Scour Calculations Review Illustrated

By Raymond Morgan, PE

Summary of Presentation Topics

- 1. Arizona Administrative Code guidelines on the design of sewer lines across floodways.
- 2. Definition of a floodway
- 3. Review of pressure sewer design crossing a floodway
- 4. Review of vertical scour calculations of washes that the pressure sewer crosses.
- 5. Review of horizontal bank erosion potential calculations of washes that the pressure sewer crosses.
- 6. Review of the design report statements
- Review of the soils report that the design report uses to justify the tractive force calculations for potential bank erosion
- 8. Review of ADWR Watercourse System for Sediment Balance

R18-9-E301.B Performance. An applicant shall design, construct, and operate a sewage collection system so that the sewage collection system:

1. Provides adequate wastewater flow capacity for the planned service area;

2. Minimizes sedimentation, blockage, and erosion through maintenance of proper flow velocities throughout the system;

3. Prevents releases of sewage to the land surface through appropriate sizing, capacities, and inflow and infiltration prevention measures throughout the system;

4. Protects water quality through minimization of exfiltration losses from the system;

5. Provides for adequate inspection, maintenance, testing, visibility, and accessibility;

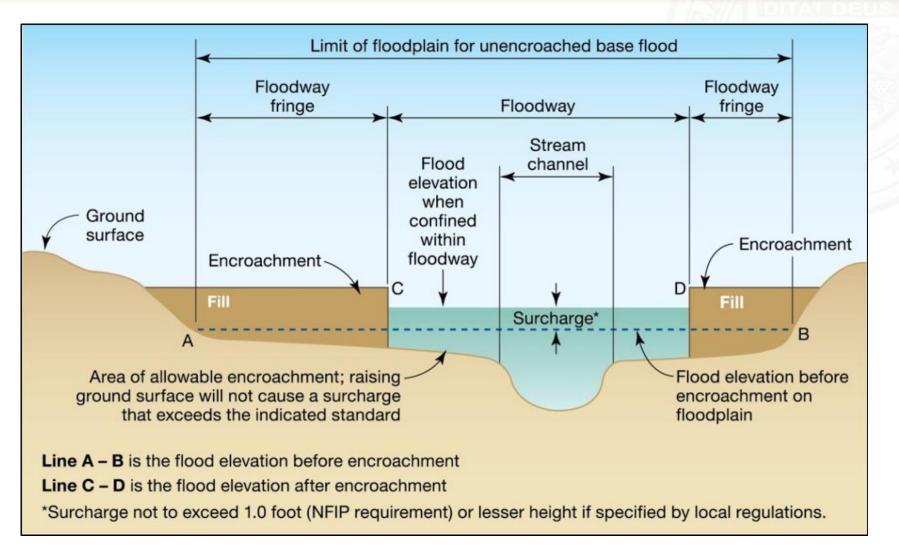
- 6. Maintains system structural integrity; and
- 7. Minimizes septic conditions in the sewage collection system.

R18-9-E301.D.2.c If sewer lines cross or are constructed in floodways;

i. Place the lines at least 2 feet below the level of the 100-year storm scour depth and calculated 100-year bed degradation and construct the lines using ductile iron pipe or pipe with equivalent tensile strength, compressive strength, shear resistance, and scour protection.

ii. If it is not possible to maintain the 2 feet of clearance specified in subsection (D)(2)(c)(i), using the process described in R18-9-A312(G), provide a design that ensures that the sewer line will withstand any lateral and vertical load for the scour and bed degradation conditions specified in subsection (D)(2)(c)(i);
iii. Ensure that sewer lines constructed in a floodway extend at least 10 feet beyond the boundary of the 100-year storm scouring;

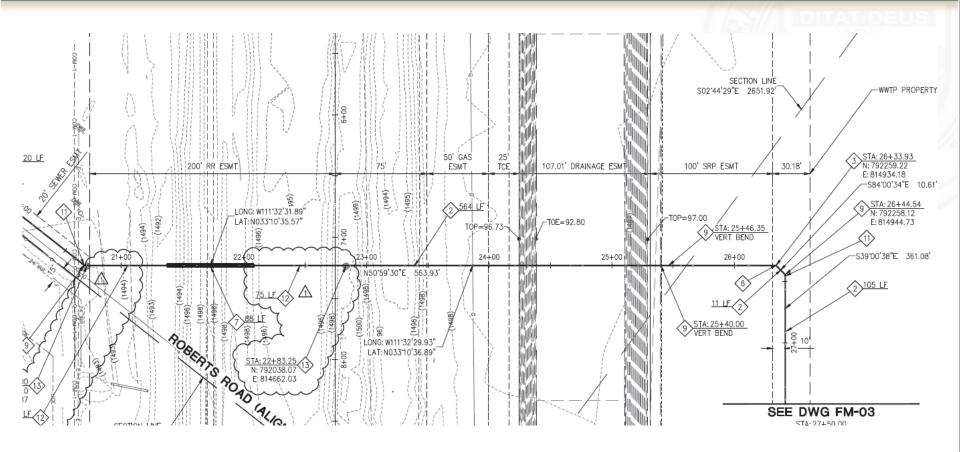
iv. If a sewer line is constructed in a floodway and is longer than the applicable maximum manhole spacing distance in subsection (D)(3)(a), using the process described in R18-9-A312(G), provide a design that ensures the performance standards in subsection (B) are met; and



What is a floodway?

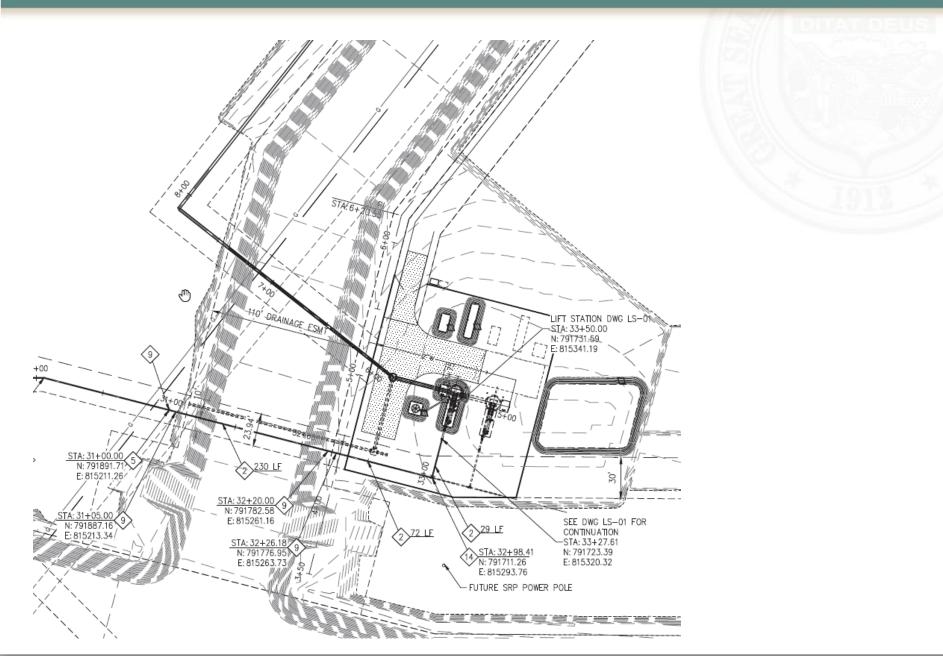
FEMA Definition - A "Regulatory Floodway" means the channel of a river or other watercourse and the adjacent land areas that must be reserved in order to discharge the base flood without cumulatively increasing the water surface elevation more than a designated height. FEMA Glossary, July 8, 2020, https://www.fema.gov/glossary/floodway.

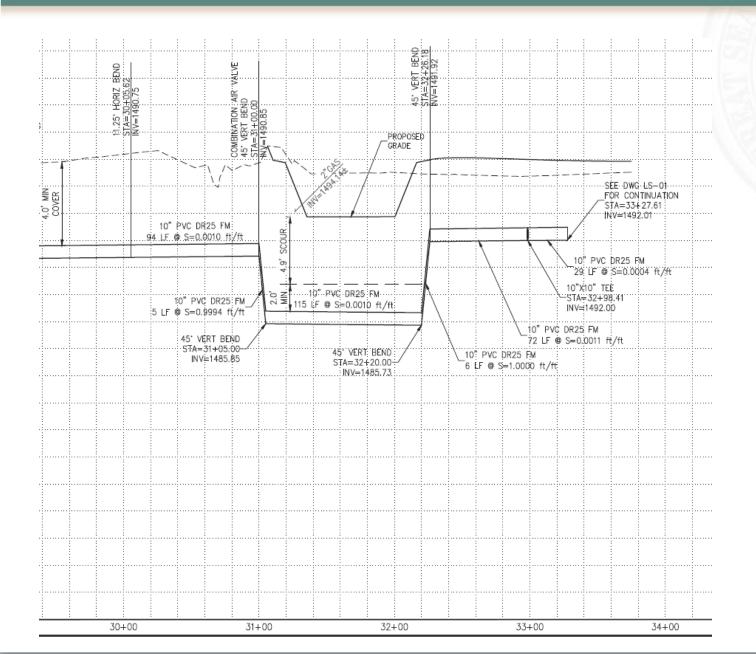
Definitions Illustrated



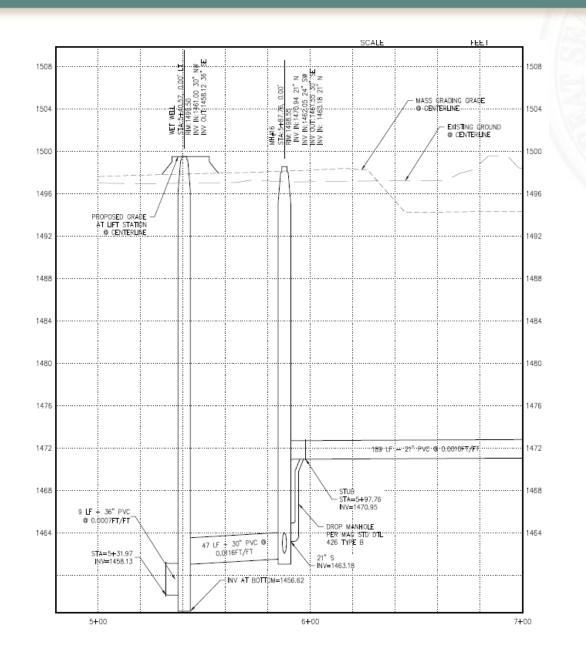
Flood Insurance Studies (2 of 3), https://emilms.fema.gov/is_0280/groups/37.html

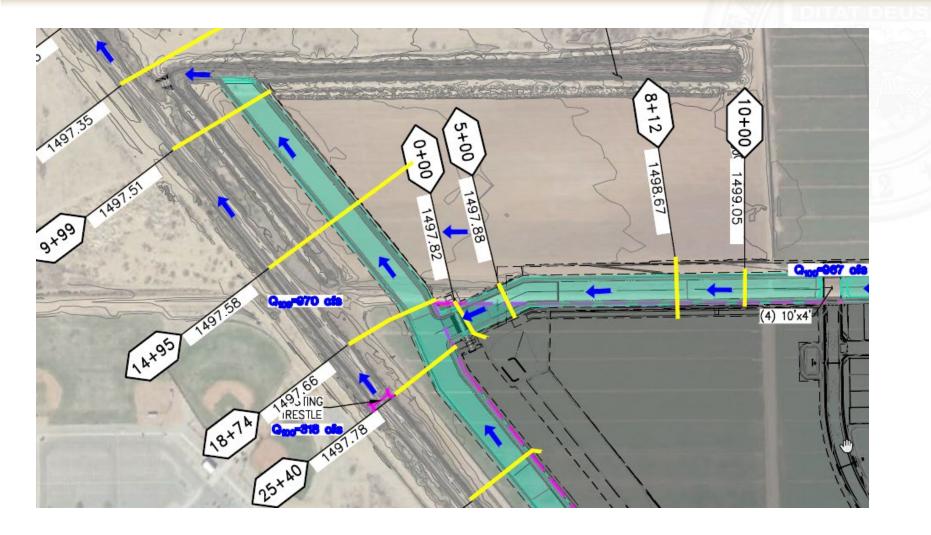
Initial Design




1510 1508 1506 1504 1502	Mutre	200' RR EASEMENT-	G PIT	S DWG)	S ESMT 25'	DRAINAGE ESMT.	STA-224-46.20 W=1490.29 45. HORIZ BEND 45. HORIZ BEND CEEANOUT STA-26+37.93 STA-26+37.93 STA-26+37.93 WK-1480.21 STA-26+37.93 STA-36+37.93 STA-36	
1498	∠ iδ V STA: 20+72.00 5 +			SHOWN FOR CALL AND CA	PROPOSED GRADE			1
1496	ACCASING VENT ACCASING VENT PIPE PIPE ACCASING VENT PIPE PIPE ACCASING VENT PIPE PIPE ACCASING VENT PIPE PIPE ACCASING VENT PIPE PIPE ACCASING VENT PIPE ACCASING VENT ACCASING VENT PIPE ACCASING VENT ACCASING	DEFLECT PIPE 1.70°		/} }\.//		\ <i>-</i>		
1494	STA=20+70.00		VAILS	<pre> '~~'</pre>	GAS 18±		40 ² 000 0005 04	지 원 (1.1 10" PVC DR25 FM
492		5	비행하는		L	scour	10" PVC DR25 FM 88 LF @ S=0.0010 ft/ft	105 LF @ S=0.0010 ft/ft 1
190		3' SCOUR	BAS	{ }		4.9' SC(10" PVC DR25 FM	71
188	W S			-88 LF OF CASING PIPE		- +	11 LF @ S=0.0010 ft/ft	STA=27+50.00 INV=1490.49
86		MIN MIN		425 LF @ S=0.0010 ft/ft		2.0' MIN	0 LF @ S=1.0000 ft/ft	45 HORIZ BEND, 1 10" PLUG VALVE
84	10" PVC DR25 FM			$\overline{}$			\	STA=26+44:54 INV=1490.39
82	50 LF @ S=0.0034 ft/ft	45 LF @ 5=0.030	7_tt/ft ∏`				45' VERT BEND STA=25+40.00 INV=1483.93	
80	L. STA=19+50.00 INV=1486.00	DRAIN PIPE	↓				TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	
78		_10" PVC DR25 FM 70 ∐F @ S=0.0060 ft/ft						
76	30' MIN FR TO EDGE	ROM & OF TRACK		30' MIN FROM € OF TRACK TO EDGE OF RECEIVING PIT				
74		44' FROM TRACK Q	44' FROM					
72								
70								
	20+00	21+00	22+00	23+00	24+00	25+00	26+00	27+00

Initial Design





Initial Design – Stormwater Flows

FINAL SCOUR CALCULATION SUMMARY TABLE Project:

Prepared by:

Date:

Location	Station	Flow Rate ⁽¹⁾	General Scour	Long Term Degradation	Bedform Scour	Low Flow Scour	Factor of Safety	Design Scour Depth ⁽²⁾				
			[1]	[2]	[3]	[4]	[5]	= ([1]+[2]+[3]+[4])*[5]				
		(Cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)				
Western Channel	9+98 - 18+73	970	0.9	1.2	0.2	1.5	1.3	€				
West of Railroad	9+98 - 18+73	318	0.7	0.6	0.5	1.5	1.3	4.3				

Notes:

(1)- Peak flowrate values were taken from the XXXXXXX Drainage Report.

(2)- Per Arizona State Standard SSA 5-96 Level I (1996) the minimum long term and general scour depth shall be 3 feet.

CHANNEL Project: Prepared by:	SCOUR C	ALCULATION						
Date:								
Flowrate:	Peak flowrat	e vallies were taken fro	m Wood/Pate	Master Dr	rainage Report			
	Desigh Stor Model Nam		Channels Out	out				
		Drainage Corrid	or / Section : Flowrate		nel cis	Station:	9+98-18+73	
<u>General S</u>	cour- Regi	me Equations						
1. Lacey's Equ	ation							
	y _{ga} = k ₁ * 0.4	47 (Q / f) ^{1/3}						
	where:	y _{gi} = general sco						
		k = edjuetment c o = decign diochi	-	coy'a Equati	ion (0.25 for etraight r	eachee)		
		f = Lecey's silt fo		1/2				
		D _m = meen grein e	ize of bed mate	riel, (mm)				
	Dm	1 Q	K,	y _{a*}	1			
	1.20	1.9280 970	0.25	0.9]			
2. Blehch Equa	rtioh							
	y _{ga} = k _b * (q	^{2/3} / F _{b0} ^{1/3}]						

where: y_{gs} = general scour depth (ft)

- k_b = adjustment coefficient for Blench's Equation (0.6)
- q, = design discharge per Uhit width (ft³/s/ft)
- Fb0 = Blench's "zero bed factor" In ft/s² from Chart for Estimating Fb0 (Pelmbertoh and Lara, 1984)

K _b	q,	F ₆₀	Уga
0.6	2.04	1.8	0.8

Long Term Degradation

Arizona State Standard SSA 5-96 Level I (1996)

$$d_{lts} = 0.02 (Q_{100})^{0.6}$$

where:

 d_{its} = long term scour depth, (ft) Q_{100} = 100-year peak flowrate, (ft³/s)

Q100	d _{its}
967	1.2

Bedform Scour

Simons and Senturn (1992)

y_{bfs} = 0.5 d_h

where:

 y_{bfs} = bedform scour depth, (ft) d_h = dune height for subcritical flow with F, < 0.7, (ft)

$$d_h = 0.066 * Y_h^{1.21}$$

 d_h = dune height for supercritical flow with $F_r > 0.7$, (ft)

$$I_{h} = 0.28 * \pi * Y_{h} * F_{r}^{2}$$

Y_h = hydraulic Depth of Flow (ft)

Fr = Froude number

Yh	F,	d _h	y _{bfs}
0.57	0.90	0.41	0.2

Average General Scour Depth =	0.9 ft
Long Term Degradation Depth =	1.2 ft
Bedform Scour Depth =	0.2 ft
Low Flow Scour =	1.5
Factor of Safety =	1.3
Design Scour Depth =	4.9 ft

TRACTIVE FORCE ANALYSIS Project:

Prepared by:

Date:

Trapezoidal 967 cfs n = 0.030 SF = 1.10 S = 0.0009 ft/ft $n = 0.030$ SF = 1.10 D50 = 0.042 ft % error = 0.00 % td = 0.234 psf m (left) = 4.0 H:1V OK M d1 = 0.234 psf w= 65.0 ft K K K K n= 0.030 K K K K	
---	--

	it1	it2	it3	it4	it5	it6	it7	it8	it9	it10
d =	3.0	3.5	3.7	3.8	3.8	3.8	3.8	3.8	3.8	3.8 ft
A =	231.0	279.1	295.6	300.7	302.2	302.7	302.8	302.9	302.9	302.9 s
Pw =	89.7	94.1	95.5	96.0	96.1	96.2	96.2	96.2	96.2	96.2 ft
Rh =	2.6	3.0	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1 ft
T =	89.0	93.2	94.6	95.1	95.2	95.2	95.2	95.2	95.2	95.2 ft
da =	2.6	3.0	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2 ft
b =	1.0	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Fr =	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
f(Fr) =	1.3	1.5	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.7
f(REG) =	609.5	794.7	859.9	880.1	886.2	887.9	888.5	888.6	888.7	888.7
f(CG) =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
n =	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030	0.030
Q =	645	856	933	957	964	966	967	967	967	967 c
diff =	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Q: volumetric flowrate of channel

S: channel bed slope

PERMISSIBLE SHEAR STRESS SUMMARY TABLE

Project:

Prepared

Date:

		Υ
Typical Permissible	Shear Stresses for Bare	
Lining Category	Lining Type	Permissible Shear Stress
		(psf)
Bare Soil	Clayey sands	0.037 - 0.095
Cohesive (PI = 10)	Inorganic silts	0.027 - 0.11
Collesive (I I = 10)	Silty sands	0.024 - 0.072
	Clayey sands	0.094
Bare Soil	Inorganic silts	0.083
Cohesive (PI ≥ 20)	Silty sands	0.072
	Inorganic clays	0.14
	Finer than coarse sand	0.02
	D ₇₅ < 0.05 in.	0.02
Bare Soil	Fine gravel	0.12
Non-cohesive (PI < 10)		0.12
	Gravel	0.24
	D ₇₅ = 0.6 in.	0.24
	Coarse gravel	0.4
	D ₅₀ = 1 in.	0.4
Gravel Mulch/Riprap	Very coarse gravel	
	$D_{50} = 2$ in.	0.8
	250 - 2 11.	
Deals Diaran	D ₅₀ = 0.5 ft.	2.4
Rock Riprap	D ₅₀ = 1.0 ft.	4.8

NOTES:

 Table 2.3, Design of Roadside Channels with Flexible Linings, Publication No. FHWA-NHI-05-114, September 2005

Per the Arizona State Standard for Watercourse System Sediment Balance (SSA 5-96), lateral migration guidelines are provided for riverine floodplains, alluvial channels, and sand and gravel mining operations. The Roberts Road and Western Channels are engineered channels and therefore do not qualify under any of the above categories defined within SSA 5-96. The channels are not expected to be erosive and do not meet the generally accepted definition of a regional watercourses (drainage areas greater than 30 square miles), per SSA 5-96. Therefore, the generally accepted minimum lateral erosion of 10 feet was used for the Roberts Road Channel and Western Channel. Additionally, please note that all drainage elements within the Phantom Project, including the Roberts Road and Western Channels are the responsibility of the HOA, and are required to be maintained so as to preserve the original channel cross section. This includes both the repair of eroded areas and the removal of any sediment build-up.

*For the purpose of application of these guidelines, erosion hazard area and watercourse system sediment balance standards will apply to all watercourses identified by the Federal Emergency Management Agency as part of the National Flood Insurance Program, all watercourses which have been identified by the local floodplain administrator as having significant potential flood hazards and all watercourses with drainage areas more than 1/4 square mile or a 100-year discharge estimate of more than 500 cubic feet per second. Application of these guidelines will not be necessary if the local community or county has in effect a drainage, grading or stormwater ordinance which, in the opinion of the Department, results in the same or greater level of flood protection as application of these guidelines would ensure.

*From Arizona State Standard for Watercourse System for Sediment Balance (SSA 5-96)

For watercourses which have drainage areas of less than 30 square miles, the recommended setback allowances are as follows:

for straight channel reaches or reaches with minor curvature: setback = $1.0(Q_{100})^{0.5}$

for channels with obvious curvature or channel bend: setback = $2.5(Q_{100})^{0.5}$

where setback is in feet and Q₁₀₀ is in cubic feet per second.

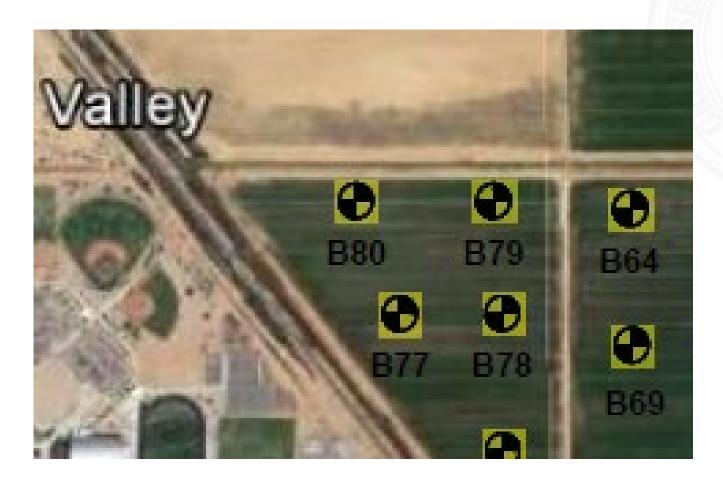
Per the Hydraulic Engineering Circular No. 15, Third Edition: Design of Roadside Channels with Flexible Linings (Federal Highway Administration, September 2005), the allowable tractive force approach has been utilized to demonstrate that the channel banks for the Roberts Road and Western Channels (identified in Section 5.2) are not erosive for the flow conditions associated with the 100-year storm event. Parameters used to perform these calculations have been referenced from the hydraulic model completed as part of the Phantom Parcels C, D, E, & F Final Drainage Reports. Per the Geotechnical Subsurface Exploration for Phantom Phase 1, completed by Phantom Geotechnical & Materials, Inc. in 2017 the site soils consist of coarse grained site surface and subsurface soils with medium plasticity clayey sand, varying amounts of gravel, and medium plasticity clayey sandy gravel. As the channels will be earthen lined, for the purposes of this analysis the channels have been assumed as bare non-cohesive soil (gravel) with a maximum allowable shear stress of 0.24 psf, per Table 2.3 of the Design of Roadside Channels with Flexible Linings as gravel is the dominant soil type per the results of the geotechnical site investigation. The results of the hydraulic modeling and allowable tractive force approach calculations indicate that the maximum calculated shear stress does not exceed the allowable value for any of the channel reaches in the vicinity of the pipeline crossings.

PERMISSIBLE SHEAR STRESS SUMMARY TABLE

Project:

Prepared

Date:


		Υ
Typical Permissible	Shear Stresses for Bare	
Lining Category	Lining Type	Permissible Shear Stress
		(psf)
Bare Soil	Clayey sands	0.037 - 0.095
Cohesive (PI = 10)	Inorganic silts	0.027 - 0.11
Conesive (i 1 - 10)	Silty sands	0.024 - 0.072
	Clayey sands	0.094
Bare Soil	Inorganic silts	0.083
Cohesive (PI ≥ 20)	Silty sands	0.072
	Inorganic clays	0.14
	Finer than coarse sand	0.02
	D ₇₅ < 0.05 in.	0.02
Bare Soil	Fine gravel	0.12
Non-cohesive (PI < 10)		0.12
	Gravel	0.24
	D ₇₅ = 0.6 in.	0.24
	Coarse gravel	0.4
	D ₅₀ = 1 in.	0.4
Gravel Mulch/Riprap	Very coarse gravel	
	$D_{50} = 2$ in.	0.8
	250 - 2 11.	
Deals Diaran	D ₅₀ = 0.5 ft.	2.4
Rock Riprap	D ₅₀ = 1.0 ft.	4.8

NOTES:

 Table 2.3, Design of Roadside Channels with Flexible Linings, Publication No. FHWA-NHI-05-114, September 2005

Soils Report – Boring Locations

Alpha Project Number: Log of Boring No. B-79 Client: Project Name: Project Location: West of Schnepf Road and North of Bella Vista Road Boring Location: See site plan Remarks:Flood irrigated cropland with dirt access roads. Dry Density (PCF) Sample Type Moisture (%) Depth (Feet) Relative Density USCS Blows Per 6" (Coarse Grained/ Code Fine Grained) Description of Subsurface Conditions CL GRAVELLY SANDY CLAY Medium brown, medium particle size, subangular particles, 1 slightly damp, medium plasticity, weakly cemented. 2 10.0 Very Dense/ 13.7 3 R 27 30 85.4 Hard 4 5 Medium Dense/ S 11 11 14 6 Very Stiff

					Silt or				Se	nd								Gravel				Moisture
					Clay	Fine Medium Coarse				Fine Coarse						Moisture						
Sample Number	Location & Depth	USCS	u	PI	#200	#100	#100 #50 #40			#16	#10	#8	#4	1/4"	3/8"	1/2"	3/4"	1"	11/4" 11/2"	2"	3"	%

Sieve Screens Not Included In Test

									rercem	Passing	by weig	nc											
33272	B1 @ 0 - 5'	SC	34	15	24								70										9.2
33275	B10 @ 0 - 5'	SC	33	19	27								65										4.8
33276	B14 @ 0 - 5'	SC	34	11	38								80										8.4
33277	B16 @ 0 - 5'	SC	41	25	32								70										9.0
33278	B21 @ 0 - 5'	GC	54	35	23								53										6.5
33279	B23 @ 0 - 5'	SC	39	22	19								72										7.4
33280	B26 @ 0 - 5'	SC	39	26	32								72										2.7
33281	B27 @ 0 - 5'	GC	40	21	20								53										7.2
33282	B29 @ 0 - 5'	GC	29	14	24								59										7.9
33283	B31 @ 0 - 5'	GC	43	27	29								58										7.8
33284	B34 @ 0 - 5'	SC	39	23	31								70								4	m)	5.2
33293	B35 @ 0 - 5'	SC	33	17	22	29	39	44	48	56	69	75	91	87	91	88	94	97	100	100	100	100	6.7
33286	B38 @ 0 - 5'	SC	48	31	40								84										6.2
33273	B4 @ 0 - 5'	SC	33	16	27								77										5.4
33294	B44 @ 0 - 5'	CL	39	19	56	67	77	81	83	91	91	93	94	97	100	100	100	100	100	100	100	100	15
33292	B5 @ 0 - 5'	SC	38	20	41	52	65	71	77	85	89	90	95	95	97	99	100	100	100	100	100	100	4.8
33287	851 @ 0 - 5'	GP-GC	32	16	11								36										5.1
33288	B55 @ 0 - 5'	GC	36	21	15								51										5.1
33289	B58 @ 0 - 5'	SC	32	15	34								89										12
33295	B61 @ 0 - 5'	SC	41	22	47	64	81	88	90	96	96	97	97	99	100	100	100	100	100	100	100	100	14
33290	B68 @ 0 - 5'	CL	39	21	57	67	76	80	81	85	85	85	85	100	100	100	100	100	100	100	100	100	11
33274	B7 @ 0 - 5'	SC	37	20	22								63										8.9
33291	B79 @ 0 - 5'	CL	39	20	54								85										10
33296	B84 @ 0 - 5'	SC	23	11	33	48	68	77	84	92	95	96	99	97	98	100	99	100	100	100	100	100	8.5

Percent Passing By Weight

Per the Hydraulic Engineering Circular No. 15, Third Edition: Design of Roadside Channels with Flexible Linings (Federal Highway Administration, September 2005), the allowable tractive force approach has been utilized to determine the erosive potential of the Roberts Road and Western Channels (identified in Section 5.2) for the flow conditions associated with the 100-year storm event. Parameters used to perform these calculations have been referenced from the hydraulic model completed as part of the Phantom Parcels C, D, E, & F Final Drainage Reports. Per the Geotechnical Subsurface Exploration for Phantom Project Phase 1, completed by Phantom Geotechnical & Materials, Inc. in 2017 the site soils adjacent to the site consist of Gravelly sandy clay, classified as CL (B-79 and B-80). As the channels have been lined with native soil, for the purposes of the tractive force method calculations the channels have been assumed as "clayey sands" with a maximum allowable shear stress of 0.094 psf, per Table 2.3 of the Design of Roadside Channels with Flexible Linings. The results of the hydraulic modeling and allowable tractive force approach calculations indicate that the maximum calculated shear stress exceeds the allowable value for only the Roberts Road Channel. Therefore, lateral erosion calculations have been prepared only for the Roberts Road Channel. The Western Channel sections have utilized the generally accepted minimum lateral erosion value of 10 feet. The lateral erosion calculations utilized have been referenced from the Flood Control District of Maricopa County Drainage Design Manual Vol II – Hydraulics, Section 11.9.2

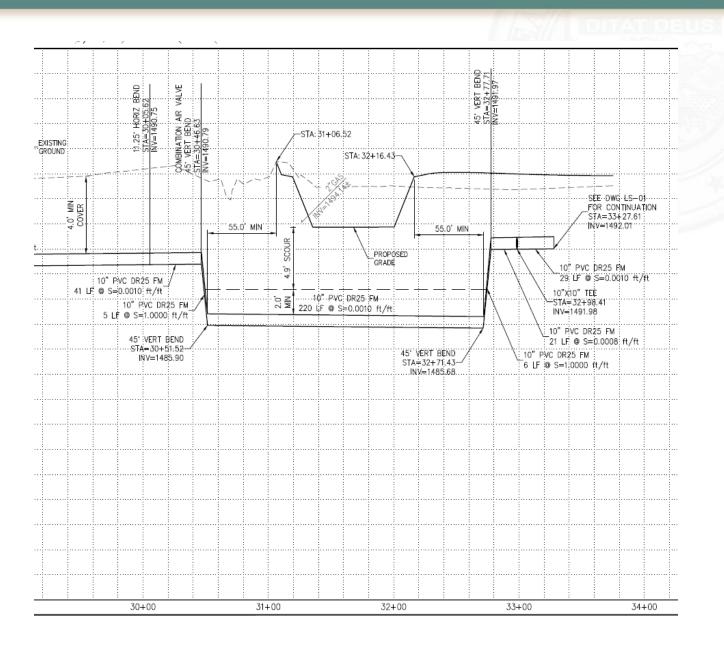
HORIZONTAL SCOUR CALCULATION SUMMARY TABLE

Project:

Prepared by:

Date:

Location	Station	Flow Rate ⁽¹⁾	Design Vertical Scour Depth	Channel Depth ⁽²⁾	Lateral Erosion Distance (3)			
			Zt	D	L=6(D+Zt)			
		(Cfs)	(ft)	(ft)	(ft)			
Roberts Road Channel	10+00 - 0+00	967	4.9	4.0	53.7			


Notes:

(1)- Peak flowrate values obtained from the Master Drainage Report for Phantom Project.

(2)- Channel depth has been referenced from the hydraulic models prepared for Phantom Parcels C, D, E, & F

(3)- Lateral Erosion Distance calculations have been referenced from Flood Control District of Maricopa County Drainage Design Manual Vol II - Hydraulics, Section 11.9.2

- 1. The Arizona Administrative Code (AAC) requires the following issues to be addressed:
 - a. 100-year scour depth
 - b. 100-year bed degradation
 - c. 100-year lateral migration (aka scour) of the drainageway banks
- 2. The AAC does not specify the specific method to do these calculations.
- 3. Therefore, the designer can choose the calculation method but they must follow that method fully and consistently.
- 4. The designer should show the calculation formulas, provide the reference to the calculation procedure and provide the results of the calculations. If the calculation procedure is not readily available on the internet, they should provide a copy of that procedure to the agency reviewer.

- 5. The statements in the design report cannot be relied upon at face value. They need to be confirmed in the calculations and associated reference documents.
- 6. Is the design consistent with the calculations and associated reference documents?
- 7. Does the design work to protect the infrastructure from 100-year storm events?
- 8. Is the design governed by facts or assumptions? A design based upon assumptions is directly related to those assumptions. If the assumption is flawed, then the design will be flawed. To put this thought another way a conclusion is no better than the assumptions it is founded upon.

Any Questions?

Contact

Raymond Morgan, PE

Email: morgan.raymond@azded.gov Office: 520-628-6723 Cell: 520-240-5905