-08 | lb/ton<br>lb/ton | 7.30E-06<br>2.85E-04 |
| 001-3              | Free-Standing Stacker 6 (AOS1) to Coarse                       | Ore2TrUnpr      | F                  | 7,600                  | tons          | Cobalt              | 1.61E-08             | lb/ton           | 1.22E-04             |
| (AOS1)             | Ore Stockpile 5 (AOS1)                                         | t               | '                  | 7,000                  | toris         | Lead                | 1.54E-08             | lb/ton           | 1.17E-04             |
|                    |                                                                |                 |                    |                        |               | Manganese           | 2.61E-07             | lb/ton           | 1.98E-03             |
|                    |                                                                |                 |                    |                        |               | Mercury             | 5.49E-10             | lb/ton           | 4.17E-06             |
|                    |                                                                |                 |                    |                        |               | Nickel              | 2.20E-08             | lb/ton           | 1.67E-04             |
|                    |                                                                |                 |                    |                        |               | Selenium            | 3.47E-09             | lb/ton           | 2.64E-05             |
|                    |                                                                |                 |                    |                        |               | Antimony            | 1.44E-07             | lb/acre-hr       | 8.92E-07             |
|                    |                                                                |                 |                    |                        |               | Arsenic             | 2.38E-06             | lb/acre-hr       | 1.47E-05             |
|                    |                                                                |                 |                    |                        |               | Beryllium           | 1.67E-07             | lb/acre-hr       | 1.03E-06             |
|                    |                                                                |                 |                    |                        |               | Cadmium             | 1.22E-07             | lb/acre-hr       | 7.55E-07             |
|                    |                                                                |                 |                    |                        |               | Chromium            | 4.77E-06             | lb/acre-hr       | 2.95E-05             |
| 027-1              | Wind Erosion of Coarse Ore Stockpiles 1/5                      | HWindCOS        | F                  | 6.18                   | acre-yr       | Cobalt              | 2.05E-06             | lb/acre-hr       | 1.27E-05             |
| (AOS1)             | (AOS1)                                                         | 1/5 (AOS1)      |                    |                        |               | Lead                | 1.96E-06             | lb/acre-hr       | 1.21E-05             |
|                    |                                                                |                 |                    |                        |               | Manganese           | 3.32E-05             | lb/acre-hr       | 2.05E-04             |
|                    |                                                                |                 |                    |                        |               | Mercury             | 6.98E-08             | lb/acre-hr       | 4.31E-07             |
|                    |                                                                |                 |                    |                        |               | Nickel              | 2.80E-06             | lb/acre-hr       | 1.73E-05             |
|                    |                                                                |                 |                    |                        |               | Selenium            | 4.41E-07             | lb/acre-hr       | 2.73E-06             |
| Primary Crus       | shing and Overland Conveying Operations (to                    | Sycamore Co     | oncentrator)       | (AOS1)                 |               |                     | -                    |                  |                      |
|                    |                                                                |                 |                    |                        |               | Antimony            | 2.99E-13             | lb/dscf          | 2.60E-07             |
| 001-12<br>(AOS1)   | PC1 Dust Collector 1 (AOS1)                                    | SDC1<br>(AOS1)  | NF                 | 870,000                | dscf          | Arsenic             | 4.92E-12             | lb/dscf          | 4.28E-06             |
| (MUSI)             | I                                                              | (AUS1)          | I                  | 1                      |               | Beryllium           | 3.45E-13             | lb/dscf          | 3.00E-07             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process            | December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 December 15 minutes in the 16 Decemb | Process            | Non-Fug.           | Hourly Process | Data Unita    | HAP Information | on       |            | Emissions |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|----------------|---------------|-----------------|----------|------------|-----------|
| Number             | Process/Emission Unit Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Code               | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF       | EF Units   | (lb/hr)   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Cadmium         | 2.53E-13 | lb/dscf    | 2.20E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Chromium        | 9.88E-12 | lb/dscf    | 8.60E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Cobalt          | 4.24E-12 | lb/dscf    | 3.69E-06  |
| 001-12             | B04 B + 0 H + 4 (4004) ( HI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SDC1               | NF                 | 070.000        | 1 6/ 415      | Lead            | 4.06E-12 | lb/dscf    | 3.53E-06  |
| (AOS1)<br>(cont'd) | PC1 Dust Collector 1 (AOS1) (cont'd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (AOS1)<br>(cont'd) | (cont'd)           | 870,000        | dscf (cont'd) | Manganese       | 6.87E-11 | lb/dscf    | 5.98E-05  |
| , ,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ,                |                    |                |               | Mercury         | 1.45E-13 | lb/dscf    | 1.26E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Nickel          | 5.80E-12 | lb/dscf    | 5.04E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Selenium        | 9.13E-13 | lb/dscf    | 7.95E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Antimony        | 2.99E-13 | lb/dscf    | 3.00E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Arsenic         | 4.92E-12 | lb/dscf    | 4.93E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Beryllium       | 3.45E-13 | lb/dscf    | 3.46E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Cadmium         | 2.53E-13 | lb/dscf    | 2.54E-07  |
| 004.42             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CDCO               |                    |                |               | Chromium        | 9.88E-12 | lb/dscf    | 9.90E-06  |
| 001-13<br>(AOS1)   | PC1 CCC1 Dust Collector 2 (AOS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDC2<br>(AOS1)     | NF                 | 1,002,000      | dscf          | Cobalt          | 4.24E-12 | lb/dscf    | 4.25E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Lead            | 4.06E-12 | lb/dscf    | 4.07E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Manganese       | 6.87E-11 | lb/dscf    | 6.89E-05  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Mercury         | 1.45E-13 | lb/dscf    | 1.45E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Nickel          | 5.80E-12 | lb/dscf    | 5.81E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Selenium        | 9.13E-13 | lb/dscf    | 9.15E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Antimony        | 2.99E-13 | lb/dscf    | 3.00E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Arsenic         | 4.92E-12 | lb/dscf    | 4.93E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Beryllium       | 3.45E-13 | lb/dscf    | 3.46E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Cadmium         | 2.53E-13 | lb/dscf    | 2.54E-07  |
| 001-14             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDC3               | NF                 | 1,002,000      | dscf          | Chromium        | 9.88E-12 | lb/dscf    | 9.90E-06  |
| (AOS1)             | PC1 CCC2 Dust Collector 3 (AOS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SDC3<br>(AOS1)     |                    |                |               | Cobalt          | 4.24E-12 | lb/dscf    | 4.25E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Lead            | 4.06E-12 | lb/dscf    | 4.07E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Manganese       | 6.87E-11 | lb/dscf    | 6.89E-05  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Mercury         | 1.45E-13 | lb/dscf    | 1.45E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Nickel          | 5.80E-12 | lb/dscf    | 5.81E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Selenium        | 9.13E-13 | lb/dscf    | 9.15E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Antimony        | 2.99E-13 | lb/dscf    | 3.00E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Arsenic         | 4.92E-12 | lb/dscf    | 4.93E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Beryllium       | 3.45E-13 | lb/dscf    | 3.46E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Cadmium         | 2.53E-13 | lb/dscf    | 2.54E-07  |
| 001-15             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SDC4               |                    |                |               | Chromium        | 9.88E-12 | lb/dscf    | 9.90E-06  |
| (AOS1)             | PC1 CCC3 Dust Collector 4 (AOS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (AOS1)             | NF                 | 1,002,000      | dscf          | Cobalt          | 4.24E-12 | lb/dscf    | 4.25E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Lead            | 4.06E-12 | lb/dscf    | 4.07E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Manganese       | 6.87E-11 | lb/dscf    | 6.89E-05  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Mercury         | 1.45E-13 | lb/dscf    | 1.45E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Nickel          | 5.80E-12 | lb/dscf    | 5.81E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Selenium        | 9.13E-13 | lb/dscf    | 9.15E-07  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Antimony        | 1.14E-09 | lb/ton     | 9.08E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Arsenic         | 1.87E-08 | lb/ton     | 1.50E-04  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Beryllium       | 1.31E-09 | lb/ton     | 1.05E-05  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Cadmium         | 9.61E-10 | lb/ton     | 7.69E-06  |
| 001-20             | PC1 Cross Country Conveyor 3 (AOS1) to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ore2Trl Innr       |                    |                |               | Chromium        | 3.75E-08 | lb/ton     | 3.00E-04  |
| (AOS1)             | Coarse Ore Stockpile 6 (AOS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t                  | F                  | 8,000          | tons          | Cobalt          | 1.61E-08 | lb/ton     | 1.29E-04  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Lead            | 1.54E-08 | lb/ton     | 1.23E-04  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Manganese       | 2.61E-07 | lb/ton     | 2.09E-03  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Mercury         | 5.49E-10 | lb/ton     | 4.39E-06  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Nickel          | 2.20E-08 | lb/ton     | 1.76E-04  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                    |                |               | Selenium        | 3.47E-09 | lb/ton     | 2.78E-05  |
| 027-7              | Wind Erosion of Coarse Ore Stockpile 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HWindCOS           | F                  | 3.04           | acre-yr       | Antimony        | 1.44E-07 | lb/acre-hr | 4.39E-07  |
| (AOS1)             | (AOS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 (AOS1)           |                    |                | - ,.          | Arsenic         | 2.38E-06 | lb/acre-hr | 7.22E-06  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process          |                                                             | Process        | Non-Fug.           | Hourly Process | B. (. 11.%)         | HAP Information | on       |            | Emissions |
|------------------|-------------------------------------------------------------|----------------|--------------------|----------------|---------------------|-----------------|----------|------------|-----------|
| Number           | Process/Emission Unit Description                           | Code           | (NF) /<br>Fug. (F) | Rate           | Rate Units          | Name            | EF       | EF Units   | (lb/hr)   |
|                  |                                                             |                |                    |                |                     | Beryllium       | 1.67E-07 | lb/acre-hr | 5.06E-07  |
|                  |                                                             |                |                    |                |                     | Cadmium         | 1.22E-07 | lb/acre-hr | 3.71E-07  |
|                  |                                                             |                |                    |                |                     | Chromium        | 4.77E-06 | lb/acre-hr | 1.45E-05  |
| 027-7            |                                                             | HWindCOS       |                    |                |                     | Cobalt          | 2.05E-06 | lb/acre-hr | 6.22E-06  |
| (AOS1)           | Wind Erosion of Coarse Ore Stockpile 6<br>(AOS1) (cont'd)   | 6 (AOS1)       | F (cont'd)         | 3.04           | acre-yr<br>(cont'd) | Lead            | 1.96E-06 | lb/acre-hr | 5.95E-06  |
| (cont'd)         | (AOST) (COILE)                                              | (cont'd)       |                    |                | (contu)             | Manganese       | 3.32E-05 | lb/acre-hr | 1.01E-04  |
|                  |                                                             |                |                    |                |                     | Mercury         | 6.98E-08 | lb/acre-hr | 2.12E-07  |
|                  |                                                             |                |                    |                |                     | Nickel          | 2.80E-06 | lb/acre-hr | 8.51E-06  |
|                  |                                                             |                |                    |                |                     | Selenium        | 4.41E-07 | lb/acre-hr | 1.34E-06  |
| Sycamore M       | I<br>filling Operations (AOS1)                              |                |                    | I              |                     |                 |          |            |           |
|                  |                                                             |                |                    |                |                     | Antimony        | 2.99E-13 | lb/dscf    | 3.95E-07  |
|                  |                                                             |                |                    |                |                     | Arsenic         | 4.92E-12 | lb/dscf    | 6.50E-06  |
|                  |                                                             |                |                    |                |                     | Beryllium       | 3.45E-13 | lb/dscf    | 4.55E-07  |
|                  |                                                             |                |                    |                |                     | Cadmium         | 2.53E-13 | lb/dscf    | 3.34E-07  |
|                  |                                                             |                |                    |                |                     | Chromium        | 9.88E-12 | lb/dscf    | 1.30E-05  |
| 002-7            | Coarse Ore Reclaim Conveyor 1 Dust                          | SDC5           | NF                 | 1,320,000      | dscf                | Cobalt          | 4.24E-12 | lb/dscf    | 5.60E-06  |
| (AOS1)           | Collector 5 (AOS1)                                          | (AOS1)         | '''                | 1,020,000      | 400.                | Lead            | 4.06E-12 | lb/dscf    | 5.36E-06  |
|                  |                                                             |                |                    |                |                     | Manganese       | 6.87E-11 | lb/dscf    | 9.07E-05  |
|                  |                                                             |                |                    |                |                     | ,               | 1.45E-13 | lb/dscf    | 1.91E-07  |
|                  |                                                             |                |                    |                |                     | Mercury         |          |            |           |
|                  |                                                             |                |                    |                |                     | Nickel          | 5.80E-12 | lb/dscf    | 7.65E-06  |
|                  |                                                             |                |                    |                |                     | Selenium        | 9.13E-13 | lb/dscf    | 1.21E-06  |
|                  |                                                             |                |                    |                |                     | Antimony        | 2.99E-13 | lb/dscf    | 3.95E-07  |
|                  |                                                             |                |                    |                |                     | Arsenic         | 4.92E-12 | lb/dscf    | 6.50E-06  |
|                  |                                                             |                |                    |                |                     | Beryllium       | 3.45E-13 | lb/dscf    | 4.55E-07  |
|                  |                                                             |                |                    |                |                     | Cadmium         | 2.53E-13 | lb/dscf    | 3.34E-07  |
| 002-8            | Coarse Ore Reclaim Conveyor 2 Dust<br>Collector 6 (AOS1)    | SDC6<br>(AOS1) | NF                 | 1,320,000      | dscf                | Chromium        | 9.88E-12 | lb/dscf    | 1.30E-05  |
| (AOS1)           |                                                             |                |                    |                |                     | Cobalt          | 4.24E-12 | lb/dscf    | 5.60E-06  |
|                  |                                                             |                |                    |                |                     | Lead            | 4.06E-12 | lb/dscf    | 5.36E-06  |
|                  |                                                             |                |                    |                |                     | Manganese       | 6.87E-11 | lb/dscf    | 9.07E-05  |
|                  |                                                             |                |                    |                |                     | Mercury         | 1.45E-13 | lb/dscf    | 1.91E-07  |
|                  |                                                             |                |                    |                |                     | Nickel          | 5.80E-12 | lb/dscf    | 7.65E-06  |
|                  |                                                             |                |                    |                |                     | Selenium        | 9.13E-13 | lb/dscf    | 1.21E-06  |
|                  |                                                             |                |                    |                |                     | Antimony        | 2.99E-13 | lb/dscf    | 4.13E-07  |
|                  |                                                             |                |                    |                |                     | Arsenic         | 4.92E-12 | lb/dscf    | 6.79E-06  |
|                  |                                                             |                |                    |                |                     | Beryllium       | 3.45E-13 | lb/dscf    | 4.76E-07  |
|                  |                                                             |                |                    |                |                     | Cadmium         | 2.53E-13 | lb/dscf    | 3.49E-07  |
| 002-9            |                                                             | SDC7           |                    |                |                     | Chromium        | 9.88E-12 | lb/dscf    | 1.36E-05  |
| (AOS1)           | HPGR Discharge Dust Collector 7 (AOS1)                      | (AOS1)         | NF                 | 1,380,000      | dscf                | Cobalt          | 4.24E-12 | lb/dscf    | 5.85E-06  |
| •                |                                                             |                |                    |                |                     | Lead            | 4.06E-12 | lb/dscf    | 5.60E-06  |
|                  |                                                             |                |                    |                |                     | Manganese       | 6.87E-11 | lb/dscf    | 9.48E-05  |
|                  |                                                             |                |                    |                |                     | Mercury         | 1.45E-13 | lb/dscf    | 2.00E-07  |
|                  |                                                             |                |                    |                |                     | Nickel          | 5.80E-12 | lb/dscf    | 8.00E-06  |
|                  |                                                             |                | <u></u> _          |                |                     | Selenium        | 9.13E-13 | lb/dscf    | 1.26E-06  |
|                  |                                                             |                |                    |                |                     | Antimony        | 2.99E-13 | lb/dscf    | 4.84E-07  |
|                  |                                                             |                |                    |                |                     | Arsenic         | 4.92E-12 | lb/dscf    | 7.97E-06  |
|                  |                                                             |                |                    |                |                     | Beryllium       | 3.45E-13 | lb/dscf    | 5.59E-07  |
|                  |                                                             |                |                    |                |                     | Cadmium         | 2.53E-13 | lb/dscf    | 4.10E-07  |
|                  |                                                             |                |                    |                |                     | Chromium        | 9.88E-12 | lb/dscf    | 1.60E-05  |
| 002-10<br>(AOS1) | HPGR Discharge Conveyor Transfer Dust<br>Collector 8 (AOS1) | SDC8<br>(AOS1) | NF                 | 1,620,000      | dscf                | Cobalt          | 4.24E-12 | lb/dscf    | 6.87E-06  |
| (AOO1)           | Collector o (AOST)                                          | (4031)         |                    |                |                     | Lead            | 4.06E-12 | lb/dscf    | 6.57E-06  |
|                  |                                                             |                |                    |                |                     | Manganese       | 6.87E-11 | lb/dscf    | 1.11E-04  |
| l                |                                                             |                |                    |                |                     | Mercury         | 1.45E-13 | lb/dscf    | 2.34E-07  |
|                  |                                                             |                |                    |                |                     | Nickel          | 5.80E-12 | lb/dscf    | 9.39E-06  |
| l                |                                                             |                |                    |                |                     | Selenium        | 9.13E-13 | lb/dscf    | 1.48E-06  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process          | Durance/Funication Unit Decomination                                               | Process         | Non-Fug.           | Hourly Process | Data Huita | HAP Information | on       |          | Emissions |
|------------------|------------------------------------------------------------------------------------|-----------------|--------------------|----------------|------------|-----------------|----------|----------|-----------|
| Number           | Process/Emission Unit Description                                                  | Code            | (NF) /<br>Fug. (F) | Rate           | Rate Units | Name            | EF       | EF Units | (lb/hr)   |
|                  |                                                                                    |                 |                    |                |            | Antimony        | 2.99E-13 | lb/dscf  | 4.49E-07  |
|                  |                                                                                    |                 |                    |                |            | Arsenic         | 4.92E-12 | lb/dscf  | 7.38E-06  |
|                  |                                                                                    |                 |                    |                |            | Beryllium       | 3.45E-13 | lb/dscf  | 5.18E-07  |
|                  |                                                                                    |                 |                    |                |            | Cadmium         | 2.53E-13 | lb/dscf  | 3.80E-07  |
|                  |                                                                                    |                 |                    |                |            | Chromium        | 9.88E-12 | lb/dscf  | 1.48E-05  |
| 002-11<br>(AOS1) | HPGR Product Bin Dust Collector 9 (AOS1)                                           | SDC9<br>(AOS1)  | NF                 | 1,500,000      | dscf       | Cobalt          | 4.24E-12 | lb/dscf  | 6.36E-06  |
| (/.00.)          |                                                                                    | (7.00.)         |                    |                |            | Lead            | 4.06E-12 | lb/dscf  | 6.09E-06  |
|                  |                                                                                    |                 |                    |                |            | Manganese       | 6.87E-11 | lb/dscf  | 1.03E-04  |
|                  |                                                                                    |                 |                    |                |            | Mercury         | 1.45E-13 | lb/dscf  | 2.17E-07  |
|                  |                                                                                    |                 |                    |                |            | Nickel          | 5.80E-12 | lb/dscf  | 8.69E-06  |
|                  |                                                                                    |                 |                    |                |            | Selenium        | 9.13E-13 | lb/dscf  | 1.37E-06  |
|                  |                                                                                    |                 |                    |                |            | Antimony        | 2.99E-13 | lb/dscf  | 1.79E-07  |
|                  |                                                                                    |                 |                    |                |            | Arsenic         | 4.92E-12 | lb/dscf  | 2.95E-06  |
|                  |                                                                                    |                 |                    |                |            | Beryllium       | 3.45E-13 | lb/dscf  | 2.07E-07  |
|                  |                                                                                    |                 |                    |                |            | Cadmium         | 2.53E-13 | lb/dscf  | 1.52E-07  |
| 000.40           | LIDOR D. L. LT. C. D. LO. H. L. 40                                                 | 00040           |                    |                |            | Chromium        | 9.88E-12 | lb/dscf  | 5.93E-06  |
| 002-12<br>(AOS1) | HPGR Product Transfer Dust Collector 10 (AOS1)                                     | SDC10<br>(AOS1) | NF                 | 600,000        | dscf       | Cobalt          | 4.24E-12 | lb/dscf  | 2.55E-06  |
| , ,              | , ,                                                                                | , ,             |                    |                |            | Lead            | 4.06E-12 | lb/dscf  | 2.43E-06  |
|                  |                                                                                    |                 |                    |                |            | Manganese       | 6.87E-11 | lb/dscf  | 4.12E-05  |
|                  |                                                                                    |                 |                    |                |            | Mercury         | 1.45E-13 | lb/dscf  | 8.67E-08  |
|                  |                                                                                    |                 |                    |                |            | Nickel          | 5.80E-12 | lb/dscf  | 3.48E-06  |
|                  |                                                                                    |                 |                    |                |            | Selenium        | 9.13E-13 | lb/dscf  | 5.48E-07  |
|                  |                                                                                    |                 |                    |                |            | Antimony        | 2.99E-13 | lb/dscf  | 1.79E-07  |
|                  |                                                                                    |                 |                    |                |            | Arsenic         | 4.92E-12 | lb/dscf  | 2.95E-06  |
|                  |                                                                                    |                 |                    |                |            | Beryllium       | 3.45E-13 | lb/dscf  | 2.07E-07  |
|                  |                                                                                    |                 |                    | 600,000        | dscf       | Cadmium         | 2.53E-13 | lb/dscf  | 1.52E-07  |
|                  |                                                                                    |                 |                    |                |            | Chromium        | 9.88E-12 | lb/dscf  | 5.93E-06  |
| 002-13<br>(AOS1) | HPGR Product Transfer Dust Collector 11 (AOS1)                                     | SDC11<br>(AOS1) | NF                 |                |            | Cobalt          | 4.24E-12 | lb/dscf  | 2.55E-06  |
| (AOS1)           | (AOS1)                                                                             | (AOS1)          |                    |                |            | Lead            | 4.06E-12 | lb/dscf  | 2.43E-06  |
|                  |                                                                                    |                 |                    |                |            | Manganese       | 6.87E-11 | lb/dscf  | 4.12E-05  |
|                  |                                                                                    |                 |                    |                |            | Mercury         | 1.45E-13 | lb/dscf  | 8.67E-08  |
|                  |                                                                                    |                 |                    |                |            | Nickel          | 5.80E-12 | lb/dscf  | 3.48E-06  |
|                  |                                                                                    |                 |                    |                |            | Selenium        | 9.13E-13 | lb/dscf  | 5.48E-07  |
| Sycamore B       | ulk and Molybdenum Flotation Operations (AC                                        | S1)             |                    |                |            |                 |          |          |           |
|                  |                                                                                    |                 |                    |                |            | Benzene         | 8.67E-06 | lb/ton   | 5.12E-04  |
|                  |                                                                                    |                 |                    |                |            | Ethylbenzene    | 1.46E-05 | lb/ton   | 8.63E-04  |
| 044-2            | Sycamore Bulk and Molybdenum Flotation                                             | MFE             | F                  | 59.10          | tons       | Hexane          | 1.83E-06 | lb/ton   | 1.08E-04  |
| (AOS1)           | Equipment                                                                          |                 |                    |                |            | Toluene         | 1.04E-04 | lb/ton   | 6.18E-03  |
|                  |                                                                                    |                 |                    |                |            | m-Xylene        | 2.72E-04 | lb/ton   | 1.61E-02  |
| Sycamore C       | oncentrate Handling Operations (AOS1)                                              |                 |                    |                |            |                 |          |          |           |
|                  |                                                                                    |                 |                    |                |            | Antimony        | 1.14E-08 | lb/ton   | 6.51E-07  |
|                  |                                                                                    |                 |                    |                |            | Arsenic         | 1.23E-08 | lb/ton   | 7.04E-07  |
|                  |                                                                                    |                 |                    |                |            | Beryllium       | 2.37E-10 | lb/ton   | 1.35E-08  |
|                  |                                                                                    |                 |                    |                |            | Cadmium         | 8.88E-10 | lb/ton   | 5.06E-08  |
|                  | Copper Coppentrate Filters 4/2 (AOCA) to                                           |                 |                    |                |            | Chromium        | 4.93E-10 | lb/ton   | 2.81E-08  |
| 006-11<br>(AOS1) | Copper Concentrate Filters 1/2 (AOS1) to<br>Copper Concentrate Filter Drop Storage | CCTrPrt         | F                  | 57.00          | tons       | Cobalt          | 2.35E-09 | lb/ton   | 1.34E-07  |
| (AUS1)           | (AOS1)                                                                             |                 |                    |                |            | Lead            | 1.73E-08 | lb/ton   | 9.85E-07  |
|                  |                                                                                    |                 |                    |                |            | Manganese       | 1.05E-09 | lb/ton   | 5.96E-08  |
|                  |                                                                                    |                 |                    |                |            | Mercury         | 1.58E-10 | lb/ton   | 9.03E-09  |
|                  |                                                                                    |                 |                    |                |            | Nickel          | 2.25E-09 | lb/ton   | 1.28E-07  |
|                  |                                                                                    |                 |                    |                |            | Selenium        | 3.91E-09 | lb/ton   | 2.23E-07  |
|                  |                                                                                    |                 |                    |                |            | Antimony        | 1.14E-08 | lb/ton   | 6.51E-07  |
|                  |                                                                                    |                 |                    | I .            |            | ,               | ,        | ,        | 0 01      |
| 006-12<br>(AOS1) | Copper Concentrate Filter Drop Storage<br>(AOS1) to Copper Concentrate Loadout     | CCTrPrt         | F                  | 57.00          | tons       | Arsenic         | 1.23E-08 | lb/ton   | 7.04E-07  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process            | December 15 minutes 1 to 16 December 1                                          | Process            | Non-Fug.           | Hourly Process | Data Unita    | HAP Information | on        |            | Emissions |
|--------------------|---------------------------------------------------------------------------------|--------------------|--------------------|----------------|---------------|-----------------|-----------|------------|-----------|
| Number             | Process/Emission Unit Description                                               | Code               | (NF) /<br>Fug. (F) | Rate           | Rate Units    | Name            | EF        | EF Units   | (lb/hr)   |
|                    |                                                                                 |                    |                    |                |               | Cadmium         | 8.88E-10  | lb/ton     | 5.06E-08  |
|                    |                                                                                 |                    |                    |                |               | Chromium        | 4.93E-10  | lb/ton     | 2.81E-08  |
|                    |                                                                                 |                    |                    |                |               | Cobalt          | 2.35E-09  | lb/ton     | 1.34E-07  |
| 006-12             | Copper Concentrate Filter Drop Storage<br>(AOS1) to Copper Concentrate Loadout  | CCTrPrt            | F. 45              | 57.00          |               | Lead            | 1.73E-08  | lb/ton     | 9.85E-07  |
| (AOS1)<br>(cont'd) | Storage (AOS1) via Front-End Loader                                             | (cont'd)           | F (cont'd)         | 57.00          | tons (cont'd) | Manganese       | 1.05E-09  | lb/ton     | 5.96E-08  |
| , ,                | (cont'd)                                                                        |                    |                    |                |               | Mercury         | 1.58E-10  | lb/ton     | 9.03E-09  |
|                    |                                                                                 |                    |                    |                |               | Nickel          | 2.25E-09  | lb/ton     | 1.28E-07  |
|                    |                                                                                 |                    |                    |                |               | Selenium        | 3.91E-09  | lb/ton     | 2.23E-07  |
|                    |                                                                                 |                    |                    |                |               | Antimony        | 1.14E-08  | lb/ton     | 6.51E-07  |
|                    |                                                                                 |                    |                    |                |               | Arsenic         | 1.23E-08  | lb/ton     | 7.04E-07  |
|                    |                                                                                 |                    |                    |                |               |                 | Beryllium | 2.37E-10   | lb/ton    |
|                    |                                                                                 |                    |                    |                |               | Cadmium         | 8.88E-10  | lb/ton     | 5.06E-08  |
| 000.40             | C C                                                                             |                    |                    |                |               | Chromium        | 4.93E-10  | lb/ton     | 2.81E-08  |
| 006-13<br>(AOS1)   | Copper Concentrate Loadout Storage<br>(AOS1) to Trucks via Front-End Loader     | CCTrPrt            | F                  | 57.00          | tons          | Cobalt          | 2.35E-09  | lb/ton     | 1.34E-07  |
|                    |                                                                                 |                    |                    |                |               | Lead            | 1.73E-08  | lb/ton     | 9.85E-07  |
|                    |                                                                                 |                    |                    |                |               | Manganese       | 1.05E-09  | lb/ton     | 5.96E-08  |
|                    |                                                                                 |                    |                    |                |               | Mercury         | 1.58E-10  | lb/ton     | 9.03E-09  |
|                    |                                                                                 |                    |                    |                |               |                 | Nickel    | 2.25E-09   | lb/ton    |
|                    |                                                                                 |                    |                    |                |               | Selenium        | 3.91E-09  | lb/ton     | 2.23E-07  |
|                    |                                                                                 |                    |                    |                |               | Antimony        | 9.93E-04  | lb/acre-hr | 7.45E-05  |
|                    |                                                                                 |                    |                    |                |               | Arsenic         | 1.07E-03  | lb/acre-hr | 8.05E-05  |
|                    |                                                                                 |                    |                    |                |               | Beryllium       | 2.06E-05  | lb/acre-hr | 1.54E-06  |
|                    |                                                                                 |                    |                    |                |               | Cadmium         | 7.72E-05  | lb/acre-hr | 5.79E-06  |
| 007.0              | Wind Erosion of Copper Concentrate Filter                                       |                    | F                  |                | acre-yr       | Chromium        | 4.29E-05  | lb/acre-hr | 3.21E-06  |
| (AOS1)             | U27-8 Drop Storage (AOS1) and Copper                                            | HWindSCC<br>(AOS1) |                    | 0.30           |               | Cobalt          | 2.04E-04  | lb/acre-hr | 1.53E-05  |
|                    |                                                                                 |                    |                    |                |               | Lead            | 1.50E-03  | lb/acre-hr | 1.13E-04  |
|                    |                                                                                 |                    |                    |                |               | Manganese       | 9.09E-05  | lb/acre-hr | 6.82E-06  |
|                    |                                                                                 |                    |                    |                |               | Mercury         | 1.38E-05  | lb/acre-hr | 1.03E-06  |
|                    |                                                                                 |                    |                    |                |               | Nickel          | 1.95E-04  | lb/acre-hr | 1.47E-05  |
|                    |                                                                                 |                    |                    |                |               | Selenium        | 3.40E-04  | lb/acre-hr | 2.55E-05  |
|                    |                                                                                 |                    |                    |                |               | Antimony        | 3.04E-05  | lb/hr      | 3.04E-05  |
|                    |                                                                                 |                    |                    |                |               | Arsenic         | 9.89E-06  | lb/hr      | 9.89E-06  |
|                    |                                                                                 |                    |                    |                |               | Beryllium       | 6.31E-07  | lb/hr      | 6.31E-07  |
|                    |                                                                                 |                    |                    |                |               | Cadmium         | 2.36E-06  | lb/hr      | 2.36E-06  |
|                    |                                                                                 |                    |                    |                |               | Chromium        | 1.31E-06  | lb/hr      | 1.31E-06  |
|                    |                                                                                 |                    |                    |                |               | Cobalt          | 6.25E-06  | lb/hr      | 6.25E-06  |
|                    |                                                                                 |                    |                    |                |               | Lead            | 9.67E-06  | lb/hr      | 9.67E-06  |
| 052-2              | Molybdenum Dryer Wet Scrubber System                                            | MDWSS              | NF                 | 1              | hours         | Manganese       | 2.79E-06  | lb/hr      | 2.79E-06  |
| (AOS1)             | (AOS1)                                                                          | (AOS1)             |                    |                | 110410        | Mercury         | 4.22E-07  | lb/hr      | 4.22E-07  |
|                    |                                                                                 |                    |                    |                |               | Nickel          | 5.99E-06  | lb/hr      | 5.99E-06  |
|                    |                                                                                 |                    |                    |                |               | Selenium        | 1.61E-05  | lb/hr      | 1.61E-05  |
|                    |                                                                                 |                    |                    |                |               | Benzene         | 3.48E-03  | lb/hr      | 3.48E-03  |
|                    |                                                                                 |                    |                    |                |               | Ethylbenzene    | 5.86E-03  | lb/hr      | 5.86E-03  |
|                    |                                                                                 |                    |                    |                |               | Hexane          | 7.32E-04  | lb/hr      | 7.32E-04  |
|                    |                                                                                 |                    |                    |                |               | Toluene         | 4.19E-02  | lb/hr      | 4.19E-02  |
|                    |                                                                                 |                    |                    |                |               | m-Xylene        | 1.09E-01  | lb/hr      | 1.09E-01  |
|                    |                                                                                 |                    |                    |                |               | Antimony        | 4.83E-07  | lb/ton     | 1.01E-06  |
|                    |                                                                                 |                    |                    |                |               | Arsenic         | 1.57E-07  | lb/ton     | 3.30E-07  |
|                    |                                                                                 |                    |                    |                |               | Beryllium       | 1.00E-08  | lb/ton     | 2.10E-08  |
| 052-3              | Molybdenum Concentrate Dryer (AOS1) to Dried Molybdenum Concentrate Storage Bin | MC4TrPrt           | NF                 | 2.10           | tons          | Cadmium         | 3.76E-08  | lb/ton     | 7.89E-08  |
| (AOS1)             | (AOS1)                                                                          | WIOTHFIL           | 141                | 2.10           | 10115         | Chromium        | 2.09E-08  | lb/ton     | 4.38E-08  |
|                    |                                                                                 |                    |                    |                |               | Cobalt          | 9.93E-08  | lb/ton     | 2.09E-07  |
|                    |                                                                                 |                    |                    |                |               | Lead            | 1.54E-07  | lb/ton     | 3.22E-07  |
|                    |                                                                                 |                    |                    |                |               | Manganese       | 4.42E-08  | lb/ton     | 9.29E-08  |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

|                   |                                                                                                                                     |                      | New 5              |                        |                   | HAD lase and           | ,n                                     |          |                      |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|------------------------|-------------------|------------------------|----------------------------------------|----------|----------------------|
| Process<br>Number | Process/Emission Unit Description                                                                                                   | Process<br>Code      | Non-Fug.<br>(NF) / | Hourly Process<br>Rate | Rate Units        | HAP Information        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          | Emissions<br>(lb/hr) |
| Number            |                                                                                                                                     | Code                 | Fug. (F)           | Nate                   |                   | Name                   | EF                                     | EF Units | (ID/III)             |
| 052-3             | Molybdenum Concentrate Dryer (AOS1) to                                                                                              |                      |                    |                        |                   | Mercury                | 6.70E-09                               | lb/ton   | 1.41E-08             |
| (AOS1)            | Dried Molybdenum Concentrate Storage Bin                                                                                            | MC4TrPrt<br>(cont'd) | NF<br>(cont'd)     | 2.10                   | tons (cont'd)     | Nickel                 | 9.51E-08                               | lb/ton   | 2.00E-07             |
| (cont'd)          | (AOS1) (cont'd)                                                                                                                     | ()                   | ()                 |                        |                   | Selenium               | 2.55E-07                               | lb/ton   | 5.36E-07             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Antimony               | 4.83E-07                               | lb/ton   | 1.01E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Arsenic                | 1.57E-07                               | lb/ton   | 3.30E-07             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Beryllium              | 1.00E-08                               | lb/ton   | 2.10E-08             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Cadmium                | 3.76E-08                               | lb/ton   | 7.89E-08             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Chromium               | 2.09E-08                               | lb/ton   | 4.38E-08             |
| 052-4             | Dried Molybdenum Concentrate Storage Bin<br>(AOS1) to Molybdenum Concentrate                                                        | MC4TrPrt             | F                  | 2.10                   | tons              | Cobalt                 | 9.93E-08                               | lb/ton   | 2.09E-07             |
| (AOS1)            | Bagging System (AOS1)                                                                                                               |                      |                    |                        |                   | Lead                   | 1.54E-07                               | lb/ton   | 3.22E-07             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Manganese              | 4.42E-08                               | lb/ton   | 9.29E-08             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Mercury                | 6.70E-09                               | lb/ton   | 1.41E-08             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Nickel                 | 9.51E-08                               | lb/ton   | 2.00E-07             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Selenium               |                                        |          |                      |
| Sycamore Li       | ime and Other Regent Operations (AOS1)                                                                                              |                      |                    |                        |                   | Selenium               | 2.55E-07                               | lb/ton   | 5.36E-07             |
| Sycamore Li       | I                                                                                                                                   |                      |                    |                        |                   |                        |                                        |          |                      |
| 053-2<br>(AOS1)   | Xanthate Mix Tank (AOS1), Xanthate<br>Holding Tank (AOS1), Test Reagent Mix<br>Tank (AOS1), and Test Reagent Holding<br>Tank (AOS1) | SXMS                 | NF                 | 0.04                   | tons              | Carbon Disulfide       | 1.23E+01                               | lb/ton   | 4.94E-01             |
| Sycamore E        | mergency ICE (AOS1)                                                                                                                 |                      |                    |                        |                   |                        |                                        |          |                      |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benzene                | 5.43E-06                               | lb/hp-hr | 3.31E-03             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Toluene                | 1.97E-06                               | lb/hp-hr | 1.20E-03             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Xylenes                | 1.35E-06                               | lb/hp-hr | 8.23E-04             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Formaldehyde           | 5.52E-07                               | lb/hp-hr | 3.36E-04             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Acetaldehyde           | 1.76E-07                               | lb/hp-hr | 1.07E-04             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Acrolein               | 5.52E-08                               | lb/hp-hr | 3.36E-05             |
|                   |                                                                                                                                     |                      |                    |                        | Naphthalene       | 9.10E-07               | lb/hp-hr                               | 5.54E-04 |                      |
|                   |                                                                                                                                     |                      | NF                 | 609                    |                   | Acenaphthylene         | 6.46E-08                               | lb/hp-hr | 3.93E-05             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Acenaphthene           | 3.28E-08                               | lb/hp-hr | 2.00E-05             |
|                   |                                                                                                                                     |                      |                    |                        | -<br>hp-hr -<br>- | Fluorene               | 8.96E-08                               | lb/hp-hr | 5.46E-05             |
| 040.50            | Surrey Discol Factoria (Consented A                                                                                                 | T:0                  |                    |                        |                   | Phenanthrene           | 2.86E-07                               | lb/hp-hr | 1.74E-04             |
| 049-59<br>(AOS1)  | Sycamore Diesel Emergency Generator 1 (AOS1) (609 hp engine)                                                                        | Tier3-<br>450/560-D  |                    |                        |                   | Anthracene             | 8.61E-09                               | lb/hp-hr | 5.24E-06             |
| , ,               | , ,, , , , , ,                                                                                                                      |                      |                    |                        |                   | Fluoranthene           | 2.82E-08                               | lb/hp-hr | 1.72E-05             |
|                   |                                                                                                                                     |                      |                    |                        |                   |                        |                                        |          |                      |
|                   |                                                                                                                                     |                      |                    |                        |                   | Pyrene                 | 2.60E-08                               | lb/hp-hr | 1.58E-05             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benz(a)anthracene      | 4.35E-09                               | lb/hp-hr | 2.65E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Chrysene               | 1.07E-08                               | lb/hp-hr | 6.52E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benzo(b)fluoranthene   | 7.77E-09                               | lb/hp-hr | 4.73E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benzo(k)fluoranthene   | 1.53E-09                               | lb/hp-hr | 9.29E-07             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benzo(a)pyrene         | 1.80E-09                               | lb/hp-hr | 1.10E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Indeno(1,2,3-cd)pyrene | 2.90E-09                               | lb/hp-hr | 1.76E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Dibenz(a,h)anthracene  | 2.42E-09                               | lb/hp-hr | 1.47E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benzo(g,h,i)perylene   | 3.89E-09                               | lb/hp-hr | 2.37E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Benzene                | 5.43E-06                               | lb/hp-hr | 4.14E-03             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Toluene                | 1.97E-06                               | lb/hp-hr | 1.50E-03             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Xylenes                | 1.35E-06                               | lb/hp-hr | 1.03E-03             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Formaldehyde           | 5.52E-07                               | lb/hp-hr | 4.21E-04             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Acetaldehyde           | 1.76E-07                               | lb/hp-hr | 1.34E-04             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Acrolein               | 5.52E-08                               | lb/hp-hr | 4.20E-05             |
| 049-60<br>(AOS1)  | Sycamore Diesel Emergency Generator 2<br>(AOS1) (762 hp engine)                                                                     | Tier2-560-D          | NF                 | 762                    | hp-hr             | Naphthalene            | 9.10E-07                               | lb/hp-hr | 6.93E-04             |
| (5001)            | (AOOT) (102 tip etigine)                                                                                                            |                      |                    |                        |                   | Acenaphthylene         | 6.46E-08                               | lb/hp-hr | 4.92E-05             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Acenaphthene           | 3.28E-08                               | lb/hp-hr | 2.50E-05             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Fluorene               | 8.96E-08                               | lb/hp-hr | 6.83E-05             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Phenanthrene           | 2.86E-07                               | lb/hp-hr | 2.18E-04             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Anthracene             |                                        |          |                      |
|                   |                                                                                                                                     |                      |                    |                        |                   |                        | 8.61E-09                               | lb/hp-hr | 6.56E-06             |
|                   |                                                                                                                                     |                      |                    |                        |                   | Fluoranthene           | 2.82E-08                               | lb/hp-hr | 2.15E-05             |

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process          | Description Unit Description                                             | Process                 | Non-Fug.           | Hourly Process | Data Unita     | HAP Information                  | on       |          | Emissions |
|------------------|--------------------------------------------------------------------------|-------------------------|--------------------|----------------|----------------|----------------------------------|----------|----------|-----------|
| Number           | Process/Emission Unit Description                                        | Code                    | (NF) /<br>Fug. (F) | Rate           | Rate Units     | Name                             | EF       | EF Units | (lb/hr)   |
|                  |                                                                          |                         |                    |                |                | Pyrene                           | 2.60E-08 | lb/hp-hr | 1.98E-05  |
|                  |                                                                          |                         |                    |                |                | Benz(a)anthracene                | 4.35E-09 | lb/hp-hr | 3.32E-06  |
|                  |                                                                          |                         |                    |                |                | Chrysene                         | 1.07E-08 | lb/hp-hr | 8.16E-06  |
| 049-60           |                                                                          |                         |                    |                |                | Benzo(b)fluoranthene             | 7.77E-09 | lb/hp-hr | 5.92E-06  |
| (AOS1)           | Sycamore Diesel Emergency Generator 2<br>(AOS1) (762 hp engine) (cont'd) | Tier2-560-D<br>(cont'd) | NF<br>(cont'd)     | 762            | hp-hr (cont'd) | Benzo(k)fluoranthene             | 1.53E-09 | lb/hp-hr | 1.16E-06  |
| (cont'd)         | ( · · · · · · / ( · · · · · · · · · · ·                                  | ()                      | (conta)            |                |                | Benzo(a)pyrene                   | 1.80E-09 | lb/hp-hr | 1.37E-06  |
|                  |                                                                          |                         |                    |                |                | Indeno(1,2,3-cd)pyrene           | 2.90E-09 | lb/hp-hr | 2.21E-06  |
|                  |                                                                          |                         |                    |                |                | Dibenz(a,h)anthracene            | 2.42E-09 | lb/hp-hr | 1.85E-06  |
|                  |                                                                          |                         |                    |                |                | Benzo(g,h,i)perylene             | 3.89E-09 | lb/hp-hr | 2.97E-06  |
|                  |                                                                          |                         |                    |                |                | 1,1,2,2-Tetrachloroethane        | 2.66E-07 | lb/hp-hr | 2.25E-05  |
|                  |                                                                          |                         |                    |                |                | 1,1,2-Trichloroethane            | 1.61E-07 | lb/hp-hr | 1.36E-05  |
|                  |                                                                          |                         |                    |                |                | 1,1-Dichloroethane               | 1.19E-07 | lb/hp-hr | 1.00E-05  |
|                  |                                                                          |                         |                    |                |                | 1,2-Dichloroethane               | 1.19E-07 | lb/hp-hr | 1.00E-05  |
|                  |                                                                          |                         |                    |                |                | 1,2-Dichloropropane              | 1.37E-07 | lb/hp-hr | 1.16E-05  |
|                  |                                                                          |                         |                    |                |                | 1,3-Butadiene                    | 6.96E-06 | lb/hp-hr | 5.90E-04  |
|                  |                                                                          |                         |                    |                |                | 1,3-Dichloropropene              | 1.33E-07 | lb/hp-hr | 1.13E-05  |
|                  |                                                                          |                         |                    |                |                | Acetaldehyde                     | 2.93E-05 | lb/hp-hr | 2.48E-03  |
|                  |                                                                          |                         |                    |                |                | Acrolein                         | 2.76E-05 | lb/hp-hr | 2.34E-03  |
|                  |                                                                          |                         |                    |                |                | Benzene                          | 1.66E-05 | lb/hp-hr | 1.41E-03  |
|                  |                                                                          |                         |                    |                |                | Carbon Tetrachloride             | 1.86E-07 | lb/hp-hr | 1.57E-05  |
| 049-61           | Sycamore Propane Emergency Generator 1                                   | SEG-P                   | NF                 | 84.70          | hp-hr          | Chlorobenzene                    | 1.35E-07 | lb/hp-hr | 1.15E-05  |
| (AOS1)           | (AOS1) (84.7 hp engine)                                                  | SEG-P                   | '''                | 04.70          |                | Chloroform                       | 1.44E-07 | lb/hp-hr | 1.22E-05  |
|                  |                                                                          |                         |                    |                |                | Ethylbenzene                     | 2.60E-07 | lb/hp-hr | 2.21E-05  |
|                  |                                                                          |                         |                    |                |                | Ethylene Dibromide               | 2.24E-07 | lb/hp-hr | 1.89E-05  |
|                  |                                                                          |                         |                    |                |                | Formaldehyde                     | 2.15E-04 | lb/hp-hr | 1.82E-02  |
|                  |                                                                          |                         |                    |                |                | Methanol                         | 3.21E-05 | lb/hp-hr | 2.72E-03  |
|                  |                                                                          |                         |                    |                |                | Methylene Chloride               | 4.33E-07 | lb/hp-hr | 3.66E-05  |
|                  |                                                                          |                         |                    |                |                | Naphthalene                      | 1.02E-06 | lb/hp-hr | 8.64E-05  |
|                  |                                                                          |                         |                    |                |                | Polycyclic Aromatic Hydrocarbons | 1.48E-06 | lb/hp-hr | 1.25E-04  |
|                  |                                                                          |                         |                    |                |                | Styrene                          | 1.25E-07 | lb/hp-hr | 1.06E-05  |
|                  |                                                                          |                         |                    |                |                | Toluene                          | 5.86E-06 | lb/hp-hr | 4.96E-04  |
|                  |                                                                          |                         |                    |                |                | Vinyl Chloride                   | 7.54E-08 | lb/hp-hr | 6.39E-06  |
|                  |                                                                          |                         |                    |                |                | Xylene                           | 2.05E-06 | lb/hp-hr | 1.73E-04  |
|                  |                                                                          |                         |                    |                |                | 1,1,2,2-Tetrachloroethane        | 2.66E-07 | lb/hp-hr | 2.25E-05  |
|                  |                                                                          |                         |                    |                |                | 1,1,2-Trichloroethane            | 1.61E-07 | lb/hp-hr | 1.36E-05  |
|                  |                                                                          |                         |                    |                |                | 1,1-Dichloroethane               | 1.19E-07 | lb/hp-hr | 1.00E-05  |
|                  |                                                                          |                         |                    |                |                | 1,2-Dichloroethane               | 1.19E-07 | lb/hp-hr | 1.00E-05  |
|                  |                                                                          |                         |                    |                |                | 1,2-Dichloropropane              | 1.37E-07 | lb/hp-hr | 1.16E-05  |
|                  |                                                                          |                         |                    |                |                | 1,3-Butadiene                    | 6.96E-06 | lb/hp-hr | 5.90E-04  |
|                  |                                                                          |                         |                    |                |                | 1,3-Dichloropropene              | 1.33E-07 | lb/hp-hr | 1.13E-05  |
|                  |                                                                          |                         |                    |                |                | Acetaldehyde                     | 2.93E-05 | lb/hp-hr | 2.48E-03  |
|                  |                                                                          |                         |                    |                |                | Acrolein                         | 2.76E-05 | lb/hp-hr | 2.34E-03  |
| 040.00           | S                                                                        |                         |                    |                |                | Benzene                          | 1.66E-05 | lb/hp-hr | 1.41E-03  |
| 049-62<br>(AOS1) | Sycamore Propane Emergency Generator 2 (AOS1) (84.7 hp engine)           | SEG-P                   | NF                 | 84.70          | hp-hr          | Carbon Tetrachloride             | 1.86E-07 | lb/hp-hr | 1.57E-05  |
| •                |                                                                          |                         |                    |                |                | Chlorobenzene                    | 1.35E-07 | lb/hp-hr | 1.15E-05  |
|                  |                                                                          |                         |                    |                |                | Chloroform                       | 1.44E-07 | lb/hp-hr | 1.22E-05  |
|                  |                                                                          |                         |                    |                |                | Ethylbenzene                     | 2.60E-07 | lb/hp-hr | 2.21E-05  |
|                  |                                                                          |                         |                    |                |                | Ethylene Dibromide               | 2.24E-07 | lb/hp-hr | 1.89E-05  |
|                  |                                                                          |                         |                    |                |                | Formaldehyde                     | 2.15E-04 | lb/hp-hr | 1.82E-02  |
|                  |                                                                          |                         |                    |                |                | Methanol                         | 3.21E-05 | lb/hp-hr | 2.72E-03  |
|                  |                                                                          |                         |                    |                |                | Methylene Chloride               | 4.33E-07 | lb/hp-hr | 3.66E-05  |
|                  |                                                                          |                         |                    |                |                | Naphthalene                      | 1.02E-06 | lb/hp-hr | 8.64E-05  |
|                  |                                                                          |                         |                    |                |                | Polycyclic Aromatic Hydrocarbons | 1.48E-06 | lb/hp-hr | 1.25E-04  |
| 'n               |                                                                          |                         |                    |                |                | Styrene                          | 1.25E-07 | lb/hp-hr | 1.06E-05  |

#### Emission Inventory Tables for Potential Emission Calculations

July 2023

Table G.11 Hourly HAP Emissions - Potential Emission Calculations

| Process                                              | Process/Emission Unit Description                                          | Process           | Non-Fug.       | Hourly Process    | Rate Units  | HAP Information | n              |          | Emissions |          |
|------------------------------------------------------|----------------------------------------------------------------------------|-------------------|----------------|-------------------|-------------|-----------------|----------------|----------|-----------|----------|
| Number                                               | Process/Emission onli Description                                          | Code              | Fug. (F)       | Rate              | Rate Offics | Name            | EF             | EF Units | (lb/hr)   |          |
| 049-62                                               |                                                                            |                   |                | NE                |             | Toluene         | 5.86E-06       | lb/hp-hr | 4.96E-04  |          |
| (AOS1)                                               | Sycamore Propane Emergency Generator 2<br>(AOS1) (84.7 hp engine) (cont'd) | SEG-P<br>(cont'd) | NF<br>(cont'd) | 84.70             | 84.70       | hp-hr (cont'd)  | Vinyl Chloride | 7.54E-08 | lb/hp-hr  | 6.39E-06 |
| (cont'd)                                             |                                                                            | ,                 | ` ′            |                   |             | Xylene          | 2.05E-06       | lb/hp-hr | 1.73E-04  |          |
| Total of Non-                                        | -Fugitive Emissions for Affected Emissions Un                              | its - Followin    | g the Propos   | ed Updates:       |             |                 |                |          | 7.30E-01  |          |
| Total of Fugi                                        | itive Emissions for Affected Emissions Units - I                           | ollowing the      | Proposed U     | pdates:           |             |                 |                |          | 2.67E+00  |          |
| Total of Non-                                        | -Fugitive and Fugitive Emissions for Affected E                            | Emissions Un      | its - Followir | g the Proposed Up | dates:      |                 |                |          | 3.40E+00  |          |
| Total Change in Non-Fugitive Emissions:              |                                                                            |                   |                |                   |             |                 |                | 7.28E-01 |           |          |
| Total Change in Fugitive Emissions:                  |                                                                            |                   |                |                   |             |                 |                |          | 2.01E+00  |          |
| Total Change in Non-Fugitive and Fugitive Emissions: |                                                                            |                   |                |                   |             |                 |                |          | 2.73E+00  |          |

### APPENDIX H SUGGESTED DRAFT PERMIT LANGUAGE

#### SIGNIFICANT PERMIT REVISION DESCRIPTION

This significant permit revision authorizes Freeport-McMoRan Bagdad Inc. (FMBI), the Permittee, to update the design of Alternate Operating Scenario 1 (Two Concentrator Operations). The changes meet the requirements for a significant permit revision outlined in A.A.C. R18-2-320.

### ATTACHMENT "A": GENERAL PROVISIONS Addenda (Significant Revision # To be assigned by ADEQ) to Operating Permit #77414 for Freeport-McMoRan Bagdad Inc.

No changes shall be made to the requirements set forth in Attachment "A" of Class II Air Quality Permit #77414.

### ATTACHMENT "B": SPECIFIC CONDITIONS Addenda (Significant Revision # To be assigned by ADEQ) to Operating Permit #77414 for Freeport-McMoRan Bagdad Inc.

The following changes shall be made to the requirements set forth in Attachment "B" of Class II Air Quality Permit #77414.

Conditions II.A.4.b, II.C.2.f, II.C.3.a, II.C.3.c, II.C.3.d, and II.D.1 shall be amended to read as follows:

#### II. METALLIC MINERAL PROCESSING OPERATIONS

- **A.** Facilities Subject to the Standards of Performance for Existing Nonferrous Metals Industry Sources Under A.A.C. R18-2-721
  - 4. Monitoring, Recordkeeping, and Reporting Requirements
    - b. Except for the PC1 Rock Breaker (2110-RKB-0021) and the Rock Breaker (RB), the Permittee shall conduct the periodic opacity monitoring method specified in Condition I.C above on a monthly basis for all emission units subject to Condition II.A. The periodic opacity monitoring for 2110-RKB-0021 and the RB is satisfied by the periodic opacity monitoring required by Condition II.B.5.g for Primary Crusher 1 (2110-CRG-0021) and Primary Crusher 2 (PC2), respectively.

[A.A.C. R18-2-306.A.3.c]

#### C. Voluntary Emission Limitations

- 2. Emission Limitations and Standards
  - f. The Permittee shall not allow the emissions of PM and PM<sub>10</sub> from the processes identified in Section F of the table in Attachment "D" to exceed 0.00260.0023 gr/dscf, as measured at the emission exhaust point to the atmosphere.

[A.A.C. R 18-2-306.01.A and -331.A.3.a]

[Material permit conditions are indicated by underline and italics]

- 3. Performance Testing Requirements
  - a. The Permittee shall within 60 days of achieving the maximum production rate, but no later than 180 days of the startup or restart, conduct performance tests for PM and PM<sub>10</sub> on the stacks of the following pollution control devices to demonstrate compliance with the emission limits in Condition II.B.2.a and/or Condition II.C.2 above (as applicable).

[A.A.C. R18-2-306.A.3.c and -312]

- (1) Scrubber C18 (Process #001-1);
- (2) GL5 Dust Collector DC5 (Process #002-6);
- (3) PC1 Dust Collector 1 Dust Collector AE-002 (AOS1) (Process #001-12 (AOS1));
- (4) Dust Collector C51 (AOS1) (Process #001-5 (AOS1));
- (5) PC1 CCC1 Dust Collector 2Dust Collector AE-003 (AOS1) (Process #001-13 (AOS1));
- (6) PC1 CCC2 Dust Collector 3Dust Collector AE-016 (AOS1) (Process #001-14 (AOS1));
- (7) PC1 CCC3 Dust Collector 4Dust Collector AE-017 (AOS1) (Process #001-15 (AOS1));
- (8) Dust Collector AE-001 (AOS1) (Process #001-16 (AOS1));
- (9) Dust Collector AE-014 (AOS1) (Process #001-17 (AOS1));
- (10) Dust Collector AE-015 (AOS1) (Process #001-18 (AOS1));
- (118) Coarse Ore Reclaim Conveyor 1 Dust Collector 5Dust Collector AE-008 (AOS1) (Process #002-7 (AOS1));

- (129) Coarse Ore Reclaim Conveyor 2 Dust Collector 6Dust Collector AE-009 (AOS1) (Process #002-8 (AOS1));
- (1310) <u>HPGR Discharge Dust Collector 7Dust Collector AE-010</u>
  (AOS1) (Process #002-9 (AOS1));
- (1411) <u>HPGR Discharge Conveyor Transfer Dust Collector 8Dust</u>
  <u>Collector AE-011</u> (AOS1) (Process #002-10 (AOS1));
- (1512) <u>HPGR Product Bin Dust Collector 9Dust Collector AE-007</u> (AOS1) (Process #002-11 (AOS1));
- (4613) HPGR Product Transfer Dust Collector 10 Dust Collector AE-012 (AOS1) (Process #002-12 (AOS1)); and
- (1714) HPGR Product Transfer Dust Collector 11 Dust Collector AE-013 (AOS1) (Process #002-13 (AOS1)).
- c. If the result of a performance test on the stack of a pollution control device listed in Condition II.C.3.a(1) through Condition II.C.3.a(17) is less than or equal to 35% of the applicable emission limits in Condition II.C.2 above, the Permittee shall conduct a subsequent performance test for PM and PM<sub>10</sub> on the stack of that pollution control device within two years (between 22 and 26 months from the date of the previous test). The schedule of each subsequent test shall be reevaluated after every test.

[A.A.C. R18-2-306.A.3.c and -312]

d. If the result of a performance test on the stack of a pollution control device listed in Condition II.C.3.a(1) through Condition II.C.3.a(17) is greater than 35% of the applicable emission limits in Condition II.C.2 above, the Permittee shall conduct a subsequent performance test for PM and PM<sub>10</sub> on the stack of that pollution control device within one year (between 11 and 13 months from the date of the previous test). The schedule of each subsequent test shall be reevaluated after every test.

[A.A.C. R18-2-306.A.3.c and -312]

- **D.** Alternate Operating Scenarios
  - 1. Alternate Operating Scenario 1 (AOS1) Two Concentrator Operations
    - a. Applicability

The equipment and operations subject to the requirements of this Condition II.D.1 are identified in the last column of the Equipment List in Attachment "C."

#### b. Operational Limitations

(1) When operating Under AOS1, the Permittee may operate the modified primary crushing and overland conveying operations, additional—Sycamore milling operations, and additional—Sycamore bulk and molybdenum flotation operations, Sycamore concentrate handling operations, Sycamore lime and other reagent operations, Sycamore prill handling operations, and Sycamore emergency ICE using the equipment identified in the section titled "AOS1: Two Concentrator Operations" in the Equipment List of Attachment "C."

[A.A.C. R18-2-306.A.11]

(2) When operating Under AOS1, the Permittee shall not operate the equipment identified in the section titled "Primary Crushing and Overland Conveying Operations" in the Equipment List of Attachment "C" except for the following equipment that is common to both the primary operating scenario and AOS1:

[A.A.C. R18-2-306.A.11]

- (a) Primary Crusher 1 (PC1) (reconstruction a new crusher is assumed for AOS1);
- (b) Rock Breaker (RB);
- (c) Primary Crusher 2 (PC2);
- (d) Dust Collector C51 (C51);
- (e) PC2 Surge Bin (PC2SB);
- (f) PC2 Apron Feeder (PC2AF);
- (g) PC2 Dribble Conveyor (PC2DC);
- (h) Overland Conveyor 2-3A (OC2OC3A);
- (i) Overland Conveyor 3 (OC3);
- (j) Overland Conveyor 4 (OC4); and
- (k) Radial Stacker 5 (RST5): and
- (I) Free-Standing Stacker 6 (FSS6).

- c. Air Pollution Prevention and Control Requirements
  - (1) At all times when operating under AOS1, including periods of startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, install, maintain, and operate the following pollution control devices in a manner consistent with good air pollution control practices for minimizing particulate matter emissions.

[A.A.C. R18-2-306.A.2 and -331.A.3.d, e] [Material permit conditions are indicated by underline and italics]

- (a) <u>PC1 Dust Collector 1Dust Collector AE-002</u> (AOS1) (Process #001-12 (AOS1));
- (b) <u>Dust Collector C51 (AOS1) (Process #001-5</u> (AOS1));
- (c) <u>PC1 CCC1 Dust Collector 2Dust Collector AE-003</u>
  (AOS1) (Process #001-13 (AOS1));
- (d) <u>PC1 CCC2 Dust Collector 3Dust Collector AE-016</u> (AOS1) (Process #001-14 (AOS1));
- (e) <u>PC1 CCC3 Dust Collector 4Dust Collector AE-017</u> (AOS1) (Process #001-15 (AOS1));
- (f) <u>Dust Collector AE-001 (AOS1) (Process #001-16</u> (AOS1));
- (g) <u>Dust Collector AE-014 (AOS1) (Process #001-17</u> (AOS1));
- (h) <u>Dust Collector AE-015 (AOS1) (Process #001-18</u> (AOS1));
- (if) <u>Coarse Ore Reclaim Conveyor 1 Dust Collector</u> <u>5Dust Collector AE-008</u> (AOS1) (Process #002-7 (AOS1)):
- (jg) <u>Coarse Ore Reclaim Conveyor 2 Dust Collector</u> <u>6Dust Collector AE-009</u> (AOS1) (Process #002-8 (AOS1));
- (kh) <u>HPGR Discharge Dust Collector 7Dust Collector AE-</u> <u>910 (AOS1) (Process #002-9 (AOS1));</u>

- (Ii) HPGR Discharge Conveyor Transfer Dust Collector 8Dust Collector AE-011 (AOS1) (Process #002-10 (AOS1)):
- (mj) <u>HPGR Product Bin Dust Collector 9Dust Collector</u> <u>AE-007</u> (AOS1) (Process #002-11 (AOS1));
- (nk) HPGR Product Transfer Dust Collector 10Dust
  Collector AE-012 (AOS1) (Process #002-12 (AOS1));
  and
- (el) <u>HPGR Product Transfer Dust Collector 11Dust</u> <u>Collector AE-013</u> (AOS1) (Process #002-13 (AOS1)).); and
- (m) Molybdenum Dryer Wet Scrubber System (AOS1) (Process #052-2 (AOS1)).
- (2) When As necessary and when operating under AOS1, the Permittee shall, to the extent practicable, utilize wet suppression on the following emission units to minimize particulate matter emissions and comply with the applicable emission limitations and standards of Condition II.A.2 above. Wet suppression options include water sprays, surfactant use, water jets, foggers, inherent moisture content (including moisture from upstream water sprays), or other equivalent control methods.

[A.A.C. R18-2-306.A.2]

- (a) Unloading Ore to Primary Crusher 1 (AOS1) (Process #001-6 (AOS1));
- (b) Unloading Ore to Primary Crusher 2 (AOS1) (Process #001-7 (AOS1))
- (ac) Radial Stacker 5 (AOS1) to Coarse Ore Stockpiles 1/4 (Process #001-4 (AOS1));
- (d) Radial Stacker 5 (AOS1) to Free-Standing Stacker 6 (AOS1) (Process #001-10 (AOS1);
- (be) Free-Standing Stacker 6Radial Stacker C-10 (AOS1) to Coarse Ore Stockpile 5 (Process #001-19—3 (AOS1)); and

- (ef) PC1 Cross Country Conveyor 3Radial Stacker C-10 (AOS1) to Coarse Ore Stockpile 6 (Process #001-20 (AOS1)).
- (3) At all times when operating under AOS1, the Permittee shall, to the extent practicable, install, maintain, and operate wet suppression on the following emission units to minimize particulate matter emissions and comply with the applicable emission limitations and standards of Condition II.A.2 above. Wet suppression options include water sprays, surfactant use, water jets, foggers, inherent moisture content (including moisture from upstream water sprays), or other equivalent control methods.

[A.A.C. R 18-2-306.01.A]

- (a) Overland Conveyor 3A (AOS1) to Overland Conveyor 3 (AOS1) (Process #001-2 (AOS1));
- (b) Overland Conveyor 3 (AOS1) to Overland Conveyor 4 (AOS1) (Process #001-8 (AOS1)); and
- (c) Overland Conveyor 4 (AOS1) to Radial Stacker 5 (AOS1) (Process #001-9 (AOS1)).
- (4) At all times when operating under AOS1, including periods of startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, maintain and operate the Sycamore Lime Silo Baghouse (AOS1) on the Sycamore Lime Silo (AOS1) (Process #007-6) to minimize particulate matter emissions and comply with applicable emission limitations and standards of Condition II.A.2 below.

[A.A.C. R18-2-306.A.2]

(5) At all times when operating under AOS1, including periods of startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, maintain and operate the Sycamore Lime System Scrubber (AOS1) on the Sycamore Lime Slaker (AOS1) (Process #007-7) to minimize particulate matter emissions and comply with applicable emission limitations and standards of Condition II.A.2 below.

[A.A.C. R18-2-306.A.2]

(6) At all times when operating under AOS1, including periods of startup, shutdown, and malfunction, the Permittee shall, to the extent practicable, maintain and operate the Sycamore NaHS System Scrubber (AOS1) to minimize hydrogen sulfide July 2023

emissions from the NaHS Storage Tank (AOS1) and NaHS Distribution Tank (AOS1) (Process #055-3 (AOS1)) to comply with the applicable emission limitations and standards of Condition III.A.3 below.

[A.A.C. R18-2-306.A.2]

d. The AOS1 operations shall comply with all the requirements in Condition II.A, Condition II.B, Condition II.C, and—Condition III.A, Condition VI.B, Condition V.C, and Condition VI.E, as applicable.

[A.A.C. R18-2-306.A.11.c]

e. Monitoring, Recordkeeping, and Reporting Requirements

The Permittee shall, contemporaneously with making the change from one operating scenario to another, record in a log a record of the scenario under which it is operating.

[A.A.C. R18-2-306.A.11.a]

Conditions III.A.1 and III.A.5.d shall be amended to read as follows:

#### III. UNCLASSIFIED SOURCES SUBJECT TO A.A.C. R18-2-730

- **A.** Facilities Subject to the Standards of Performance for Unclassified Sources Under A.A.C. R18-2-730
  - Applicability

The facilities subject to the requirements of this Condition III.A are identified in the last column of the Equipment List in Attachment "C." For the Bulk Flotation Equipment (CMF-B1), Molybdenum Flotation Equipment (CMF-M), Steam Deoiler (M-SD), and Sycamore Bulk Flotation Equipment (AOS1) (S-FLO-BCMF-B2), and Sycamore Molybdenum Flotation Equipment (AOS1) (S-FLO-M), the requirements of Condition II.A and Condition II.B apply (as applicable) instead of the requirements of Condition III.A.2.a, Condition III.A.2.b, and Condition III.A.5.d.

- 5. Monitoring, Recordkeeping, and Reporting Requirements
  - d. The Permittee shall conduct the periodic opacity monitoring method specified in Condition I.C above on a monthly basis for the following emission units subject to Condition III.A:

[A.A.C. R18-2-306.A.3.c]

- (1) Transfer of Soda Ash to the Soda Ash Storage Bin (Process #047-9);
- (2) Transfer of Lime to Lime Storage Bin 1 (Process #007-3);

- (3) Transfer of Lime to Lime Storage Bin 2 (Process #007-4);
- (4) Delivery of Ammonium Nitrate Prill to Prill Bin 1 (Process #050-1);
- (5) Delivery of Ammonium Nitrate Prill to Prill Bin 2 (Process #050-2);
- (6) Delivery of Ammonium Nitrate Prill to Prill Bin 4 (Process #050-5);
- (7) Delivery of Ammonium Nitrate Prill to Prill Bin 5 (Process #050-6);
- (8) Transfer of Leaching Catalyst to LC Feed Hopper 1 (Process #029-5); and
- (9) Transfer of Leaching Catalyst to LC Feed Hopper 2 (Process #029-6).);
- (10) Transfer of Lime to Sycamore Lime Silo (AOS1) (Process #007-6 (AOS1));
- (11) Sycamore Lime Slaker (AOS1) (Process #007-7 (AOS1)); and
- (12) Delivery of Ammonium Nitrate Prill to Prill Bin 6 (AOS1) (Process #050-7 (AOS1)).

# ATTACHMENT "C": EQUIPMENT LIST Addenda (Significant Revision # To be assigned by ADEQ) to Operating Permit #77414 for Freeport-McMoRan Bagdad Inc.

The equipment under AOS1: Two Concentrator Operations in Attachment "C" shall be replaced with the following equipment:

| Equipment ID<br>Number | Equipment Name                 | Maximum<br>Capacity  | Make                  | Model            | Serial Number     | Date of<br>Manufacture | Applicable Attachment "B" Section or Condition |
|------------------------|--------------------------------|----------------------|-----------------------|------------------|-------------------|------------------------|------------------------------------------------|
|                        |                                | AOS1: Tw             | o Concentrator C      | perations        |                   |                        |                                                |
|                        | Primary Crus                   | hing and Overland Co | nveying Operation     | s (to Bagdad Cor | centrator) (AOS1) |                        |                                                |
| <u>RB</u>              | Rock Breaker (AOS1)            | <u>N/A</u>           | <u>NA</u>             | <u>NA</u>        | <u>NA</u>         | <u>NA</u>              | Conditions II.A<br>(721) and II.D.1            |
| PC2                    | Primary Crusher 2 (AOS1)       | 7,000 tph            | Metso                 | 60x89, MK-III    | <u>TBD</u>        | <u>2019</u>            | Conditions II.B<br>(LL) and II.D.1             |
| <u>C51</u>             | Dust Collector C51 (AOS1)      | <u>15,000 acfm</u>   | <u>FARR</u>           | GS 36/30         | <u>NA</u>         | <u>2013</u>            | Conditions II.C and II.D.1                     |
| PC2SB                  | PC2 Surge Bin (AOS1)           | <u>640 tons</u>      | Designed by M3        | <u>NA</u>        | <u>NA</u>         | <u>2005</u>            | Conditions II.A<br>(721) and II.D.1            |
| PC2AF                  | PC2 Apron Feeder (AOS1)        | 6,700 tph            | Metso                 | 84"              | NA                | <u>2005</u>            | Conditions II.A<br>(721) and II.D.1            |
| PC2DC                  | PC2 Dribble Conveyor<br>(AOS1) | N/A                  | Turner<br>Engineering | <u>60"</u>       | NA                | 2005                   | Conditions II.A<br>(721) and II.D.1            |

| Equipment ID<br>Number | Equipment Name                    | Maximum<br>Capacity  | Make              | Model           | Serial Number     | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|-----------------------------------|----------------------|-------------------|-----------------|-------------------|------------------------|---------------------------------------------------------|
| OC3A                   | Overland Conveyor 3A<br>(AOS1)    | 7,600 tph            | <u>NA</u>         | <u>60"</u>      | <u>NA</u>         | <u>2005</u>            | Conditions II.A<br>(721) and II.D.1                     |
| OC3                    | Overland Conveyor 3<br>(AOS1)     | 7,600 tph            | <u>NA</u>         | <u>54"</u>      | <u>NA</u>         | <u>1975</u>            | Conditions II.A<br>(721) and II.D.1                     |
| <u>OC4</u>             | Overland Conveyor 4<br>(AOS1)     | 7,600 tph            | <u>NA</u>         | <u>54"</u>      | <u>NA</u>         | <u>1975</u>            | Conditions II.A<br>(721) and II.D.1                     |
| <u>RST5</u>            | Radial Stacker 5 (AOS1)           | 7,600 tph            | <u>NA</u>         | <u>60"</u>      | <u>NA</u>         | <u>1975</u>            | Conditions II.A<br>(721) and II.D.1                     |
| FSS6                   | Free-Standing Stacker 6<br>(AOS1) | 7,600 tph            | <u>NA</u>         | <u>60"</u>      | <u>NA</u>         | <u>1990</u>            | Conditions II.A<br>(721) and II.D.1                     |
|                        | <u>Primary Crush</u>              | ing and Overland Con | veying Operations | (to Sycamore Co | ncentrator) (AOS1 | )                      |                                                         |
| 2110-RKB-<br>0021      | PC1 Rock Breaker (AOS1)           | <u>N/A</u>           | <u>TBD</u>        | <u>TBD</u>      | <u>TBD</u>        | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2110-CRG-<br>0021      | Primary Crusher 1 (AOS1)          | 8,000 tph            | <u>TBD</u>        | <u>TBD</u>      | <u>TBD</u>        | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2140-DCD-<br>0021      | PC1 Dust Collector 1 (AOS1)       | <u>14,500 acfm</u>   | <u>FARR</u>       | <u>TBD</u>      | <u>TBD</u>        | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2110-BIN-0021          | PC1 Surge Pocket (AOS1)           | <u>900 tons</u>      | <u>TBD</u>        | <u>TBD</u>      | <u>TBD</u>        | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |

| Equipment ID<br>Number                        | Equipment Name                         | Maximum<br>Capacity | Make        | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |  |  |  |
|-----------------------------------------------|----------------------------------------|---------------------|-------------|------------|---------------|------------------------|---------------------------------------------------------|--|--|--|
| 2110-FDA-<br>0021                             | PC1 Discharge Apron<br>Feeder (AOS1)   | 8,000 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |
| 2140-CVB-<br>0021                             | PC1 Discharge Conveyor<br>(AOS1)       | 8,000 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |
| 2140-CVB-<br>0022                             | PC1 Cross Country<br>Conveyor 1 (AOS1) | 8,000 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |
| 2140-DCD-<br>0022                             | PC1 CCC1 Dust Collector 2<br>(AOS1)    | <u>16,700 acfm</u>  | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |  |  |  |
| 2140-CVB-<br>0023                             | PC1 Cross Country<br>Conveyor 2 (AOS1) | 8,000 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |
| 2140-DCD-<br>0023                             | PC1 CCC2 Dust Collector 3<br>(AOS1)    | <u>16,700 acfm</u>  | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |  |  |  |
| 2140-CVB-<br>0024                             | PC1 Cross Country<br>Conveyor 3 (AOS1) | 8,000 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A (721) and II.D.1                        |  |  |  |
| 2140-DCD-<br>0024                             | PC1 CCC3 Dust Collector 4 (AOS1)       | 16,700 acfm         | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |  |  |  |
| Additional-Sycamore Milling Operations (AOS1) |                                        |                     |             |            |               |                        |                                                         |  |  |  |
| 2210-FDA-<br>0101                             | Coarse Ore Reclaim Feeder 1 (AOS1)     | 2,185 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |

| Equipment ID<br>Number | Equipment Name                                        | Maximum<br>Capacity | Make       | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|-------------------------------------------------------|---------------------|------------|------------|---------------|------------------------|---------------------------------------------------------|
| 2210-FDA-<br>0102      | Coarse Ore Reclaim Feeder 2 (AOS1)                    | 2,185 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2210-FDA-<br>0103      | Coarse Ore Reclaim Feeder 3 (AOS1)                    | 2,185 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2210-CVB-<br>0101      | Coarse Ore Reclaim Conveyor 1 (AOS1)                  | 4,954 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2210-DCD-<br>0101      | Coarse Ore Reclaim Conveyor 1 Dust Collector 5 (AOS1) | 22,000 acfm         | FARR       | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2210-FDA-<br>0201      | Coarse Ore Reclaim Feeder 4 (AOS1)                    | 2,185 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2210-FDA-<br>0202      | Coarse Ore Reclaim Feeder 5 (AOS1)                    | 2,185 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2210-FDA-<br>0203      | Coarse Ore Reclaim Feeder 6 (AOS1)                    | 2,185 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2210-CVB-<br>0201      | Coarse Ore Reclaim Conveyor 2 (AOS1)                  | 4,954 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2210-DCD-<br>0201      | Coarse Ore Reclaim Conveyor 2 Dust Collector 6 (AOS1) | 22,000 acfm         | FARR       | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2310-MLA-<br>0101      | AG Mill 1 (AOS1)                                      | 4,954 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |

| Equipment ID<br>Number | Equipment Name                                 | Maximum<br>Capacity | Make       | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|------------------------------------------------|---------------------|------------|------------|---------------|------------------------|---------------------------------------------------------|
| 2310-SCN-<br>0101      | AG Mill 1 Discharge Screen 1 (AOS1)            | 2,477 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2310-SCN-<br>0102      | AG Mill 1 Discharge Screen<br>2 (AOS1)         | 2,477 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2310-SCN-<br>0103      | AG Mill Rotatable Discharge<br>Screen 1 (AOS1) | 2,477 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2340-MLB-<br>0111      | Ball Mill 1 (AOS1)                             | 4,376 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2310-MLA-<br>0201      | AG Mill 2 (AOS1)                               | 4,954 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2310-SCN-<br>0201      | AG Mill 2 Discharge Screen 1 (AOS1)            | 2,477 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2310-SCN-<br>0202      | AG Mill 2 Discharge Screen<br>2 (AOS1)         | 2,477 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2310-SCN-<br>0203      | AG Mill Rotatable Discharge<br>Screen 2 (AOS1) | 2,477 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2340-MLB-<br>0211      | Ball Mill 2 (AOS1)                             | 4,376 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2330-CVB-<br>0121      | Pebble Conveyor (AOS1)                         | 4,080 tph           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |

| Equipment ID<br>Number | Equipment Name                                           | Maximum<br>Capacity | Make        | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|----------------------------------------------------------|---------------------|-------------|------------|---------------|------------------------|---------------------------------------------------------|
| 2330-CVB-<br>0122      | HPGR Feed Bin Feed Conveyor (AOS1)                       | 4,080 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-DVT-<br>0123      | HPGR Feed Diverter (AOS1)                                | <u>N/A</u>          | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2330-BIN-0130          | HPGR Feed Bin (AOS1)                                     | 11,400 ft3          | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-FDB-<br>0132      | HPGR Belt Feeder (AOS1)                                  | 4,080 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-CVB-<br>0134      | HPGR Feed Conveyor<br>(AOS1)                             | 5,626 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-CRH-<br>0140      | High Pressure Grinding Roll<br>(AOS1)                    | <u>5,626 tph</u>    | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-DCD-<br>0141      | HPGR Discharge Dust<br>Collector 7 (AOS1)                | 23,000 acfm         | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2330-CVB-<br>0141      | HPGR Discharge Conveyor<br>1 (AOS1)                      | 5,626 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-CVB-<br>0142      | HPGR Discharge Conveyor 2 (AOS1)                         | 5,626 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-DCD-<br>0142      | HPGR Discharge Conveyor Transfer Dust Collector 8 (AOS1) | 27,000 acfm         | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C<br>and II.D.1                           |

| Equipment ID<br>Number | Equipment Name                                    | Maximum<br>Capacity | Make        | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|---------------------------------------------------|---------------------|-------------|------------|---------------|------------------------|---------------------------------------------------------|
| 2330-BIN-0150          | HPGR Product Bin (AOS1)                           | 20,700 ft3          | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-DCD-<br>0150      | HPGR Product Bin Dust<br>Collector 9 (AOS1)       | 25,000 acfm         | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2330-FDB-<br>0152      | HPGR Product Recycle<br>Feeder (AOS1)             | <u>1,546 tph</u>    | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-FDB-<br>0163      | HPGR Product Feeder 1<br>(AOS1)                   | 2,040 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-FDB-<br>0263      | HPGR Product Feeder 2<br>(AOS1)                   | 2,040 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-CVB-<br>0163      | HPGR Product Return Conveyor 1 (AOS1)             | 2,040 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-DCD-<br>0163      | HPGR Product Transfer Dust<br>Collector 10 (AOS1) | 10,000 acfm         | <u>FARR</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2330-CVB-<br>0263      | HPGR Product Return Conveyor 2 (AOS1)             | 2,040 tph           | <u>TBD</u>  | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2330-DCD-<br>0263      | HPGR Product Transfer Dust<br>Collector 11 (AOS1) | 10,000 acfm         | FARR        | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C<br>and II.D.1                           |

| Equipment ID<br>Number | Equipment Name                                                      | Maximum<br>Capacity  | Make              | Model            | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------|----------------------|-------------------|------------------|---------------|------------------------|---------------------------------------------------------|--|--|--|--|--|
|                        | Additional Sycamore Bulk and Molybdenum Flotation Operations (AOS1) |                      |                   |                  |               |                        |                                                         |  |  |  |  |  |
| S-FLO-B                | Sycamore Bulk Flotation<br>Equipment (AOS1)                         | 59.1 tph total conc. | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721), III.A<br>(730), and<br>II.D.1 |  |  |  |  |  |
| 2420-MLV-<br>0303      | Sycamore Regrind Mill 1<br>(AOS1)                                   | <u>250 tph</u>       | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |  |  |
| 2420-MLV-<br>0304      | Sycamore Regrind Mill 2<br>(AOS1)                                   | <u>250 tph</u>       | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |  |  |  |  |  |
| S-FLO-M                | Sycamore Molybdenum Flotation Equipment (AOS1)                      | 59.1 tph total conc. | <u>NA</u>         | <u>NA</u>        | <u>NA</u>     | <u>varies</u>          | Conditions II.A<br>(721), III.A<br>(730), and<br>II.D.1 |  |  |  |  |  |
|                        |                                                                     | Sycamore Conce       | ntrate Handling O | perations (AOS1) |               |                        |                                                         |  |  |  |  |  |
| 2630-SCN-<br>0410      | Copper Filter Feed Tank<br>Trash Screen (AOS1)                      | <u>57 tph</u>        | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |  |  |  |  |  |
| 2520-SCN-<br>0517      | Molybdenum Thickener<br>Trash Screen (AOS1)                         | <u>N/A</u>           | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |  |  |  |  |  |
| 2520-HPR-<br>0576      | Molybdenum Concentrate<br>Filter Discharge Hopper 1<br>(AOS1)       | N/A                  | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |  |  |  |  |  |
| 2520-HPR-<br>0577      | Molybdenum Concentrate<br>Filter Discharge Hopper 2<br>(AOS1)       | <u>N/A</u>           | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |  |  |  |  |  |

| Equipment ID<br>Number | Equipment Name                                                             | Maximum<br>Capacity | Make              | Model            | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|----------------------------------------------------------------------------|---------------------|-------------------|------------------|---------------|------------------------|---------------------------------------------------------|
| 2520-CVS-<br>0576      | Molybdenum Concentrate Dryer Screw Feeder (AOS1)                           | 2.1 tph             | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2520-DRY-<br>0576      | Molybdenum Concentrate Dryer (AOS1)                                        | 2.1 tph             | <u>Holoflite</u>  | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.A<br>(721) and II.D.1                     |
| 2520-SCU-<br>0576      | Molybdenum Dryer Wet<br>Scrubber System (AOS1)                             | 337 acfm            | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.C and II.D.1                              |
| 2520-BIN-0576          | <u>Dried Molybdenum</u><br><u>Concentrate Storage Bin</u><br><u>(AOS1)</u> | 2.6 tons            | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
| 2520-SYS-<br>0576      | Molybdenum Concentrate Bagging System (AOS1)                               | 2.1 tph             | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions II.B<br>(LL) and II.D.1                      |
|                        |                                                                            | Sycamore Lime a     | nd Other Regent C | perations (AOS1) | <u>)</u>      |                        |                                                         |
| 2360-SLO-<br>0140      | Sycamore Lime Silo (AOS1)                                                  | <u>617 tons</u>     | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2360-BGH-<br>0141      | Sycamore Lime Silo<br>Baghouse (AOS1)                                      | <u>590 ft3</u>      | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                       |
| 2360-FDR-<br>0140      | Sycamore Lime Screw<br>Feeder (AOS1)                                       | <u>19.5 tph</u>     | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2360-MLV-<br>0140      | Sycamore Lime Slaker<br>(AOS1)                                             | 11.36 tph           | <u>TBD</u>        | <u>TBD</u>       | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                       |

| Equipment ID<br>Number | Equipment Name                                   | Maximum<br>Capacity | Make       | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition |
|------------------------|--------------------------------------------------|---------------------|------------|------------|---------------|------------------------|---------------------------------------------------------|
| 2360-SCU-<br>0140      | Sycamore Lime System Scrubber (AOS1)             | 4,400 scfm          | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2720-BIN-0720          | Tailings Flocculant Bag<br>Breaker Bin (AOS1)    | 2.0 tons            | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                       |
| 2720-FDR-<br>0720      | Tailings Flocculant Screw<br>Feeder (AOS1)       | 0.83 tph            | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2510-BIN-0580          | Concentrate Flocculant Bag<br>Breaker Bin (AOS1) | <u>1.0 tons</u>     | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2510-FDR-<br>0580      | Concentrate Flocculant Screw Feeder (AOS1)       | 0.06 tph            | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                       |
| 2440-TNK-<br>0150      | Xanthate Mix Tank (AOS1)                         | <u>1,575 ft3</u>    | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2440-TNK-<br>0152      | Xanthate Holding Tank<br>(AOS1)                  | 2,040 ft3           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2440-TNK-<br>0160      | Test Reagent Mix Tank<br>(AOS1)                  | <u>1,575 ft3</u>    | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2440-TNK-<br>0162      | Test Reagent Holding Tank<br>(AOS1)              | 2,040 ft3           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A<br>(730) and II.D.1                    |
| 2520-TNK-<br>0591      | NaHS Storage Tank (AOS1)                         | 7,540 ft3           | <u>TBD</u> | <u>TBD</u> | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                       |

| Equipment ID<br>Number | Equipment Name                                      | Maximum<br>Capacity                                       | Make                | Model        | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition  |
|------------------------|-----------------------------------------------------|-----------------------------------------------------------|---------------------|--------------|---------------|------------------------|----------------------------------------------------------|
| 2520-TNK-<br>0592      | NaHS Distribution Tank<br>(AOS1)                    | 700 ft3                                                   | <u>TBD</u>          | <u>TBD</u>   | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                        |
| 2520-SCU-<br>0591      | Sycamore NaHS System Scrubber (AOS1)                | <u>735 acfm</u>                                           | <u>TBD</u>          | <u>TBD</u>   | <u>TBD</u>    | <u>TBD</u>             | Conditions III.A (730) and II.D.1                        |
|                        |                                                     | Sycamore Pr                                               | rill Handling Opera | tions (AOS1) |               |                        |                                                          |
| <u>PB6</u>             | Prill Bin 6 (AOS1)                                  | Prill Bin 6 (AOS1)         100 tons         NA         NA |                     | <u>NA</u>    | <u>NA</u>     | <u>TBD</u>             | Conditions III.A (730) and II.D.1                        |
| PBV06                  | Prill Bin Vent 6 (no filter)<br>(AOS1)              | <u>NA</u>                                                 | <u>NA</u>           | <u>NA</u>    | <u>NA</u>     | <u>TBD</u>             | Conditions III.A (730) and II.D.1                        |
|                        |                                                     | <u>Sycamo</u>                                             | re Emergency ICE    | (AOS1)       |               |                        |                                                          |
| 2440-GEN-<br>0101      | Sycamore Diesel Emergency<br>Generator 1 (AOS1)     | 609 hp engine                                             | Caterpillar         | <u>C13</u>   | TBD           | TBD                    | Conditions VI.B<br>(IIII), VI.E<br>(ZZZZ), and<br>II.D.1 |
| 2500-GEN-<br>0501      | Sycamore Diesel Emergency<br>Generator 2 (AOS1)     | 762 hp engine                                             | <u>Caterpillar</u>  | <u>C15</u>   | <u>TBD</u>    | <u>TBD</u>             | Conditions VI.B (IIII), VI.E (ZZZZ), and II.D.1          |
| 3650-GEN-<br>0801      | Sycamore Propane<br>Emergency Generator 1<br>(AOS1) | 84.70 hp engine                                           | <u>Cummins</u>      | QSJ5.9G-G1   | <u>TBD</u>    | <u>2023</u>            | Conditions VI.C<br>(JJJJ), VI.E<br>(ZZZZ), and<br>II.D.1 |

| Equipment ID<br>Number | Equipment Name                                      | Maximum<br>Capacity | Make    | Model      | Serial Number | Date of<br>Manufacture | Applicable<br>Attachment<br>"B" Section or<br>Condition  |
|------------------------|-----------------------------------------------------|---------------------|---------|------------|---------------|------------------------|----------------------------------------------------------|
| 3650-GEN-<br>0802      | Sycamore Propane<br>Emergency Generator 2<br>(AOS1) | 84.70 hp engine     | Cummins | QSJ5.9G-G1 | <u>TBD</u>    | 2023                   | Conditions VI.C<br>(JJJJ), VI.E<br>(ZZZZ), and<br>II.D.1 |

# ATTACHMENT "D": PROCESSES WITH VOLUNTARY EMISSION LIMITATIONS Addenda (Minor Revision # To be assigned by ADEQ) to Operating Permit #77414 for Freeport-McMoRan Bagdad Inc.

The entry for Dust Collector C51 (AOS1) under Section A and the entire Section F of the table in Attachment "D" shall be replaced with the following information:

| Process<br>Number | Pollution Control Device<br>Controlling the Process |   | Emission Unit(s) Associated with the Process                 | Attachment "B" Permit Condition Reference for Performance Testing Requirements |
|-------------------|-----------------------------------------------------|---|--------------------------------------------------------------|--------------------------------------------------------------------------------|
|                   |                                                     |   | Section A (PM/PM <sub>10</sub> ≤ 0.0135 gr/dscf)             |                                                                                |
|                   |                                                     |   | Primary Crusher 2 (AOS1)                                     |                                                                                |
|                   | Dust Collector C51 (AOS1)                           | • | Primary Crusher 2 (AOS1) to PC2 Surge Bin (AOS1)             |                                                                                |
| 001-5             |                                                     | • | PC2 Surge Bin (AOS1) to PC2 Apron Feeder (AOS1)              | Condition II.C.3                                                               |
| (AOS1)            |                                                     | • | PC2 Apron Feeder (AOS1) to Overland Conveyor 2-3A (AOS1)     | Condition II.C.3                                                               |
|                   |                                                     | • | PC2 Apron Feeder (AOS1) to PC2 Dribble Conveyor (AOS1)       |                                                                                |
|                   |                                                     | • | PC2 Dribble Conveyor (AOS1) to Overland Conveyor 2-3A (AOS1) |                                                                                |

| Process<br>Number | Pollution Control Device<br>Controlling the Process   |          | Emission Unit(s) Associated with the Process                                  | Attachment "B" Permit Condition Reference for Performance Testing Requirements |                  |
|-------------------|-------------------------------------------------------|----------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|
|                   |                                                       |          | Section F (PM/PM <sub>10</sub> ≤ <del>0.0026</del> <u>0.0023</u> gr/dscf)     |                                                                                |                  |
|                   |                                                       | •        | Primary Crusher 1 (AOS1)                                                      |                                                                                |                  |
| 001-12            | PC1 Dust Collector 1 (AOS1)                           | •        | Primary Crusher 1 (AOS1) to PC1 Surge Pocket (AOS1)                           |                                                                                |                  |
| (AOS1)            |                                                       | <u>•</u> | PC1 Surge Pocket (AOS1) to PC1 Discharge Apron Feeder (AOS1)                  | Condition II.C.3                                                               |                  |
|                   |                                                       | <u>•</u> | PC1 Discharge Apron Feeder (AOS1) to PC1 Discharge Conveyor (AOS1)            |                                                                                |                  |
| 001-13<br>(AOS1)  | PC1 CCC1 Dust Collector 2<br>(AOS1)                   | <u>•</u> | PC1 Discharge Conveyor (AOS1) to PC1 Cross Country Conveyor 1 (AOS1)          | Condition II.C.3                                                               |                  |
| 001-14<br>(AOS1)  | PC1 CCC2 Dust Collector 3<br>(AOS1)                   | <u>•</u> | PC1 Cross Country Conveyor 1 (AOS1) to PC1 Cross Country Conveyor 2 (AOS1)    | Condition II.C.3                                                               |                  |
| 001-15<br>(AOS1)  | PC1 CCC3 Dust Collector 4 (AOS1)                      | •        | PC1 Cross Country Conveyor 2 (AOS1) to PC1 Cross Country Conveyor 3 (AOS1)    | Condition II.C.3                                                               |                  |
|                   | Coarse Ore Reclaim Conveyor 1 Dust Collector 5 (AOS1) | •        | Coarse Ore Reclaim Feeder 1 (AOS1) to Coarse Ore Reclaim Conveyor 1 (AOS1)    |                                                                                |                  |
| 002-7<br>(AOS1)   |                                                       | •        | Coarse Ore Reclaim Feeder 2 (AOS1) to Coarse Ore Reclaim Conveyor 1 (AOS1)    | 0 177 11.00                                                                    |                  |
|                   |                                                       |          | <u>•</u>                                                                      | Coarse Ore Reclaim Feeder 3 (AOS1) to Coarse Ore Reclaim Conveyor 1 (AOS1)     | Condition II.C.3 |
|                   |                                                       | •        | HPGR Product Return Conveyor 1 (AOS1) to Coarse Ore Reclaim Conveyor 1 (AOS1) |                                                                                |                  |

| Process<br>Number      | Pollution Control Device<br>Controlling the Process      |     | Emission Unit(s) Associated with the Process                                                                            | Attachment "B" Permit Condition Reference for Performance Testing Requirements |
|------------------------|----------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                        |                                                          | •   | Coarse Ore Reclaim Feeder 4 (AOS1) to Coarse Ore Reclaim Conveyor 2 (AOS1)                                              |                                                                                |
| 002-8                  | Coarse Ore Reclaim                                       | - 1 | Coarse Ore Reclaim Feeder 5 (AOS1) to Coarse Ore Reclaim Conveyor 2 (AOS1)                                              | Condition II C 2                                                               |
| (AOS1)                 | Conveyor 2 Dust Collector 6 (AOS1)                       | •   | Coarse Ore Reclaim Feeder 6 (AOS1) to Coarse Ore Reclaim Conveyor 2 (AOS1)                                              | Condition II.C.3                                                               |
|                        |                                                          | •   | HPGR Product Return Conveyor 2 (AOS1) to Coarse Ore Reclaim Conveyor 2 (AOS1)                                           |                                                                                |
|                        |                                                          | •   | HPGR Feed Conveyor (AOS1) to High Pressure Grinding Roll (AOS1) and Operation of the High Pressure Grinding Roll (AOS1) |                                                                                |
| <u>002-9</u><br>(AOS1) | HPGR Discharge Dust<br>Collector 7 (AOS1)                | •   | High Pressure Grinding Roll (AOS1) to HPGR Discharge Conveyor 1 (AOS1)                                                  | Condition II.C.3                                                               |
|                        |                                                          | •   | HPGR Product Recycle Feeder (AOS1) to HPGR Feed Conveyor (AOS1)                                                         |                                                                                |
| 002-10<br>(AOS1)       | HPGR Discharge Conveyor Transfer Dust Collector 8 (AOS1) | •   | HPGR Discharge Conveyor 1 (AOS1) to HPGR Discharge Conveyor 2 (AOS1)                                                    | Condition II.C.3                                                               |
| 002-11<br>(AOS1)       | HPGR Product Bin Dust<br>Collector 9 (AOS1)              | 1.  | HPGR Discharge Conveyor 2 (AOS1) to HPGR Product Bin (AOS1)                                                             | Condition II.C.3                                                               |
| 002-12<br>(AOS1)       | HPGR Product Transfer Dust<br>Collector 10 (AOS1)        | •   | HPGR Product Feeder 1 (AOS1) to HPGR Product Return Conveyor 1 (AOS1)                                                   | Condition II.C.3                                                               |
| 002-13<br>(AOS1)       | HPGR Product Transfer Dust<br>Collector 11 (AOS1)        | • 1 | HPGR Product Feeder 2 (AOS1) to HPGR Product Return Conveyor 2 (AOS1)                                                   | Condition II.C.3                                                               |

### APPENDIX I APPLICATION ADMINISTRATIVE COMPLETENESS CHECKLIST

|     |                                                                                                                                                      | Meets | Require |     |                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----|--------------------------------------------------------|
|     | Requirement                                                                                                                                          | Yes   | No      | N/A | Comment                                                |
| 1.  | Has the standard application form been completed?                                                                                                    | Х     |         |     | See Appendix A.                                        |
| 2.  | Has the responsible official signed the standard application form?                                                                                   | Х     |         |     | See Appendix A.                                        |
| 3.  | Has a process description been provided?                                                                                                             | X     |         |     | See Section 2.                                         |
| 4.  | Are the facility's emissions documented with all appropriate supporting information?                                                                 | x     |         |     | See Section 5 and<br>Appendices C, F,<br>and G.        |
| 5.  | Is the facility subject to Minor NSR requirements? [If the answer is "Yes," answer 6a, 6b, and 6c, as applicable. If the answer is "No," skip to 7.] |       | х       |     | See Section 10.                                        |
| 6.a | If the facility chooses to implement RACT, is the RACT determination included for the affected pollutants for all affected emission units?           |       |         |     | T1 - 6 - 111 - 1 - 1 - 1                               |
| 6.b | If the facility chooses to demonstrate compliance with NAAQS by screen modeling, is the modeling analysis included?                                  |       |         | х   | The facility is not subject to minor NSR requirements. |
| 6.c | If refined modeling has been conducted, is a comprehensive modeling report along with all modeling files included?                                   |       |         |     |                                                        |
| 7.  | Does the application include an equipment list with the type, name, make, model, serial number, maximum rated capacity, and date of manufacture?     | Х     |         |     | See Appendix B.                                        |
| 8.  | Does the application include an identification and description of pollution controls? (if applicable)                                                | х     |         |     | See Section 4.                                         |
| 9.  | For any application component claimed as confidential, are the requirements of A.R.S. 49-432 and A.A.C. R18-2-305 addressed?                         | х     |         |     | See Section 11.                                        |
| 10. | For any current non-compliance issue, is a compliance schedule attached?                                                                             |       |         | х   | See Section 9.                                         |
| 11. | For minor permit revision that will make a modification upon submittal of application, has a suggested draft permit been attached?                   |       |         | Х   | See Appendix H.                                        |