

# **ADEQ 2020 5-Year Network Assessment** June 2020

Includes an executive summary of findings, a Ranking Analysis of current ADEQ monitors, a Spatial Raster Analysis that shows areas of Arizona for potential monitoring, and conclusions and recommendations.



## Table of Contents

| ist of Tables                                      |    |
|----------------------------------------------------|----|
| Table of Figures                                   | 3  |
| Purpose and Objective                              | 4  |
| Executive Summary                                  | 9  |
| Section I: Ranking Analysis                        | 11 |
| A. Measured Concentrations                         | 12 |
| B. Area Served                                     | 14 |
| C. Population Served                               | 19 |
| D. Correlation Between Monitors                    | 23 |
| E. Removal Bias                                    | 25 |
| F. Source Oriented                                 | 27 |
| G. Final Rankings                                  | 29 |
| Section II: Spatial Raster Analysis                | 32 |
| A. Mortality and Morbidity Rate                    | 33 |
| B. Sensitive Age Distribution                      | 35 |
| C. Total Population                                | 37 |
| D. Distance Between Monitors                       |    |
| E. Predicted Values                                | 43 |
| F. Final Weighted Overlay                          | 47 |
| Section III: Final Conclusions and Recommendations |    |
| Appendix A – Definitions and Abbreviations         | 53 |
| Appendix B – References                            | 54 |

## List of Tables

| Table 1:  | Ranking Analysis Indicators                                                    |  |
|-----------|--------------------------------------------------------------------------------|--|
| Table 2:  | SO <sub>2</sub> Instruments by Highest Design Value                            |  |
| Table 3:  | O3 Instruments by Highest Design Value                                         |  |
| Table 4:  | PM10 Instruments by Highest Annual Average                                     |  |
| Table 5:  | PM2.5 Instruments by Highest Design Value                                      |  |
| Table 6:  | SO <sub>2</sub> Instruments by Area Served                                     |  |
| Table 7:  | O3 Instruments by Area Served                                                  |  |
| Table 8:  | PM10 Instruments by Area Served                                                |  |
| Table 9:  | PM <sub>2.5</sub> Instruments by Area Served                                   |  |
| Table 10: | EPA Monitoring Spatial Scales                                                  |  |
| Table 11: | SO <sub>2</sub> Instruments by Population Served                               |  |
| Table 12: | O3 Instruments by Population Served                                            |  |
| Table 13: | PM10 Instruments by Population Served                                          |  |
| Table 14: | PM2.5 Instruments by Population Served                                         |  |
| Table 15: | SO2 Instruments by Correlation Between Monitors                                |  |
| Table 16: | O3 Instruments by Correlation Between Monitors                                 |  |
| Table 17: | PM10 Instruments by Correlation Between Monitors                               |  |
| Table 18: | PM2.5 Instruments by Correlation Between Monitors                              |  |
| Table 19: | SO2 Instruments by Removal Bias                                                |  |
| Table 20: | O3 Instruments by Removal Bias                                                 |  |
| Table 21: | PM10 Instruments by Removal Bias                                               |  |
| Table 22: | PM2.5 Instruments by Removal Bias                                              |  |
| Table 23: | SO2 Instruments by Source Oriented Monitor                                     |  |
| Table 24: | O3 Instruments by Source Oriented Monitor                                      |  |
| Table 25: | PM10 Instruments by Source Oriented Monitor                                    |  |
| Table 26: | PM2.5 Instruments by Source Oriented Monitor                                   |  |
| Table 27: | Ranking Analysis Pollutant Results                                             |  |
| Table 28: | Weighted SO <sub>2</sub> Instrument Results. Unweighted Results in Parentheses |  |
| Table 29: | Weighted O3 Instrument Results. Unweighted Results in Parentheses              |  |
| Table 30: | Weighted PM10 Instrument Results. Unweighted Results in Parentheses            |  |
| Table 31: | Weighted PM2.5 Instrument Results. Unweighted Results in Parentheses           |  |
| Table 32: | Raster Analysis Indicators                                                     |  |
| Table 33: | Distance Between Monitors Concentric Ring Sizes                                |  |
| Table 34: | Sites Outside of Arizona                                                       |  |
| Table 35: | Spatial Raster Analysis Results                                                |  |

## Table of Figures

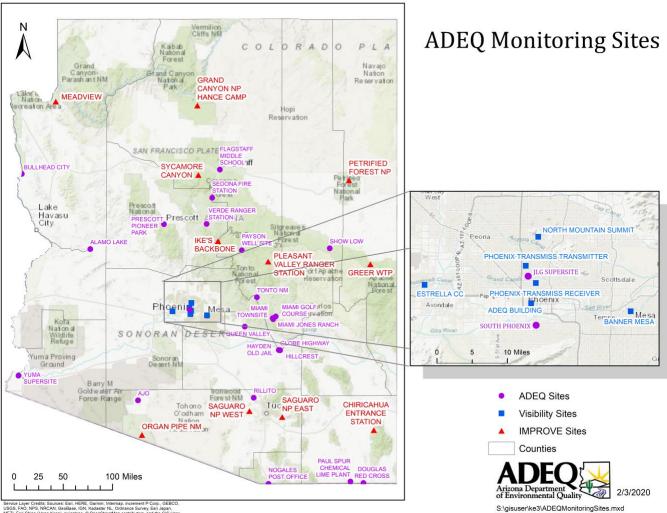
| Figure 1:  | ADEQ's 2020 Monitoring Sites        | 5  |
|------------|-------------------------------------|----|
| Figure 2:  | SO <sub>2</sub> Thiessen Polygons   | 15 |
| Figure 3:  | O3 Thiessen Polygons                | 16 |
| Figure 4:  | PM10 Thiessen Polygons              | 17 |
| Figure 5:  | PM2.5 Thiessen Polygons             | 18 |
| Figure 6:  | Population Served by Site           | 22 |
| Figure 7:  | Mortality and Morbidity Rate Map    | 34 |
| Figure 8:  | Sensitive Age Distribution Map      | 36 |
| Figure 9:  | Total Population Map                | 38 |
| Figure 10: | O3 Distance Between Monitors Map    | 40 |
| Figure 11: | PM10 Distance Between Monitors Map  | 41 |
| Figure 12: | PM2.5 Distance Between Monitors Map | 42 |
| Figure 13: | O3 Predicted Values Map             | 44 |
| Figure 14: | PM10 Predicted Values Map           | 45 |
| Figure 15: | PM2.5 Predicted Values Map          | 46 |
| Figure 16: | O3 Weighted Spatial Overlay         | 48 |
| Figure 17: | PM10 Weighted Spatial Overlay       | 49 |
|            | PM2.5 Weighted Spatial Overlay      |    |

## Purpose and Objective

This assessment is to determine if the Arizona Department of Environmental Quality's (ADEQ's) ambient air monitoring network meets monitoring goals and objectives set forth by ADEQ to protect and enhance public health and the environment in Arizona. In supporting these goals, an analysis of ADEQ's air monitoring network is provided for ADEQ's air quality professionals for the purpose of determining the adequacy of the network. <u>40 CFR Part 58.10(d)</u> states the specific requirements for this assessment:

The state, or where applicable local, agency shall perform and submit to the EPA Regional Administrator an assessment of the air quality surveillance system every 5 years to determine, at a minimum, if the network meets the monitoring objectives defined in appendix D to this part, whether new sites are needed, whether existing sites are no longer needed and can be terminated, and whether new technologies are appropriate for incorporation into the ambient air monitoring network. The network assessment must consider the ability of existing and proposed sites to support air quality characterization for areas with relatively high populations of susceptible individuals (e.g., children with asthma), and, for any sites that are being proposed for discontinuance, the effect on data users other than the agency itself, such as nearby states and tribes or health effects studies. The state, or where applicable local, agency must submit a copy of this 5-year assessment, along with a revised annual network plan, to the Regional Administrator.

To achieve this, the analysis consists of the following:


- Executive Summary A summary of the recommendations and conclusions made by ADEQ's Air Quality Division.
- <u>Section I</u> An instrument-to-instrument Ranking Analysis that determines the comparative importance of each instrument using a variety of indicators. These indictors cover demographic, geographic, economic, and regulatory perspectives that are important to air monitoring. The individual instruments in the monitoring network are separated by pollutant and ranked. The ranking is then used for the determination of final recommendations. The purpose of the Ranking Analysis is to determine the adequacy of ADEQ's current monitoring network and any recommended network modifications.
- <u>Section II</u> A Spatial Analysis using a series of raster-based maps representing a variety of indicators. These indicators cover demographic, geographic, and source pollution perspectives that are important to air monitoring. Raster maps are a GIS tool that quantifies areas in Arizona for their importance to air monitoring. The spatial analysis is separated by pollutant and then used for the determination of final recommendations. The purpose of the Spatial Analysis is to visually evaluate areas of interest where sensitive populations are located and assess how well areas across Arizona are covered by the ADEQ monitoring network.
- <u>Section III</u> Recommendations and final conclusions using both the Ranking and Spatial analyses to determine: if the current network meets monitoring objectives, whether adjustment to the monitoring network are needed, where areas with relatively high populations of sensitive individuals are located, and whether new technologies are appropriate for incorporating into the existing network.

The assessment addresses the criteria pollutants sulfur dioxide (SO<sub>2</sub>), ozone (O<sub>3</sub>), and particulate matter (both PM<sub>10</sub> and PM<sub>2.5</sub>) monitored by ADEQ. The assessment uses instrument and site data from 2014 to 2018, as these data are the most current certified five years of data at the time of creation of this assessment. All data used are publicly available and were taken from the Environmental Protection Agency's (EPA's) Air Quality System (AQS), the United States Census Bureau, and the Arizona Department of Health Services.

The recommendations stated in this assessment are used to plan for changes in the air monitoring network for the subsequent five years and to be included in the 2021 Annual Network Plan. The recommendations, conclusions, and rankings in this assessment include only sites and areas operated by ADEQ. The final conclusions and recommendations were determined by ADEQ's Air Quality management.

#### Figure 1: **ADEQ's 2020 Monitoring Sites**

This map shows all ADEQ's monitoring sites in Arizona. This can be used for reference when referring to sites in subsequent sections.



Service Layer Credits: Source: USGS, FAO, NPS, NRCAN, G METL Esti China (Hong Kong) to Survey, Esri Japan, laster NL, On

## Sites Used in This Network Assessment

The following seven tables list all of the sites used in this assessment, organized by their operating agencies. The location and information about each one of these sites comes from the AQS database.

#### Monitoring Sites Operated by ADEQ

| AQS Site    | Site Name                        | Address                       |            | Site Name Address County |                 | Pollutants Monit |               |  | itored |
|-------------|----------------------------------|-------------------------------|------------|--------------------------|-----------------|------------------|---------------|--|--------|
| Number      |                                  |                               |            | <b>O</b> 3               | SO <sub>2</sub> | PM10             | <b>PM</b> 2.5 |  |        |
| 04-019-0001 | Ajo                              | 1211 Well Rd.                 | Pima       |                          |                 | Х                |               |  |        |
| 04-012-8000 | Alamo Lake                       | Alamo Lake State Park         | La Paz     | Х                        |                 | Х                | Х             |  |        |
| 04-015-1003 | Bullhead City                    | 990 Highway 95                | Mohave     |                          |                 | Х                |               |  |        |
| 04-003-1005 | Douglas Red Cross                | 1445 E. 15th St.              | Cochise    |                          |                 | Х                | Х             |  |        |
| 04-005-1008 | Flagstaff Middle School          | 755 N. Bonito St.             | Coconino   | Х                        |                 |                  |               |  |        |
| 04-007-1001 | Hayden Old Jail                  | Canyon Dr. & Kennecott Ave.   | Gila       |                          | Х               | Х                |               |  |        |
| 04-013-9997 | JLG Supersite                    | 4530 N. 17th Ave              | Maricopa   | Х                        | Х               | Х                | Х             |  |        |
| 04-007-8000 | Miami Golf                       | SR 188 and US 60              | Gila       |                          |                 | x                |               |  |        |
|             | Course                           |                               |            |                          |                 | Λ                |               |  |        |
| 04-007-0011 | Miami Jones Ranch                | Cherry Flats Rd.              | Gila       |                          | Х               |                  |               |  |        |
| 04-007-0012 | Miami Townsite                   | Sullivan ST & Davis Canyon    | Gila       |                          | Х               |                  |               |  |        |
| 04-023-0004 | Nogales Post Office              | 300 N. Morley Ave             | Santa Cruz |                          |                 | Х                | Х             |  |        |
| 04-003-0011 | Paul Spur Chemical Lime<br>Plant | SR 80 & Paul Spur Rd.         | Cochise    |                          |                 | Х                |               |  |        |
| 04-007-0008 | Payson Well Site                 | 204 W. Aero Dr.               | Gila       |                          |                 | Х                |               |  |        |
| 04-025-8034 | Prescott Pioneer Park            | 1200 Commerce Dr.             | Yavapai    | Х                        |                 |                  |               |  |        |
| 04-021-8001 | Queen Valley                     | 10 S. Queen Anne Dr.          | Pinal      | Х                        |                 |                  |               |  |        |
| 04-019-0020 | Rillito                          | 8840 W. Robinson St.          | Pima       |                          |                 | Х                |               |  |        |
| 80-026-8012 | San Luis Rio Colorado            | Avenida Carranza and Calle 15 |            | x                        |                 |                  |               |  |        |
|             | Well 10                          |                               |            | Λ                        |                 |                  |               |  |        |
| 04-007-0010 | Tonto NM                         | South of SR 188               | Gila       | Х                        |                 |                  |               |  |        |
| 04-027-8011 | Yuma Supersite                   | 2029 S. Arizona Ave           | Yuma       | Х                        |                 | Х                | Х             |  |        |

| AQS Site Number | Site Name         | Address                          |                        | ollutan         | ts Moni      | tored         |
|-----------------|-------------------|----------------------------------|------------------------|-----------------|--------------|---------------|
|                 |                   |                                  |                        | SO <sub>2</sub> | <b>PM</b> 10 | <b>PM</b> 2.5 |
| 04-013-9702     | Blue Point        | Usery Pass Rd. & Bush Highway    | Х                      |                 |              |               |
| 04-013-4011     | Buckeye           | 26453 W. MC85                    | Х                      |                 | Х            |               |
| 04-013-4008     | Cave Creek        | 37019 N. Lava Lane               | Х                      |                 |              |               |
| 04-013-3002     | Central Phoenix   | 1645 E. Roosevelt St.            | Х                      | Х               | Х            |               |
| 04-013-4019     | Diablo            | 1919 W. Fairmont Dr.             |                        |                 |              | Х             |
| 04-013-9812     | Durango Complex   | 2702 RC Esterbrooks Blvd.        |                        | Х               | Х            | Х             |
| 04-013-4010     | Dysart            | 16825 N. Dysart Rd.              | Х                      |                 | Х            |               |
| 04-013-1010     | Falcon Field      | 4530 E. McKellips Rd.            | Х                      |                 |              |               |
| 04-013-9704     | Fountain Hills    | 16426 E. Palisades Blvd.         | Х                      |                 |              |               |
| 04-013-2001     | Glendale          | 6000 W. Olive Ave                | Х                      |                 | Х            | Х             |
| 04-013-4006     | Higley            | 2207 S. Higley Rd.               |                        |                 | Х            |               |
| 04-013-9508     | Humboldt Mountain | Seven Springs Rd.                | Х                      |                 |              |               |
| 04-013-1003     | Mesa              | 310 S. Brooks                    | Х                      |                 | Х            | Х             |
| 04-013-1004     | North Phoenix     | 601 E. Butler Dr. and N. 6тн St. | Х                      |                 | Х            | Х             |
| 04-013-2005     | Pinnacle Peak     | 24301 N. Alma School Rd.         | Х                      |                 |              |               |
| 04-013-4003     | South Phoenix     | 33 W. Tamarisk St.               | Х                      |                 | Х            | Х             |
| 04-013-3003     | South Scottsdale  | 2857 N Miller Rd.                | Х                      |                 | Х            |               |
| 04-013-4005     | Tempe             | 1525 S. College Ave. X           |                        | Х               | Х            |               |
| 04-013-4009     | West 43rd Ave     | 3940 W. Broadway Rd.             | 3940 W. Broadway Rd. X |                 | Х            |               |
| 04-013-4004     | West Chandler     | 275 S. Ellis St.                 | X X                    |                 |              |               |
| 04-013-0019     | West Phoenix      | 3847 W. Earll Dr.                | Х                      |                 | Х            | Х             |
| 04-013-4016     | Zuni Hills        | 10851 W. Williams Rd.            |                        |                 | Х            |               |

### Monitoring Sites Operated by the Maricopa County Air Quality Department

## Monitoring Sites Operated by the Gila River Indian Community

| AQS Site Number | Site Name   | Address                   | County   | Po         | ollutan     | ts Moni      | tored                    |
|-----------------|-------------|---------------------------|----------|------------|-------------|--------------|--------------------------|
|                 |             |                           | , v      | <b>O</b> 3 | <b>SO</b> 2 | <b>PM</b> 10 | <b>PM</b> <sub>2.5</sub> |
| 04-021-7004     | Casa Blanca | Casa Blanca/Preschool Rd. | Pinal    |            |             | Х            |                          |
| 04-021-7001     | Sacaton     | 35 Pima St.               | Pinal    | Х          |             | Х            |                          |
| 04-013-7003     | St. Johns   | 4208 W. Pecos Rd.         | Maricopa | Х          |             | Х            |                          |

#### Monitoring Sites Operated by the National Park Service

| AQS Site    | Site Name                              | Address                                                    | County   | Po         | ollutan         | ts Moni      | tored         |
|-------------|----------------------------------------|------------------------------------------------------------|----------|------------|-----------------|--------------|---------------|
| Number      |                                        | Thui Coo                                                   | County   | <b>O</b> 3 | SO <sub>2</sub> | <b>PM</b> 10 | <b>PM</b> 2.5 |
| 04-003-8001 | Chiricahua NM-Entrance<br>Station      | Chiricahua National Monument                               | Cochise  | Х          |                 |              |               |
| 04-005-8001 | Grand Canyon NP - The<br>Abyss         | Grand Canyon National Park , W Rim<br>Dr.                  | Coconino | Х          |                 |              |               |
| 04-017-0119 | Petrified Forest NP- South<br>Entrance | Pet For Nat Park, Near Old SW Entrance<br>on Old Route 180 | Navajo   | X          |                 |              |               |

| AQS Site Number | Site Name                   | Address                   | County | Po         | ollutan         | ts Moni      | tored                    |
|-----------------|-----------------------------|---------------------------|--------|------------|-----------------|--------------|--------------------------|
|                 |                             |                           |        | <b>O</b> 3 | SO <sub>2</sub> | <b>PM</b> 10 | <b>PM</b> <sub>2.5</sub> |
| 04-019-1011     | Craycroft & 22nd            | 1237 S. Beverly Ave       | Pima   | Х          |                 |              |                          |
| 04-019-1028     | Children's Park             | 400 W. River Rd.          | Pima   | Х          | Х               |              | Х                        |
| 04-019-1034     | Coachline                   | 9597 N. Coachline Blvd.   | Pima   | Х          |                 |              |                          |
| 04-019-0008     | Corona De Tucson            | 22000 S. Houghton Rd.     | Pima   |            |                 | Х            |                          |
| 04-019-1020     | Fairgrounds                 | 11330 S. Houghton Rd.     | Pima   | Х          |                 |              |                          |
| 04-019-1113     | Geronimo                    | 2498 N. Geronimo Rd.      | Pima   |            |                 | Х            |                          |
| 04-019-1030     | Green Valley                | 601 N. La Canada Dr.      | Pima   | Х          |                 | Х            |                          |
| 04-019-0011     | Orange Grove                | 3401 W. Orange Grove Rd.  | Pima   |            |                 | Х            | Х                        |
| 04-019-1032     | Rose Elementary             | 710 W. Michigan St.       | Pima   | Х          |                 |              |                          |
| 04-019-0021     | Saguaro National Park, East | 3905 S. Old Spanish Trail | Pima   | Х          |                 |              |                          |
| 04-019-1026     | Santa Clara School          | 6910 S. Santa Clara Ave   | Pima   |            |                 | Х            |                          |
| 04-019-1001     | South Tucson                | 1601 S. 6th Ave           | Pima   |            |                 | Х            |                          |
| 04-019-1018     | Tangerine                   | 12101 N. Camino De Oeste  | Pima   | Х          |                 | Х            |                          |

### Monitoring Sites Operated by the Pima County Department of Environmental Quality

### Monitoring Sites Operated by the Pinal County Air Quality Control District

| AQS Site    | Site Name                          | Address                             | County | Po         | ollutan         | ts Moni      | tored                    |
|-------------|------------------------------------|-------------------------------------|--------|------------|-----------------|--------------|--------------------------|
| Number      |                                    | Autros                              | County | <b>O</b> 3 | SO <sub>2</sub> | <b>PM</b> 10 | <b>PM</b> <sub>2.5</sub> |
| 04-021-3002 | AJ Fire Station                    | 3955 E. Superstition Blvd.          | Pinal  |            |                 | Х            | Х                        |
| 04-021-3001 | AJ Maintenance Yard                | 305 E. Superstition Blvd.           | Pinal  | Х          |                 |              |                          |
| 04-021-0001 | Casa Grande Downtown               | 401 N. Marshall St.                 | Pinal  |            |                 | Х            | Х                        |
| 04-021-3003 | Casa Grande Airport                | 660 W. Aero Dr.                     | Pinal  | Х          |                 |              |                          |
| 04-021-3009 | Combs School                       | 301 E. Combs Rd.                    | Pinal  |            |                 | Х            |                          |
| 04-021-3004 | Coolidge Maintenance Yard          | 212 E. Broadway Ave                 | Pinal  |            |                 | Х            |                          |
| 04-021-3014 | Eloy County Complex                | 801 N. Main St.                     | Pinal  |            |                 | Х            |                          |
| 04-021-3015 | Hidden Valley                      | 43750 W.<br>Carefree Place          | Pinal  |            |                 | X            | Х                        |
| 04-021-3016 | City of Maricopa County<br>Complex | 19955 N. Wilson Ave                 | Pinal  |            |                 | X            |                          |
| 04-021-3007 | Pinal Air Park                     | Water Well #2 Pinal Air Park<br>Rd. | Pinal  | Х          |                 | X            |                          |
| 04-021-3011 | Pinal County Housing Complex       | 970 N. Eleven Mile Corner Rd.       | Pinal  |            |                 | Х            |                          |
| 04-021-3008 | Stanfield County Complex           | 36697 W. Papago Dr.                 | Pinal  |            |                 | Х            |                          |

#### Monitoring Sites Operated by the Salt River-Pima Maricopa Indian Community

| AQS Site Number | Site Name     | Address                  | County   | Po         | ollutan         | ts Moni      | tored                    |
|-----------------|---------------|--------------------------|----------|------------|-----------------|--------------|--------------------------|
|                 |               | 11001055                 | County   | <b>O</b> 3 | SO <sub>2</sub> | <b>PM</b> 10 | <b>PM</b> <sub>2.5</sub> |
| 04-013-7024     | High School   | 4827 N. Country Club Dr. | Maricopa | Х          |                 | Х            |                          |
| 04-013-7022     | Lehi          | 3250 N. Stapley Dr.      | Maricopa | Х          |                 | Х            |                          |
| 04-013-7021     | Red Mountain  | 15115 Beeline Highway    | Maricopa | Х          |                 |              |                          |
| 04-013-7020     | Senior Center | 10844 E. Osborn Rd.      | Maricopa | Х          |                 | Х            | Х                        |

## **Executive Summary**

This executive summary provides a summary of the analysis and the final recommendations and conclusions. The purpose of the analysis is to determine the adequacy of ADEQ's air monitoring network. This is done using two types of analyses:

- 1. A Ranking Analysis determines which instruments are of greatest and least impact to protecting and enhancing public health and the environment in Arizona.
- 2. A Spatial Analysis determines which areas of Arizona are being underrepresented or overrepresented by air monitoring.

Recommendations for the removal/addition of instruments are determined using both analyses and the full recommendations and conclusions are found in <u>Section III: Final Conclusions and Recommendations on Page 51</u> of this document. The recommendations and conclusions were made by ADEQ's Air Quality management. All results, findings, recommendations, and conclusions are listed below.

## 1. Ranking Analysis

### Results

The ranking scale starts at 1, being the highest ranking instrument and therefore the most important to monitoring.

#### **SO2 Network Results**

| Site Name               | Ranking |
|-------------------------|---------|
| Miami<br>Jones<br>Ranch | 3       |
| Miami<br>Townsite       | 2       |
| Hayden<br>Old Jail      | 1       |
| JLG<br>Supersite        | 4       |

#### **O3 Network Results**

| Site Name           | Ranking |
|---------------------|---------|
| Flagstaff           |         |
| Middle              | 6       |
| School              |         |
| Tonto               |         |
| National            | 5       |
| Mon.                |         |
| Alamo Lake          | 2       |
| JLG                 | 4       |
| Supersite           | 4       |
| Queen Valley        | 3       |
| Prescott            | -       |
| <b>Pioneer Park</b> | 7       |
| Yuma                | 1       |
| Supersite           | I       |

#### **PM10 Network Results**

| Site Name    | Ranking |  |  |
|--------------|---------|--|--|
| Paul Spur    |         |  |  |
| Chemical     | 12      |  |  |
| Lime Plant   |         |  |  |
| Douglas      | 4       |  |  |
| Payson       | 5       |  |  |
| Hayden Old   | 8       |  |  |
| Jail         | ð       |  |  |
| Miami Golf   | 10      |  |  |
| Course       | 10      |  |  |
| Alamo Lake   | 7       |  |  |
| JLG          | (       |  |  |
| Supersite    | 6       |  |  |
| Bullhead     | 11      |  |  |
| City         | 11      |  |  |
| Ajo          | 9       |  |  |
| Rillito      | 3       |  |  |
| Nogales Post | 2       |  |  |
| Office       | 2       |  |  |
| Yuma         | 1       |  |  |
| Supersite    | 1       |  |  |

#### PM2.5 Network Results

| Site Name                              | Ranking |
|----------------------------------------|---------|
| Douglas                                | 4       |
| Alamo Lake                             | 2       |
| JLG Supersite<br>(Continuous)          | 6       |
| JLG Supersite<br>(Filter)              | 7       |
| Nogales Post<br>Office<br>(Continuous) | 3       |
| Nogales Post<br>Office (Filter)        | 5       |
| Yuma<br>Supersite                      | 1       |

## Recommendations

- Removal of the PM<sub>2.5</sub> (POC 1 Filter) instrument at Nogales Post Office.
  - Investigate if this instrument is still required for collocation requirements, as it is low ranked in this analysis. Determine if Nogales or JLG Supersite has the highest PM<sub>2.5</sub> concentrations. Currently JLG Supersite and Nogales Post Office have both continuous and filter based instruments. However, to fulfill collocation requirements ADEQ only needs one collocated pair. Furthermore, discontinuance of this monitor will not prevent ADEQ from meeting minimum requirements in 40 CFR Part 58, Appendix D. ADEQ will conduct a cost-benefit analysis to see if the benefit of removal outweighs the cost. If so, a request for removal will be made in the 2021 Annual Network Plan.
- Investigate where Flagstaff Middle School O<sub>3</sub> and Prescott Pioneer Park O<sub>3</sub> stand in terms of meeting 85 percent of the O<sub>3</sub> National Ambient Air Quality Standards (NAAQS).
  - Statistical analysis will determine if these monitors are in attainment of the O<sub>3</sub> NAAQS for the last five years. Additionally, the analysis will see if there is a less than 10 percent probability of exceeding 80 percent of the NAAQS during the next three years at these sites.

## Conclusions

- Yuma Supersite and JLG Supersite special consideration:
  - These monitoring sites are identified as of particular importance to the ADEQ's air monitoring network. Yuma Supersite is consistently ranked the highest and JLG Supersite is ranked above most other sites. Yuma Supersite is important as a border transport site and representative of a large Metropolitan Statistical Area (MSA). JLG supersite is important due to it long trend and research objectives for the Phoenix area. Any modernization of instrumentation or techniques should be made at these sites first.

## 2. Spatial Analysis

### **Results**

See Section II (F): Final Weighted Overlay on Page 47 for the final map results.

## Recommendations

• This analysis will help ADEQ identify areas of interest (orange and red areas on the maps) for event-based monitoring related to potential episodic and weather-driven air pollution events, and to help focus ADEQ public outreach and education resources.

## Conclusions

- It was determined that ADEQ's monitoring network is generally satisfactory for Arizona. The minimum monitoring requirements set forth in <u>40 CFR Part 58</u>, <u>Appendix D</u> are being met by ADEQ and monitoring represents all major pollutant and population centers.
- It was determined that no areas in Arizona were being overrepresented by ADEQ's monitoring networks. No removals or relocations of instrument are recommended based on this analysis.

## Section I: Ranking Analysis

A Ranking Analysis provides an instrument-to-instrument comparison for ADEQ's criteria networks. The purpose of the Ranking Analysis is to determine which instruments are most crucial to air monitoring and which have the potential to be removed or relocated. The analysis uses indicators to rank instruments for their importance to air monitoring. The indicators serve as a way to quantify different aspects important to air quality monitoring and public health. This is done by assigning a value, known as the Indicator Value, to the individual instruments. The Indicator Values are on a scale from 0 to 10, with 0 being lowest value and 10 the highest. The indicators cover regulatory, demographic, and geographic topics. Focusing on one indicator does not give the full picture or status of ADEQ's monitoring network. Therefore, the Ranking Analysis combines all of the indicators in <u>Section I (G): Final Rankings on Page 29</u> to give a comprehensive and robust ranking of ADEQ's monitoring network.

Chosen indicators represent a variety of pertinent considerations to examine the value of each instrument. Six indicators are used in the Ranking Analysis:

| Indicator                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Indicator<br>Type |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Measured<br>Concentration            | Assigns an indicator value to instruments based on their measured concentrations, with the highest concentrations having the highest rankings. This indicator uses average design values from the years $2014 - 2018$ . It is considered more important to have instruments that measure the highest concentrations. A high concentration results in a high indicator value.                                                                                     | Measured<br>Value |
| Area Served                          | Assigns an indicator value based on an instrument's area of influence. The area of influence is calculated using Thiessen polygons in ESRI's ArcGIS. Thiessen polygons are polygons surrounding instruments that show the relative area of representation based on the straight line distance to other instruments. It is considered more important to have instruments that represent large areas. A large area of influence results in a high indicator value. | Spatial           |
| Population<br>Served                 | Assigns an indicator valued based on the number of people that an instrument serves.<br>Using the stated spatial scale of each monitor to determine each monitor's area of<br>representation, population data are laid over the area to determine the represented<br>population. It is considered more important to have instruments that serve higher<br>populations. Having a high population served results in a high indicator value.                        | Population        |
| Monitor to<br>Monitor<br>Correlation | Using the daily maximum values from 2018, each instrument is correlated using Pearson's R <sub>2</sub> correlation coefficient. The maximum correlation to another instrument is used to assign an indicator value. It is considered more important to have instruments that are not closely correlated with other instruments. Low correlation with another instrument results in a high indicator value.                                                       | Measured<br>Value |
| Removal Bias                         | Finds the nearest neighbors to each selected site using the EPA NetAssess2020 tool to estimate concentrations at the site and then compares the estimates to the actual concentrations measured at the selected site. It is considered more important to have instruments with a high removal bias. An instrument with low removal bias may indicate that the monitor is redundant and could be removed. High removal bias results in a high indicator value.    | Modeled<br>Value  |
| Source<br>Orientation                | This is a simple yes or no indicator. If an instrument's purpose is to monitor for point<br>or area source emissions, it receives the highest indicator value. If the instrument's<br>purpose is not source oriented, it receives the lowest indicator value.                                                                                                                                                                                                    | Regulatory        |

 Table 1:
 Ranking Analysis Indicators

Each indicator uses publicly available data and produces an indicator value that is unique to the different instruments. As shown, the indicators represent a wide range of air monitoring considerations, but it is not assumed that each indicator has equal importance. For this reason, the indicators' values are weighted according to their importance. In order to establish weights for the indicators, ADEQ Air Quality Division staff held two consensus meetings and distributed a survey to external air quality professionals in Arizona. The meetings and survey asked the participants to place a weight on each indicator. As a result, some indicators are more heavily weighed than others. The resulting weights were placed on the Indicator Values and a new Weighted Indicator Value was produced. Using the Weighted Indicator Values, The importance of each monitor to the monitoring network is ranked by averaging the weighted indicator values of each instrument. The instrument with the highest average value being the most important instrument in the network. The results for the Ranking Analysis are found in Section I (G): Final Rankings on Page 29. These rankings were used to determine the adequacy of ADEQ's current monitoring network in Arizona, as described in Section III: Final Conclusions and Recommendations on Page 51.

NOTE: Due to the small number of monitors and sites in ADEQ's Pb, CO, and NO<sub>2</sub> networks, they are not analyzed in the Ranking Analysis. ADEQ only operates three Pb sites, one CO site, and one NO<sub>2</sub> site. The remaining pollutant networks (SO<sub>2</sub>, O<sub>3</sub>, PM<sub>10</sub>, and PM<sub>2.5</sub>) are included in the Ranking Analysis. The San Luis Rio Colorado (SLRC) Well #10 O<sub>3</sub> monitor was not included in this analysis due to it being located in San Luis, Mexico.

## **A. Measured Concentrations**

This indicator assesses monitors based on the pollutant concentrations that are measured. The highest valued instrument has the highest average design value over the past five years. Instruments are given an indicator value on a 0 to 10 scale, with the monitor that has the lowest average design value receiving a value of 0, and the highest receiving a value of 10. Design values were taken from EPA's AQS database for the years 2014 - 2018 and were averaged.

It is assumed that instruments that measure higher concentrations are more important for the NAAQS, permitted sources, and regulatory compliance because these instruments already have exceeded or have the potential to exceed the standard. This indicator does not take into account monitors being used for reasons other than NAAQS compliance. Background, informational, and research-oriented monitors provide valuable data to be used for trends and new source permit analysis and may not have high design values.

NOTE: PM<sub>10</sub> values used in this indicator are not the design values. The design value for PM<sub>10</sub> is the number of exceedances over a three-year period. This results in a design value that does not represent actual ambient concentrations. Therefore, the highest annual PM<sub>10</sub> average for each year is used in place of the design value for this and subsequent indicators.

## Results

Results for the Measured Concentrations indicator are given by pollutant. The highest 2014 - 2018 average is assigned an indicator value of 10 and the lowest a 0. All instruments are assigned a value relative to these highest and lowest values.

| Tuble 2: 502 Instruments by Highest Design Value |                   |                                                                                                    |      |       |       |       |                   |                    |
|--------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------|------|-------|-------|-------|-------------------|--------------------|
| AQS ID<br>Site Name                              |                   | Design Value (99th Percentile of 1-hour<br>Maximum Concentration, Averaged over 3<br>years in ppb) |      |       |       |       |                   | Indicator<br>Value |
| 511                                              | e maine           | 2014                                                                                               | 2015 | 2016  | 2017  | 2018  | Average 2014-2018 | value              |
| 04-007-0011                                      | Miami Jones Ranch | 207                                                                                                | 242  | 150.1 | 269.9 | 104.9 | 191.73            | 6.95               |
| 04-007-0012                                      | Miami Townsite    | 240                                                                                                | 231  | 110.2 | 134.5 | 134.9 | 152.65            | 5.49               |
| 04-007-1001                                      | Hayden Old Jail   | 236                                                                                                | 246  | 359   | 279.9 | 208.4 | 273.33            | 10.00              |
| 04-013-9997                                      | JLG Supersite     | 4.9                                                                                                | 5.4  | 5.1   | 6.4   | 6.1   | 5.75              | 0.00               |

Table 2:SO2 Instruments by Highest Design Value

| Table 3:     O3 Instruments by Hignest Design Value |                            |                                                                                                          |      |      |      |      |                        |           |  |
|-----------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------|------|------|------|------|------------------------|-----------|--|
| AQS ID                                              |                            | Design Value (Annual 4th-highest daily<br>Maximum 8-hour Concentration, Averaged<br>over 3 years in ppb) |      |      |      |      |                        | Indicator |  |
| Si                                                  | te Name                    | 2014                                                                                                     | 2015 | 2016 | 2017 | 2018 | Average<br>2014 – 2018 | Value     |  |
| 04-005-1008                                         | Flagstaff Middle<br>School | 71                                                                                                       | 70   | 69   | 66   | 65   | 68.2                   | 0.00      |  |
| 04-007-0010                                         | Tonto National<br>Monument | 74                                                                                                       | 72   | 71   | 73   | 74   | 72.8                   | 5.90      |  |
| 04-012-8000                                         | Alamo Lake                 | 72                                                                                                       | 70   | 69   | 68   | 68   | 69                     | 1.54      |  |
| 04-013-9997                                         | JLG Supersite              | 77                                                                                                       | 77   | 75   | 76   | 75   | 76                     | 10.00     |  |
| 04-021-8001                                         | Queen Valley               | 73                                                                                                       | 71   | 71   | 73   | 74   | 72                     | 5.48      |  |
| 04-025-8034                                         | Prescott Pioneer Park      | 71                                                                                                       | 69   | 69   | 67   | 67   | 69                     | 0.51      |  |
| 04-027-8011                                         | Yuma Supersite             | 77                                                                                                       | 76   | 74   | 72   | 71   | 74                     | 7.44      |  |

### Table 3:O3 Instruments by Highest Design Value

## Table 4:PM10 Instruments by Highest Annual Average

|             | AQS ID                           |      | Highest Annual Average in µg/m3 |      |      |      |                        |                    |
|-------------|----------------------------------|------|---------------------------------|------|------|------|------------------------|--------------------|
| Site Name   |                                  | 2014 | 2015                            | 2016 | 2017 | 2018 | Average<br>2014 – 2018 | Indicator<br>Value |
| 04-003-0011 | Paul Spur Chemical<br>Lime Plant | 21.8 | 14.8                            | 14.5 | 16.3 | 13.8 | 16.24                  | 1.07               |
| 04-003-1005 | Douglas Red Cross                | 37.5 | 26.8                            | 28.7 | 30.2 | 25.8 | 29.80                  | 5.59               |
| 04-007-0008 | Payson                           | 15.2 | 15.7                            | 17.4 | 18.8 | 18.7 | 17.16                  | 1.37               |
| 04-007-1001 | Hayden Old Jail                  | 37.4 | 26.3                            | 33.6 | 30.9 | 31.2 | 31.88                  | 6.28               |
| 04-007-8000 | Miami Golf Course                | 22.5 | 17.7                            | 19.1 | 23.5 | 23.5 | 21.26                  | 2.74               |
| 04-012-8000 | Alamo Lake                       | 11.7 | 12.0                            | 13.4 | 13.7 | 14.4 | 13.04                  | 0.00               |
| 04-013-9997 | JLG Supersite                    | 30.3 | 25.2                            | 30.0 | 32.5 | 32.5 | 30.10                  | 5.69               |
| 04-015-1003 | Bullhead City                    | 20.6 | 18.9                            | 22.4 | 19.2 | 19.9 | 20.20                  | 2.39               |
| 04-019-0001 | Ajo                              | 27.1 | 17.6                            | 16.2 | 17.5 | 16.0 | 18.88                  | 1.95               |
| 04-019-0020 | Rillito                          | 39.0 | 36.4                            | 45.3 | 49.2 | 43.3 | 42.64                  | 9.87               |
| 04-023-0004 | Nogales Post Office              | 39.9 | 31.2                            | 38.0 | 36.4 | 34.0 | 35.90                  | 7.62               |
| 04-027-8011 | Yuma Supersite                   | 44.7 | 38.5                            | 47.7 | 41.8 | 42.5 | 43.04                  | 10.00              |

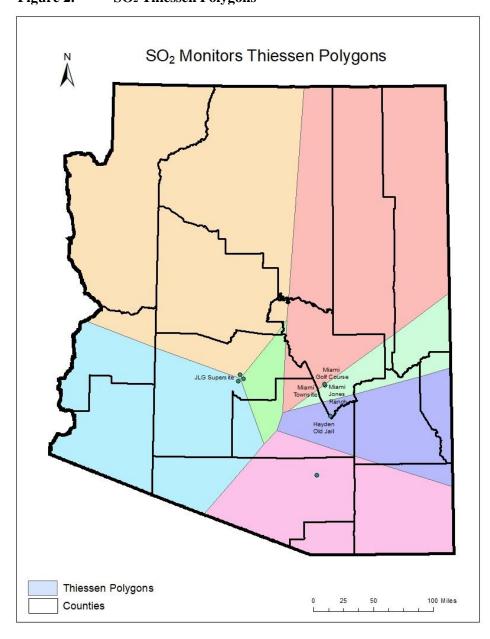
## Table 5:PM2.5 Instruments by Highest Design Value

|             |                                        |      | Design Value (98th Percentile of Annual<br>Values, Averaged over 3 years in µg/m3) |      |      |      |                     |       |  |
|-------------|----------------------------------------|------|------------------------------------------------------------------------------------|------|------|------|---------------------|-------|--|
|             | QS ID                                  | Va   | Indicator                                                                          |      |      |      |                     |       |  |
| Sit         | Site Name                              |      | 2015                                                                               | 2016 | 2017 | 2018 | Average 2014 – 2018 | Value |  |
| 04-003-1005 | Douglas Red Cross                      | 15.9 | 10.5                                                                               | 9.1  | 14   | 12   | 12.30               | 1.66  |  |
| 04-012-8000 | Alamo Lake                             | 8.2  | 6.8                                                                                | 10.2 | 10.5 | 11.3 | 9.40                | 0.00  |  |
| 04-013-9997 | JLG Supersite<br>(Continuous)          | 22.5 | 23.2                                                                               | 19.4 | 20.7 | 23.7 | 21.90               | 7.16  |  |
| 04-013-9997 | JLG Supersite<br>(Filter)              | 23.9 | 20.9                                                                               | 16.4 | 21.5 | 20.9 | 20.72               | 6.48  |  |
| 04-023-0004 | Nogales Post<br>Office<br>(Continuous) | 29   | 27.2                                                                               | 26   | 30.3 | 21.8 | 26.86               | 10.00 |  |
| 04-023-0004 | Nogales Post<br>Office (Filter)        | 19.5 | 22.1                                                                               | 22.6 | 23.2 | 22.6 | 22.00               | 7.22  |  |
| 04-027-8011 | Yuma Supersite                         | 22.9 | 14.7                                                                               | 23   | 19.6 | 25.7 | 21.18               | 6.75  |  |

## **B.** Area Served

This indicator assesses monitors based on the area of influence. All instruments in Arizona, including all state, local, and tribal monitors, are used to show the instrument's area of representation. Thissen polygons are polygons that surround an instrument, used to show its area of representation. These are drawn by locating the midway point between monitors and creating multisided polygons surrounding each monitor. The area in square-miles of each polygon is used to assess instruments on a 0 to 10 scale, with the monitor that has the largest area receiving a value of 10 and the smallest receiving a value of 0. Monitor location data were taken from EPA's AQS database.

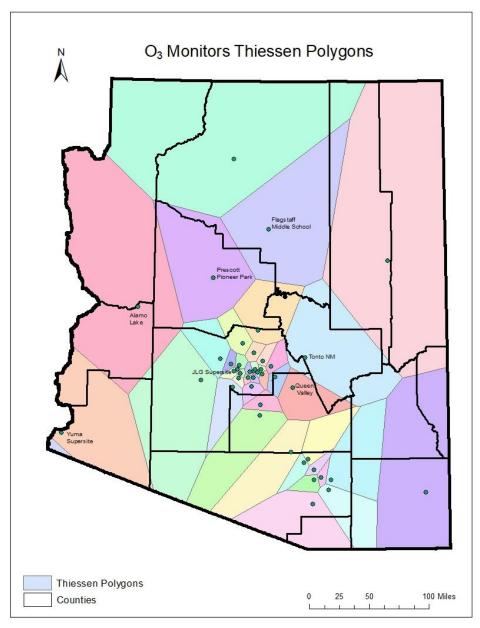
It is assumed that monitors that cover the largest areas are of higher significance to air monitoring in Arizona because it represents the largest unique geographic area and are sampling a unique parcel of air. Instruments that are close together generally measure the same concentration; therefore, it would be advantageous to operate an instrument that covers the largest area. Instruments on the edge of urban areas or background type monitors typically have a larger area of influence.


This indicator has disadvantages because pollutant concentrations at a monitoring site may not be representative of a very large area due to meteorological or topographic changes. Some polygons are so large that it shows a monitor having a representation of half the state. The monitors in these very large areas would not actually be representative of ambient concentrations in the entire area; therefore, this indicator is purely spatial in nature.

## Results

Results for the Area Served indicator are given by pollutant. The maximum area served is assigned an indicator value of 10 and the minimum a 0. All instruments are assigned a value relative to these highest and lowest values.

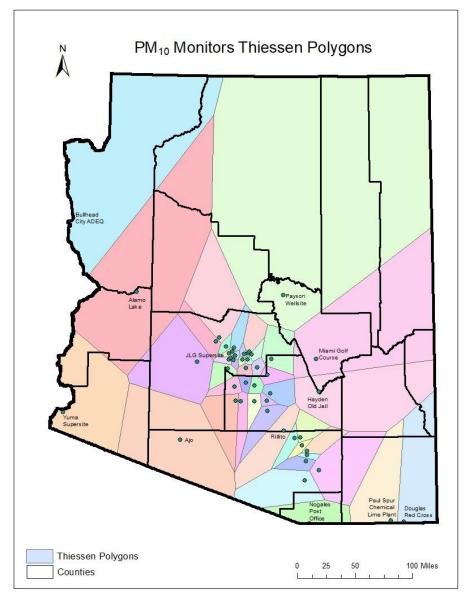
| Table 6:    | SO <sub>2</sub> Instruments b | oy Area Served |           |
|-------------|-------------------------------|----------------|-----------|
| A           | AQS ID                        | Area Served    | Indicator |
| Si          | te Name                       | (sqmi)         | Value     |
| 04-007-0011 | Miami Jones Ranch             | 4,261          | 0.00      |
| 04-007-0012 | Miami Townsite                | 28,600         | 7.14      |
| 04-007-1001 | Hayden Old Jail               | 8,190          | 1.15      |
| 04-013-9997 | JLG Supersite                 | 38,327         | 10.00     |


Figure 2: SO<sub>2</sub> Thiessen Polygons



|             | AQS ID<br>Site Name        | Area<br>Served<br>(sqmi) | Indicator<br>Value |
|-------------|----------------------------|--------------------------|--------------------|
| 04-005-1008 | Flagstaff Middle School    | 7,933                    | 5.98               |
| 04-007-0010 | Tonto National<br>Monument | 5,845                    | 4.40               |
| 04-012-8000 | Alamo Lake                 | 13,256                   | 10.00              |
| 04-013-9997 | JLG Supersite              | 19                       | 0.00               |
| 04-021-8001 | Queen Valley               | 1,586                    | 1.18               |
| 04-025-8034 | Prescott Pioneer Park      | 5,281                    | 3.98               |
| 04-027-8011 | Yuma Supersite             | 5,356                    | 4.03               |

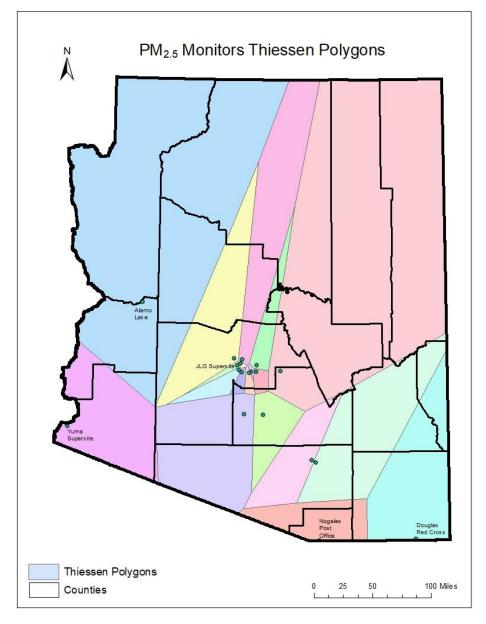
Table 7:O3 Instruments by Area Served


Figure 3: O<sub>3</sub> Thiessen Polygons



| Table 8:         PM10 Instruments by Area Served |                                  |                       |                    |  |  |
|--------------------------------------------------|----------------------------------|-----------------------|--------------------|--|--|
|                                                  | AQS ID<br>te Name                | Area Served<br>(sqmi) | Indicator<br>Value |  |  |
| 04-003-0011                                      | Paul Spur Chemical<br>Lime Plant | 2,544                 | 0.72               |  |  |
| 04-003-1005                                      | Douglas Red Cross                | 3,189                 | 0.91               |  |  |
| 04-007-0008                                      | Payson                           | 34,868                | 10.00              |  |  |
| 04-007-1001                                      | Hayden Old Jail                  | 5,448                 | 1.56               |  |  |
| 04-007-8000                                      | Miami Golf Course                | 9,546                 | 2.73               |  |  |
| 04-012-8000                                      | Alamo Lake                       | 12,700                | 3.64               |  |  |
| 04-013-9997                                      | JLG Supersite                    | 19                    | 0.00               |  |  |
| 04-015-1003                                      | Bullhead City                    | 12,293                | 3.52               |  |  |
| 04-019-0001                                      | Ajo                              | 6,048                 | 1.73               |  |  |
| 04-019-0020                                      | Rillito                          | 289                   | 0.08               |  |  |
| 04-023-0004                                      | Nogales Post Office              | 1,151                 | 0.33               |  |  |
| 04-027-8011                                      | Yuma Supersite                   | 4,480                 | 1.28               |  |  |

Table 8:PM10 Instruments by Area Served


Figure 4: PM<sub>10</sub> Thiessen Polygons



| Table 5. Twiz.s Instruments by Area Served |                                     |                           |                    |  |  |
|--------------------------------------------|-------------------------------------|---------------------------|--------------------|--|--|
|                                            | AQS ID<br>te Name                   | Area<br>Served (sq<br>mi) | Indicator<br>Value |  |  |
| 04-003-1005                                | Douglas Red Cross                   | 6,882                     | 2.23               |  |  |
| 04-012-8000                                | Alamo Lake                          | 30,728                    | 10.00              |  |  |
| 04-013-9997                                | JLG Supersite<br>(Continuous)       | 29                        | 0.00               |  |  |
| 04-013-9997                                | JLG Supersite<br>(Filter)           | 29                        | 0.00               |  |  |
| 04-023-0004                                | Nogales Post Office<br>(Continuous) | 2,811                     | 0.91               |  |  |
| 04-023-0004                                | Nogales Post Office<br>(Filter)     | 2,811                     | 0.91               |  |  |
| 04-027-8011                                | Yuma Supersite                      | 6,099                     | 1.98               |  |  |

Table 9:PM2.5 Instruments by Area Served

Figure 5: PM<sub>2.5</sub> Thiessen Polygons



## **C.** Population Served

This indicator assesses instruments by the number of people that it represents. Instruments have a stated spatial scale related to their monitoring objectives and purposes, ranging from a few meters to global. EPA's spatial scales and distances are found in Table 10. The spatial scales of monitors are determined by ADEQ before installation and recorded in AQS and in the Network Plan. The EPA confirms the spatial scale. Spatial scale distances are a radius in which concentration readings are relatively uniform.

Using the spatial scale of each monitor, population data are laid over the spatial scale areas and the number of individuals in that area are counted to determine the population served. Population data are broken up into census blocks, which are statistical areas bounded by visible features. To calculate the population in the spatial scale area, total population data were superimposed with the spatial scale circle and then calculated in ArcGIS.

The population in each spatial scale circle is used to assess monitors on a 0 to 10 scale, with the monitor that serves the greatest population receiving a value of 10 and the smallest receiving a value of 0. Population data are taken from the ESRI 2019 population estimates based on 2010 US Census data.

It is assumed that a monitor that represents the largest population is of greatest significance. There are many advantages of using the spatial scale of each monitor to calculate the population served. Monitors are specifically sited to represent the area and population directly surrounding the site. The siting takes into account pollutant sources, roadways, topography, and meteorological considerations to represent the stated spatial scale. This indicator has disadvantages in that it does not take into account the specific purpose of each monitor (background, regional, source specific). Some instruments are not population-oriented thus may not represent a large number of people. This is addressed by only ranking the neighborhood scale type of monitors in each pollutant network as the neighborhood scale is population-oriented.

NOTE: Since this indicator is population-oriented, instruments whose purposes are not for population exposure bias the population results. ADEQ mainly monitors for population exposure using the neighborhood spatial scale. Since this scale is the predominate type for pollutant networks, the ranking values are based on these monitors. Regional scale monitors receive a ranking value of 10. Micro scale and middle scale monitors receive a ranking value of 0. Also, since JLG Supersite is located in a geographic, demographic, and urban anomaly compared to the rest of ADEQ's monitors, it also receives a ranking value of 10. All other monitors are ranked on a 0-10 scale.

| Table 10: EF           | PA Monitoring Spatia               | ii Scales                                                                                                                                                                                                                                                                                                                                   |
|------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре                   | Distance                           | Description                                                                                                                                                                                                                                                                                                                                 |
| Micro                  | <100 meters                        | Defines the concentrations in air volumes associated with area dimensions ranging from several meters up to about 100 meters.                                                                                                                                                                                                               |
| Middle                 | 0.1-0.5 kilometers                 | Defines the concentration typical of areas up to several city blocks in size with dimensions ranging from about 100 meters to 0.5 kilometer.                                                                                                                                                                                                |
| Neighborhood           | 0.5-4.0 kilometers                 | Defines concentrations within some extended area of the city that has<br>relatively uniform land use with dimensions in the 0.5 to 4.0<br>kilometers range. The neighborhood and urban scales listed below<br>have the potential to overlap in applications that concern secondarily<br>formed or homogeneously distributed air pollutants. |
| Urban                  | 4.0-50.0 kilometers                | Defines concentrations within an area of city-like dimensions, on the order of 4 to 50 kilometers. Within a city, the geographic placement of sources may result in there being no single site that can be said to represent air quality on an urban scale.                                                                                 |
| Regional               | Tens to hundreds of kilometers *   | Defines usually a rural area of reasonably homogeneous geography<br>without large sources, and extends from tens to hundreds of<br>kilometers.                                                                                                                                                                                              |
| National and<br>Global | A whole nation or the entire globe | These measurement scales represent concentrations characterizing the nation and the globe as a whole.                                                                                                                                                                                                                                       |

| Table 10: | EPA | Monitoring | <b>Spatial</b> | Scales |
|-----------|-----|------------|----------------|--------|
|-----------|-----|------------|----------------|--------|

\* For purposes of this report, regional scale monitors use a radius of 100km

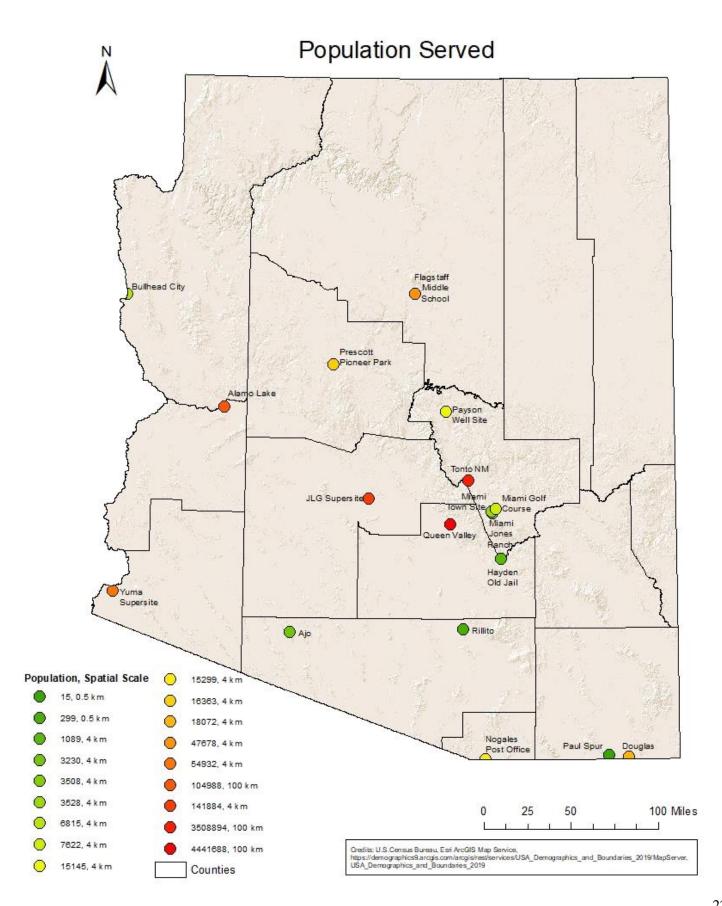
## Results

Results for the Population Served indicator are given by pollutant. The maximum population served is assigned an indicator value of 10 and the minimum a 0. All instruments are assigned a value relative to these highest and lowest values. Removing the regional scale, middle scale, and JLG Supersite from the Indicator Value scale results in Yuma Supersite having the largest population served of 54,932 individuals.

| Tuble 11. 502 Instruments by Topulation Served |                   |               |                      |                    |
|------------------------------------------------|-------------------|---------------|----------------------|--------------------|
| AQS ID<br>Site Name                            |                   | Spatial Scale | Population<br>Served | Indicator<br>Value |
| 04-007-0011                                    | Miami Jones Ranch | Neighborhood  | 3,508                | 0.17               |
| 04-007-0012                                    | Miami Townsite    | Neighborhood  | 3,528                | 0.17               |
| 04-007-1001                                    | Hayden Old Jail   | Neighborhood  | 1,089                | 0.00               |
| 04-013-9997                                    | JLG Supersite     | Neighborhood  | 141,884              | 10.00              |

Table 11:SO2 Instruments by Population Served

| Table 12: | <b>O3 Instruments</b> | by Po | opulation | Served |
|-----------|-----------------------|-------|-----------|--------|
|-----------|-----------------------|-------|-----------|--------|


| S           | AQS ID<br>Site Name        | Spatial Scale | Population<br>Served | Indicator<br>Value |
|-------------|----------------------------|---------------|----------------------|--------------------|
| 04-005-1008 | Flagstaff Middle<br>School | Neighborhood  | 47,678               | 8.12               |
| 04-007-0010 | Tonto National<br>Monument | Regional      | 3,508,894            | 10.00              |
| 04-012-8000 | Alamo Lake                 | Regional      | 104,988              | 10.00              |
| 04-013-9997 | JLG Supersite              | Neighborhood  | 141,884              | 10.00              |
| 04-021-8001 | Queen Valley               | Regional      | 4,441,688            | 10.00              |
| 04-025-8034 | Prescott Pioneer Park      | Neighborhood  | 16,371               | 0.00               |
| 04-027-8011 | Yuma Supersite             | Neighborhood  | 54,932               | 10.00              |

#### Table 13: PM10 Instruments by Population Served

|             | AQS ID<br>te Name                | Spatial Scale | Population<br>Served | Indicator<br>Value |
|-------------|----------------------------------|---------------|----------------------|--------------------|
| 04-003-0011 | Paul Spur Chemical<br>Lime Plant | Middle        | 15                   | 0.00               |
| 04-003-1005 | Douglas Red Cross                | Neighborhood  | 18,072               | 3.15               |
| 04-007-0008 | Payson                           | Neighborhood  | 15,154               | 2.61               |
| 04-007-1001 | Hayden Old Jail                  | Neighborhood  | 1,089                | 0.00               |
| 04-007-8000 | Miami Golf Course                | Neighborhood  | 7,622                | 1.21               |
| 04-012-8000 | Alamo Lake                       | Regional      | 104,988              | 10.00              |
| 04-013-9997 | JLG Supersite                    | Neighborhood  | 141,884              | 10.00              |
| 04-015-1003 | Bullhead City                    | Neighborhood  | 6,815                | 1.06               |
| 04-019-0001 | Ajo                              | Neighborhood  | 3,230                | 0.40               |
| 04-019-0020 | Rillito                          | Middle        | 299                  | 0.00               |
| 04-023-0004 | Nogales Post Office              | Neighborhood  | 15,299               | 2.64               |
| 04-027-8011 | Yuma Supersite                   | Neighborhood  | 54,932               | 10.00              |

| Table 14. I Wiz:s Instruments by ropulation Served |                                     |               |                      |                    |
|----------------------------------------------------|-------------------------------------|---------------|----------------------|--------------------|
| AQS ID<br>Site Name                                |                                     | Spatial Scale | Population<br>Served | Indicator<br>Value |
| 04-003-1005                                        | Douglas Red Cross                   | Neighborhood  | 18,072               | 0.70               |
| 04-012-8000                                        | Alamo Lake                          | Regional      | 104,988              | 10.00              |
| 04-013-9997                                        | JLG Supersite<br>(Continuous)       | Neighborhood  | 141,884              | 10.00              |
| 04-013-9997                                        | JLG Supersite<br>(Filter)           | Neighborhood  | 141,884              | 10.00              |
| 04-023-0004                                        | Nogales Post Office<br>(Continuous) | Neighborhood  | 15,299               | 0.00               |
| 04-023-0004                                        | Nogales Post Office<br>(Filter)     | Neighborhood  | 15,299               | 0.00               |
| 04-027-8011                                        | Yuma Supersite                      | Neighborhood  | 54,932               | 10.00              |

 Table 14:
 PM2.5 Instruments by Population Served



## **D.** Correlation Between Monitors

This indicator assesses instruments based on how well each monitor correlates with other monitors. The correlation used is Pearson's R<sub>2</sub> or coefficient of determination and is a measure of linear correlation between two data sets, giving a value between 0.0 and 1.0. For this indicator, the highest monitor to monitor Pearson's correlation for each monitor was used to assess an instrument's statistical uniqueness. The highest assessed instrument in each network has the lowest correlation from other instruments over the past five years (2014 - 2018). Each pollutant network is assessed on a 0 to 10 scale, with the monitor that correlates best receiving a value of 0, and the most unique instrument receiving a value of 10.

Daily Maximum data were taken from EPA's AQS database for the year 2018 and were chosen to determine if sites on a large scale are similar to one another. All monitors in the pollutant networks in Arizona were used to determine correlation for each of ADEQ's monitors. Data were used from Maricopa County Air Quality Department, Pinal County Air Quality Control District, Pima County Department of Environmental Quality, tribal monitors, and the National Park Service and taken from EPA's AQS database.

It is assumed that monitors that have the lowest correlation to other monitors are most important because they may have a unique data set that is not represented elsewhere. If monitors correlate well with each other, then they may be monitoring the same pollutant sources and in the same area. This would be beneficial to determine which monitors are suitable for removal/relocation.

This indicator has disadvantages in that it does not take into account the requirements for collocation of monitors. The purpose of a collocated monitor is to ensure that there is good correlation; therefore, in these circumstances it would be advantageous to have monitors that correlate well.

## Results

Results for the Correlation Between Monitors indicator are given by pollutant. The instrument with lowest correlations is assigned an indicator value of 10 and the highest correlation a 0. All instruments are assigned a value relative to these highest and lowest values.

| Table 15.           | Table 15. 502 Instruments by Correlation Detween Monitors |                        |                                  |                    |  |
|---------------------|-----------------------------------------------------------|------------------------|----------------------------------|--------------------|--|
| AQS ID<br>Site Name |                                                           | Maximum<br>Correlation | Highest Correlated<br>Instrument | Indicator<br>Value |  |
| 04-007-0011         | Miami Jones Ranch                                         | 0.4117                 | Miami Townsite                   | 0.72               |  |
| 04-007-0012         | Miami Townsite                                            | 0.4117                 | Miami Jones Ranch                | 0.72               |  |
| 04-007-1001         | Hayden Old Jail                                           | 0.0926                 | JLG                              | 10.00              |  |
| 04-013-9997         | JLG Supersite                                             | 0.4366                 | Durango Complex                  | 0.00               |  |

 Table 15:
 SO2 Instruments by Correlation Between Monitors

#### Table 16:O3 Instruments by Correlation Between Monitors

|             | AQS ID<br>Site Name     | Maximum<br>Correlation | Highest Correlated<br>Instrument | Indicator<br>Value |
|-------------|-------------------------|------------------------|----------------------------------|--------------------|
| 04-005-1008 | Flagstaff Middle School | 0.8388                 | Prescott Pioneer Park            | 3.72               |
| 04-007-0010 | Tonto National Monument | 0.9224                 | Blue Point                       | 1.35               |
| 04-012-8000 | Alamo Lake              | 0.7556                 | Buckeye                          | 6.07               |
| 04-013-9997 | JLG Supersite           | 0.9702                 | North Phoenix                    | 0.00               |
| 04-021-8001 | Queen Valley            | 0.9250                 | AJ Maintenance Yard              | 1.28               |
| 04-025-8034 | Prescott Pioneer Park   | 0.8388                 | Flagstaff Middle School          | 3.72               |
| 04-027-8011 | Yuma Supersite          | 0.6166                 | Alamo Lake                       | 10.00              |

NOTE: All of the  $O_3$  monitors correlate very well with each other, all having a minimum correlation coefficient of 0.617. This indicates that  $O_3$  is a regional issue and not a microscale problem.

| Table 17: PM10 Instruments by Correlation Between Monitors |                                  |        |                                    |                    |
|------------------------------------------------------------|----------------------------------|--------|------------------------------------|--------------------|
|                                                            | AQS ID<br>Site Name              |        | Highest Correlated<br>Instrument   | Indicator<br>Value |
| 04-003-0011                                                | Paul Spur Chemical<br>Lime Plant | 0.2017 | South Tucson                       | 9.13               |
| 04-003-1005                                                | Douglas Red Cross                | 0.2485 | Geronimo                           | 8.50               |
| 04-007-0008                                                | Payson                           | 0.2081 | City of Maricopa County<br>Complex | 9.04               |
| 04-007-1001                                                | Hayden Old Jail                  | 0.2503 | Rillito                            | 8.48               |
| 04-007-8000                                                | Miami Golf Course                | 0.2981 | Tangerine                          | 7.84               |
| 04-012-8000                                                | Alamo Lake                       | 0.2969 | Coolidge Maintenance Yard          | 7.85               |
| 04-013-9997                                                | JLG Supersite                    | 0.8832 | North Phoenix                      | 0.00               |
| 04-015-1003                                                | Bullhead City                    | 0.1837 | Zuni Hills                         | 9.37               |
| 04-019-0001                                                | Ajo                              | 0.3850 | Coolidge Maintenance Yard          | 6.67               |
| 04-019-0020                                                | Rillito                          | 0.2766 | Pinal Air Park                     | 8.13               |
| 04-023-0004                                                | Nogales Post Office              | 0.1367 | Douglas                            | 10.00              |
| 04-027-8011                                                | Yuma Supersite                   | 0.2504 | Coolidge Maintenance Yard          | 8.48               |

### Table 17: PM10 Instruments by Correlation Between Monitors

## Table 18: PM2.5 Instruments by Correlation Between Monitors

|             | AQS ID<br>Site Name                 | Maximum<br>Correlation | Highest Correlated<br>Instrument    | Indicator<br>Value |
|-------------|-------------------------------------|------------------------|-------------------------------------|--------------------|
| 04-003-1005 | Douglas Red Cross                   | 0.1221                 | Children's Park                     | 10.00              |
| 04-012-8000 | Alamo Lake                          | 0.2904                 | AJ Fire Station                     | 7.98               |
| 04-013-9997 | JLG Supersite (Continuous)          | 0.9399                 | JLG Supersite (Filter)              | 0.17               |
| 04-013-9997 | JLG Supersite (Filter)              | 0.9399                 | JLG Supersite<br>(Continuous)       | 0.17               |
| 04-023-0004 | Nogales Post Office<br>(Continuous) | 0.9541                 | Nogales Post Office<br>(Filter)     | 0.00               |
| 04-023-0004 | Nogales Post Office (Filter)        | 0.9541                 | Nogales Post Office<br>(Continuous) | 0.00               |
| 04-027-8011 | Yuma Supersite                      | 0.1813                 | AJ Fire Station                     | 9.29               |

## **E. Removal Bias**

Removal bias is a modeled value based indictor. Using the EPA NetAssess2020 tool, it finds the nearest neighbors to each selected site and then uses the data from the neighboring sites to estimate concentrations at the site. It then compares the estimates to the actual concentrations measured at the selected site to determine the Removal Bias. Sites with a greater bias are more important for interpolation because they add a unique value while sites with low bias can be redundant. The site having the greatest absolute bias receives a value of 10, and the least a value of 0.

It is assumed that monitors with a low bias can be removed due to redundancy. It determines redundancies in monitoring networks. This indicator has disadvantages in that it does not take into account geographic features, meteorology or local sources. Additionally, this method is most useful for pollutants with large networks.

## Results

Results for the Removal Bias indicator are given by pollutant.

| Table 17. 502 Instruments by Kemoval Dias |                      |                                     |                    |  |
|-------------------------------------------|----------------------|-------------------------------------|--------------------|--|
| AQS ID<br>Site Name                       |                      | Absolute<br>Mean<br>Removal<br>Bias | Indicator<br>Value |  |
| 04-007-0011                               | Miami Jones<br>Ranch | 0.90                                | 0.12               |  |
| 04-007-0012                               | Miami Townsite       | 4.90                                | 1.10               |  |
| 04-007-1001                               | Hayden Old Jail      | 41.20                               | 10.00              |  |
| 04-013-9997                               | JLG Supersite        | 0.40                                | 0.00               |  |

 Table 19:
 SO2 Instruments by Removal Bias

#### Table 20:O3 Instruments by Removal Bias

|             | QS ID<br>e Name            | Absolute<br>Mean<br>Removal<br>Bias | Indicator<br>Value |
|-------------|----------------------------|-------------------------------------|--------------------|
| 04-005-1008 | Flagstaff Middle<br>School | 0.0022                              | 5.53               |
| 04-007-0010 | Tonto National<br>Monument | 0.0007                              | 1.58               |
| 04-012-8000 | Alamo Lake                 | 0.0023                              | 5.79               |
| 04-013-9997 | JLG Supersite              | 0.0001                              | 0.00               |
| 04-021-8001 | Queen Valley               | 0.0035                              | 8.95               |
| 04-025-8034 | Prescott Pioneer<br>Park   | 0.0011                              | 2.63               |
| 04-027-8011 | Yuma Supersite             | 0.0039                              | 10.00              |

|             | QS ID<br>e Name                  | Absolute<br>Mean<br>Removal<br>Bias | Indicator<br>Value |
|-------------|----------------------------------|-------------------------------------|--------------------|
| 04-003-0011 | Paul Spur Chemical<br>Lime Plant | 13.30                               | 3.60               |
| 04-003-1005 | Douglas Red Cross                | 12.60                               | 3.40               |
| 04-007-0008 | 04-007-0008 Payson               |                                     | 0.98               |
| 04-007-1001 | 04-007-1001 Hayden Old Jail      |                                     | 1.04               |
| 04-007-8000 | 04-007-8000 Miami Golf Course    |                                     | 1.87               |
| 04-012-8000 | 04-012-8000 Alamo Lake           |                                     | 4.67               |
| 04-013-9997 | JLG Supersite                    | 0.80                                | 0.00               |
| 04-015-1003 | 04-015-1003 Bullhead City        |                                     | 0.23               |
| 04-019-0001 | <b>04-019-0001</b> Ajo           |                                     | 10.00              |
| 04-019-0020 | <b>04-019-0020</b> Rillito       |                                     | 5.33               |
| 04-023-0004 | Nogales Post<br>Office           | 18.40                               | 5.07               |
| 04-027-8011 | Yuma Supersite                   | 1.60                                | 0.23               |

 Table 21:
 PM10 Instruments by Removal Bias

### Table 22:PM2.5 Instruments by Removal Bias

|             | AQS ID<br>te Name                   | Absolute<br>Mean<br>Removal<br>Bias | Indicator<br>Value |
|-------------|-------------------------------------|-------------------------------------|--------------------|
| 04-003-1005 | Douglas Red Cross                   | 2.34                                | 9.40               |
| 04-012-8000 | Alamo Lake                          | 2.32                                | 9.28               |
| 04-013-9997 | JLG Supersite<br>(Continuous)       | 0.77                                | 0.00               |
| 04-013-9997 | JLG Supersite (Filter)              | Filter) 0.77 <b>0.00</b>            |                    |
| 04-023-0004 | Nogales Post Office<br>(Continuous) | 2.44                                | 10.00              |
| 04-023-0004 | Nogales Post Office<br>(Filter)     | 2.44                                | 10.00              |
| 04-027-8011 | Yuma Supersite                      | 2.10                                | 7.96               |

\_\_\_\_\_

## **F. Source Oriented**

A source oriented monitor is a regulatory category. The source oriented indicator is a simple yes or no. Monitors in either a nonattainment or a maintenance area are source oriented. If an instrument's purpose is to monitor for point or area source emissions, it is source oriented and receives the highest value of 10. If it is not source oriented, it receives a value of 0.

It is assumed that it is more important to have a monitor that is source oriented. This indicator has disadvantages in that it does not take into account the full breadth of monitoring needed to fully characterize a unique area's ambient air quality.

## **Results**

Results for the Source Oriented Monitor indicator are given by pollutant. The source oriented monitors are assigned an indicator value of 10 and the non-source oriented a 0.

| Table 23:         SO2 Instruments by Source Oriented Monitor |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
|--------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| AQS ID<br>Site Name                                          |                   | Comparison of the second se |       |
| 04-007-0011                                                  | Miami Jones Ranch | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00 |
| 04-007-0012                                                  | Miami Townsite    | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00 |
| 04-007-1001                                                  | Hayden Old Jail   | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.00 |
| 04-013-9997                                                  | JLG Supersite     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00  |

| Table 24: | O2 Instruments | hy Source | <b>Oriented Monitor</b> |
|-----------|----------------|-----------|-------------------------|
| Table 24: | O3 Instruments | by Source | Oriented Monitor        |

|             | AQS ID<br>ite Name         | Source<br>Oriented<br>Monitor? | Indicator<br>Value |
|-------------|----------------------------|--------------------------------|--------------------|
| 04-005-1008 | Flagstaff Middle School    | No                             | 0.00               |
| 04-007-0010 | Tonto National<br>Monument | No                             | 0.00               |
| 04-012-8000 | Alamo Lake                 | No                             | 0.00               |
| 04-013-9997 | JLG Supersite              | No                             | 0.00               |
| 04-021-8001 | Queen Valley               | No                             | 0.00               |
| 04-025-8034 | Prescott Pioneer Park      | No                             | 0.00               |
| 04-027-8011 | Yuma Supersite             | No                             | 0.00               |

| 1 abic 25.  | i wito instituments by           | bource oriente                 | u Monitor          |
|-------------|----------------------------------|--------------------------------|--------------------|
|             | AQS ID<br>te Name                | Source<br>Oriented<br>Monitor? | Indicator<br>Value |
| 04-003-0011 | Paul Spur Chemical<br>Lime Plant | Yes                            | 10.00              |
| 04-003-1005 | Douglas Red Cross                | Yes                            | 10.00              |
| 04-007-0008 | Payson                           | Yes                            | 10.00              |
| 04-007-1001 | Hayden Old Jail                  | Yes                            | 10.00              |
| 04-007-8000 | Miami Golf Course                | Yes                            | 10.00              |
| 04-012-8000 | Alamo Lake                       | No                             | 0.00               |
| 04-013-9997 | JLG Supersite                    | Yes                            | 10.00              |
| 04-015-1003 | Bullhead City                    | Yes                            | 10.00              |
| 04-019-0001 | Ajo                              | Yes                            | 10.00              |
| 04-019-0020 | Rillito                          | Yes                            | 10.00              |
| 04-023-0004 | Nogales Post Office              | Yes                            | 10.00              |
| 04-027-8011 | Yuma Supersite                   | Yes                            | 10.00              |

#### Table 25: PM10 Instruments by Source Oriented Monitor

| Table 26:  | PM2.5 Instruments by Source Oriented Monitor    |
|------------|-------------------------------------------------|
| 1 abic 20. | 1 W12.5 Instruments by Source Oriented Wionitor |

|             | AQS ID<br>te Name                   | Source<br>Oriented<br>Monitor? | Indicator<br>Value |
|-------------|-------------------------------------|--------------------------------|--------------------|
| 04-003-1005 | Douglas Red Cross                   | No                             | 0.00               |
| 04-012-8000 | Alamo Lake                          | No                             | 0.00               |
| 04-013-9997 | JLG Supersite<br>(Continuous)       | No                             | 0.00               |
| 04-013-9997 | JLG Supersite (Filter)              | No                             | 0.00               |
| 04-023-0004 | Nogales Post Office<br>(Continuous) | Yes                            | 10.00              |
| 04-023-0004 | Nogales Post Office<br>(Filter)     | Yes                            | 10.00              |
| 04-027-8011 | Yuma Supersite                      | No                             | 0.00               |

## **G.Final Rankings**

The final rankings combine all the indicators in the Ranking Analysis and ranks the instruments by averaging the indicator values. The highest indicator value average is the highest ranked instrument in the network and is therefore the most meaningful and important. The lowest ranked instrument could be considered for relocation or removal if possible. Recommendations for possible relocation, removal, or addition of monitors are in Section III: Final Conclusions and Recommendations on Page 51 of this assessment.

Indicator values from each of the previous indicator sections are then individually weighted and averaged to get a final ranking. Results are shown both weighted and un-weighted. Weighing the indicators is necessary because it is not assumed that all the indicators have the same importance to the public welfare, regulatory actions, and to ambient air monitoring in Arizona. For example, the measured concentration indicator is considered to be of higher importance and has more meaning than the Source Oriented indicator. Both indicators are considerations when running an air monitoring network, but operating an instrument that has higher concentrations is of higher significance than if the instrument is source oriented or not.

Weights were derived from two consensus meetings with ADEQ's Air Quality Division staff and a survey given to others in Arizona's air monitoring community. The consensus meetings and survey were conducted by asking participants to rate the importance of each indicator listed in Section I: Ranking Analysis on Page 11 on a scale from 1 to 5 (1=0.10, 2=0.25, 3=0.50, 4=0.75 and 5=1.00). In total, 30 members of ADEQ's Air Quality Division staff attended the meetings and one survey response was collected from Arizona's air monitoring community. Indicators with lower importance were rated 1 and higher importance were rated 5. The results are found in Table 27 and were multiplied to the indicator values. The weighted indicator values were then averaged by instrument for the Final Rankings.

| Table 27:         Ranking Analysis Pollutant Results |                 |            |              |               |
|------------------------------------------------------|-----------------|------------|--------------|---------------|
| Indicator                                            | SO <sub>2</sub> | <b>O</b> 3 | <b>PM</b> 10 | <b>PM</b> 2.5 |
| Measured Concentration                               | 1.00            | 1.00       | 1.00         | 1.00          |
| Area Served                                          | 0.25            | 0.50       | 0.50         | 0.50          |
| Population Served                                    | 0.25            | 0.75       | 0.75         | 0.50          |
| Monitor to Monitor<br>Correlation                    | 0.25            | 0.50       | 0.50         | 0.50          |
| Removal Bias                                         | 0.25            | 0.50       | 0.50         | 0.50          |
| Source Oriented                                      | 0.75            | 0.10       | 0.25         | 0.25          |

| Table 27: | Ranking | Analysis | Pollutant | Results |
|-----------|---------|----------|-----------|---------|
|           |         |          |           |         |

## Results

The ranking results for the four pollutant networks are shown hereafter. The unweighted and weighted ranking results are shown to compare the difference before the weighting and after the weighting. The highest indicator average is the highest ranked monitor and is the most important and meaningful to air monitoring.

#### a. SO<sub>2</sub> Results

| Table 28: | Weighted SO <sub>2</sub> Instrument | Results. Unweighted Results in Parentheses |
|-----------|-------------------------------------|--------------------------------------------|
|           | i eigneed bor inser amene           | results, charter results in 1 al chartes   |

|             | QS ID<br>e Name   | County   | Measured<br>Concentration | Area<br>Served | Population<br>Served | Correlation<br>Between<br>Monitors | Removal<br>Bias | Source<br>Oriented | Average | Rank |
|-------------|-------------------|----------|---------------------------|----------------|----------------------|------------------------------------|-----------------|--------------------|---------|------|
| 04-007-0011 | Miami Jones Ranch | Gila     | 6.95 (6.95)               | 0 (0)          | 0.04 (0.17)          | 0.18 (0.72)                        | 0.03 (0.12)     | 7.5 (10)           | 2.45    | 3    |
| 04-007-0012 | Miami Townsite    | Gila     | 5.49 (5.49)               | 1.79 (7.14)    | 0.04 (0.17)          | 0.18 (0.72)                        | 0.28 (1.1)      | 7.5 (10)           | 2.55    | 2    |
| 04-007-1001 | Hayden Old Jail * | Gila     | 10 (10)                   | 0.29 (1.15)    | 0 (0)                | 2.5 (10)                           | 2.5 (10)        | 7.5 (10)           | 3.80    | 1    |
| 04-013-9997 | JLG Supersite     | Maricopa | 0 (0)                     | 2.5 (10)       | 2.5 (10)             | 0 (0)                              | 0 (0)           | 0 (0)              | 0.83    | 4    |

\* Nonattainment Area

#### b. O<sub>3</sub> Results

#### Table 29: Weighted O3 Instrument Results. Unweighted Results in Parentheses

|             | AQS ID<br>Site Name     | County   | Measured<br>Concentration | Area<br>Served | Population<br>Served | Correlation<br>Between<br>Monitors | Removal<br>Bias | Source<br>Oriented | Average | Rank |
|-------------|-------------------------|----------|---------------------------|----------------|----------------------|------------------------------------|-----------------|--------------------|---------|------|
| 04-005-1008 | Flagstaff Middle School | Coconino | 0 (0)                     | 2.99 (5.98)    | 6.09 (8.12)          | 1.86 (3.72)                        | 2.77 (5.53)     | 0 (0)              | 2.74    | 6    |
| 04-007-0010 | Tonto National Mon. *   | Gila     | 5.9 (5.9)                 | 2.2 (4.4)      | 7.5 (10)             | 0.68 (1.35)                        | 0.79 (1.58)     | 0 (0)              | 2.84    | 5    |
| 04-012-8000 | Alamo Lake              | La Paz   | 1.54 (1.54)               | 5 (10)         | 7.5 (10)             | 3.04 (6.07)                        | 2.9 (5.79)      | 0 (0)              | 3.33    | 2    |
| 04-013-9997 | JLG Supersite *         | Maricopa | 10 (10)                   | 0 (0)          | 7.5 (10)             | 0 (0)                              | 0 (0)           | 0 (0)              | 2.92    | 4    |
| 04-021-8001 | Queen Valley *          | Pinal    | 5.48 (5.48)               | 0.59 (1.18)    | 7.5 (10)             | 0.64 (1.28)                        | 4.48 (8.95)     | 0 (0)              | 3.11    | 3    |
| 04-025-8034 | Prescott Pioneer Park   | Yavapai  | 0.51 (0.51)               | 1.99 (3.98)    | 0 (0)                | 1.86 (3.72)                        | 1.32 (2.63)     | 0 (0)              | 0.95    | 7    |
| 04-027-8011 | Yuma Supersite *        | Yuma     | 7.44 (7.44)               | 2.02 (4.03)    | 7.5 (10)             | 5 (10)                             | 5 (10)          | 0 (0)              | 4.49    | 1    |

\* Nonattainment Area

#### c. PM<sub>10</sub> Results

| Tuble 50. Weighted I have instrument Results. On weighted Results in Futentileses |                                    |            |                           |             |                      |                                    |                 |                    |         |      |
|-----------------------------------------------------------------------------------|------------------------------------|------------|---------------------------|-------------|----------------------|------------------------------------|-----------------|--------------------|---------|------|
| AQS ID<br>Site Name                                                               |                                    | County     | Measured<br>Concentration | Area Served | Population<br>Served | Correlation<br>Between<br>Monitors | Removal<br>Bias | Source<br>Oriented | Average | Rank |
| 04-003-0011                                                                       | Paul Spur Chemical<br>Lime Plant * | Cochise    | 1.07 (1.07)               | 0.36 (0.72) | 0 (0)                | 4.56 (9.13)                        | 1.8 (3.6)       | 2.5 (10)           | 1.56    | 12   |
| 04-003-1005                                                                       | Douglas *                          | Cochise    | 5.59 (5.59)               | 0.46 (0.91) | 2.37 (3.15)          | 4.25 (8.5)                         | 1.7 (3.4)       | 2.5 (10)           | 2.87    | 4    |
| 04-007-0008                                                                       | Payson ***                         | Gila       | 1.37 (1.37)               | 5 (10)      | 1.96 (2.61)          | 4.52 (9.04)                        | 0.49 (0.98)     | 2.5 (10)           | 2.67    | 5    |
| 04-007-1001                                                                       | Hayden Old Jail *                  | Gila       | 6.28 (6.28)               | 0.78 (1.56) | 0 (0)                | 4.24 (8.48)                        | 0.52 (1.04)     | 2.5 (10)           | 2.36    | 8    |
| 04-007-8000                                                                       | Miami Golf Course *                | Gila       | 2.74 (2.74)               | 1.37 (2.73) | 0.91 (1.21)          | 3.92 (7.84)                        | 0.94 (1.87)     | 2.5 (10)           | 2.06    | 10   |
| 04-012-8000                                                                       | Alamo Lake                         | La Paz     | 0 (0)                     | 1.82 (3.64) | 7.5 (10)             | 3.93 (7.85)                        | 2.34 (4.67)     | 0 (0)              | 2.60    | 7    |
| 04-013-9997                                                                       | JLG Supersite **                   | Maricopa   | 5.69 (5.69)               | 0 (0)       | 7.5 (10)             | 0 (0)                              | 0 (0)           | 2.5 (10)           | 2.61    | 6    |
| 04-015-100                                                                        | Bullhead City                      | Mohave     | 2.39 (2.39)               | 1.76 (3.52) | 0.8 (1.06)           | 4.69 (9.37)                        | 0.12 (0.23)     | 2.5 (10)           | 2.04    | 11   |
| 04-019-0001                                                                       | Ajo *                              | Pima       | 1.95 (1.95)               | 0.87 (1.73) | 0.3 (0.4)            | 3.34 (6.67)                        | 5 (10)          | 2.5 (10)           | 2.32    | 9    |
| 04-019-0020                                                                       | Rillito *                          | Pima       | 9.87 (9.87)               | 0.04 (0.08) | 0 (0)                | 4.06 (8.13)                        | 2.67 (5.33)     | 2.5(10)            | 3.19    | 3    |
| 04-023-0004                                                                       | Nogales Post Office *              | Santa Cruz | 7.62 (7.62)               | 0.17 (0.33) | 1.98 (2.64)          | 5 (10)                             | 2.54 (5.07)     | 2.5 (10)           | 3.30    | 2    |
| 04-027-8011                                                                       | Yuma Supersite *                   | Yuma       | 10 (10)                   | 0.64 (1.28) | 7.5 (10)             | 4.24 (8.48)                        | 0.12 (0.23)     | 2.5 (10)           | 4.17    | 1    |

 Table 30:
 Weighted PM10 Instrument Results. Unweighted Results in Parentheses

\* Moderate Nonattainment Area; \*\* Serious Nonattainment Area; \*\*\* Maintenance Area

#### d. PM<sub>2.5</sub> Results

#### Table 31: Weighted PM2.5 Instrument Results. Unweighted Results in Parentheses

| AQS ID<br>Site Name |                                       | County     | Measured<br>Concentration | Area Served | Population<br>Served | Correlation<br>Between<br>Monitors | Removal<br>Bias | Source<br>Oriented | Average | Rank |
|---------------------|---------------------------------------|------------|---------------------------|-------------|----------------------|------------------------------------|-----------------|--------------------|---------|------|
| 04-003-1005         | Douglas **                            | Cochise    | 1.66 (1.66)               | 1.12 (2.23) | 0.35 (0.7)           | 5 (10)                             | 4.7 (9.4)       | 0 (0)              | 2.57    | 4    |
| 04-012-8000         | Alamo Lake                            | La Paz     | 0 (0)                     | 5 (10)      | 5 (10)               | 3.99 (7.98)                        | 4.64 (9.28)     | 0 (0)              | 3.73    | 2    |
| 04-013-9997         | JLG Supersite (Continuous)            | Maricopa   | 7.16 (7.16)               | 0 (0)       | 5 (10)               | 0.09 (0.17)                        | 0 (0)           | 0 (0)              | 2.45    | 6    |
| 04-013-9997         | JLG Supersite (Filter)                | Maricopa   | 6.48 (6.48)               | 0 (0)       | 5 (10)               | 0.09 (0.17)                        | 0 (0)           | 0 (0)              | 2.31    | 7    |
| 04-023-0004         | Nogales Post Office<br>(Continuous) * | Santa Cruz | 10 (10)                   | 0.46 (0.91) | 0 (0)                | 0 (0)                              | 5 (10)          | 2.5 (10)           | 3.09    | 3    |
| 04-023-0004         | Nogales Post Office<br>(Filter) *     | Santa Cruz | 7.22 (7.22)               | 0.46 (0.91) | 0 (0)                | 0 (0)                              | 5 (10)          | 2.5 (10)           | 2.54    | 5    |
| 04-027-8011         | Yuma Supersite                        | Yuma       | 6.75 (6.75)               | 0.99 (1.98) | 5 (10)               | 4.65 (9.29)                        | 3.98 (7.96)     | 0 (0)              | 4.27    | 1    |

\* Nonattainment Area; \*\* Removed Jan. 1, 2020

## Section II: Spatial Raster Analysis

In order to determine if ADEQ's existing ambient monitoring network adequately represents Arizona's unique air quality, a spatial analysis is conducted using a variety of indicators shown in <u>Table 32</u>. The indicators are mapped to visually show places in Arizona where monitoring could be beneficial for Arizona's population and to show the adequacy of ADEQ's ambient monitoring network.

The five indicators used in this analysis have two general classifications: demographic and spatial. For each indicator, a map is produced showing areas of higher interest based on the indicator's data. The results are then converted to a 0 to 10 scale using Natural Breaks, which enable the indicator maps to be eventually combined into one map.

To accomplish this, each indicator map is converted into a GIS raster image. A raster image is a type of spatial data set that assigns numerical values to every part of Arizona, represented by grid cells. By placing numerical values around Arizona, each indicator can be quantified in every area of the state. The five raster images are then weighed because indicators vary in importance to ambient air monitoring. Lastly, the weighted raster images for each indicator are combined to show the final weighted spatial overlay map for all of Arizona. Weighted spatial overlay maps were created for O<sub>3</sub>, PM<sub>10</sub>, and PM<sub>2.5</sub>.

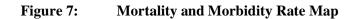
Chosen indicators represent a variety of aspects that are important to developing a robust air monitoring network. The following five indicators are used in the raster analysis:

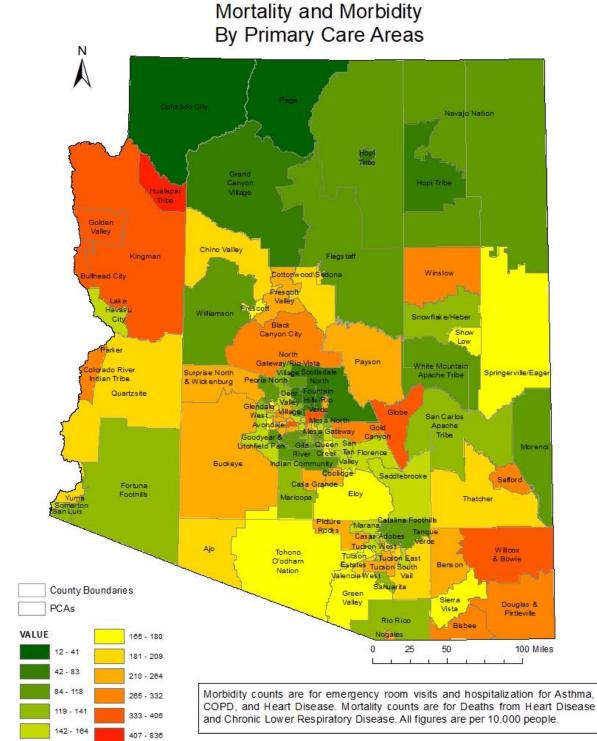
| Indicator                     | Description                                                                                                                                                                                                                                                                                                                                                   | Indicator   |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                         | Туре        |
| Mortality &<br>Morbidity Rate | Using the primary care areas in Arizona, this indicator ranks the<br>areas based on mortality and morbidity rate of air pollution related<br>health effects per area population. The highest valued areas have the<br>highest rate of both.                                                                                                                   | Demographic |
| Sensitive Age<br>Distribution | Using the ESRI 2019 population estimates Census blocks, this indicator ranks the areas based on the total number of sensitive individuals per 10,000 people. Age sensitive individuals are children and the elderly, therefore the highest valued areas have the highest total number of children 0-14 and the elderly >65.                                   | Demographic |
| Total Population              | Using the ESRI 2019 population estimates Census blocks, this indicator ranks the areas based on the total population. The highest valued areas have the highest number of individuals.                                                                                                                                                                        | Demographic |
| Distance between<br>Monitors  | This indicator ranks the straight line distance between monitors. The areas that have the greatest distances between monitors are valued highest.                                                                                                                                                                                                             | Spatial     |
| Predicted Values              | Applying Kriging interpolation to 2014-2018 average design values,<br>this indicator ranks areas that are based on the predicted values. A<br>Kriging interpolation map is a prediction model that projects air<br>concentrations in unmonitored areas, based on actual measurements.<br>The areas that have the highest predicted values are valued highest. | Spatial     |

#### Table 32: Raster Analysis Indicators

## A. Mortality and Morbidity Rate

This indicator values areas based on mortality counts for deaths from heart disease and chronic lower respiratory disease and morbidity (chronic or acute poor health) hospitalization records for adult asthma, chronic obstructive pulmonary disease (COPD), and congestive heart failure. The rate of mortality and morbidity is per 10,000 people per primary care area and is used to show areas that have a greater number of individuals potentially affected by air pollution (see Figure 7). This indicator provides a method of accounting for sensitive individuals by identifying people that are particularly sensitive to air quality issues.


It is assumed that areas with more deaths and higher hospitalizations are of greater importance, therefore, such areas are assigned higher scores. This indicator does not assume that the deaths and hospitalizations are a direct result of poor air quality in the area, only that individuals with the previously mentioned conditions can be sensitive to poor air quality. This indicator has disadvantages in that hospitalization records do not show where the individuals work or live, only where they went to the hospital.


The entire distribution of deaths and hospitalizations is divided into 11 parts and assigned a score of 0 to 10, with 10 being the highest partition.

Deaths and hospitalization data is from the Arizona Department of Health Services (AZDHS), where it is listed by primary care area, and is publicly available on the AZDHS website at azdhs.gov/phs/phstats/profiles.

## Results

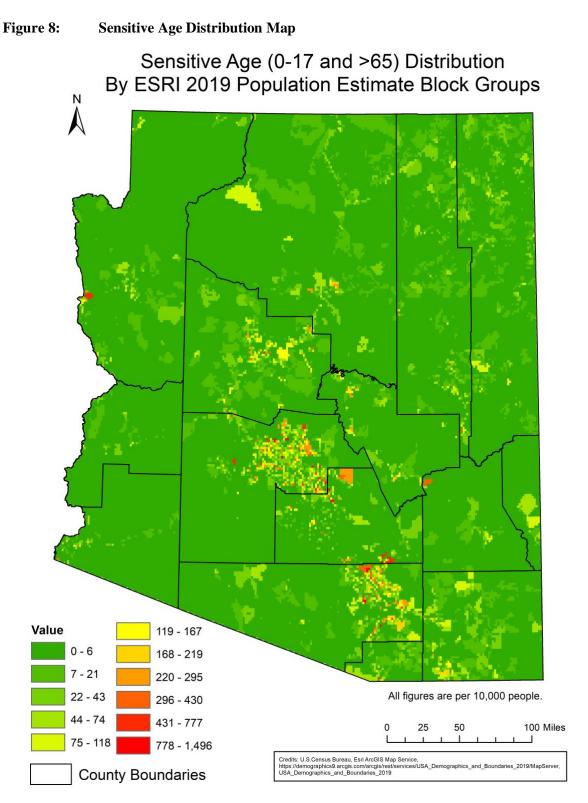
The highest rate of deaths and hospitalizations per 10,000 people is shown in red.





Creatiz U.S.Census Bureau, Ean ArcGIS Map Service, https://demographics/arcgis.com/arcgis/eat/services/JSA, Demographics, and Boundaries, 2019MapServer, USA, Demographics, and Boundaries, 2019MapServer, USA, Demographics, and Boundaries, 2019

## **B.** Sensitive Age Distribution


This indicator uses the ESRI 2019 population estimates based off the 2010 US Census data to account for another population of sensitive individuals. This indicator values areas based on the total number of individuals in the age categories of 0 to 17 and older than 65. The total number of sensitive age individuals of each census block group (sensitive individuals per area) is calculated. Census block groups are geographical areas that have between 600 and 3,000 individuals. Areas with a higher distribution of sensitive ages receive higher scores. This indicator provides another method of accounting for sensitive individuals.

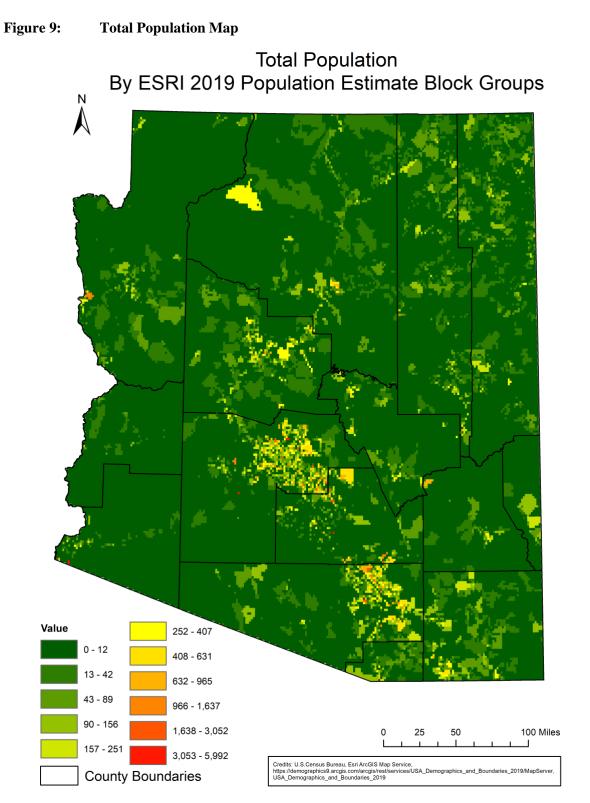
It is assumed that areas with the highest number of children and the elderly are most affected by air quality issues. This indicator does not assume that all individuals in the 0 to 17 and older than 65 age groups are sensitive to poor air quality, only that these age groups are considered to be sensitive for the assessment. This indicator has disadvantages in that it does not take into account where people go to school or work, only where they live.

The entire distribution of sensitive individuals is divided into 11 parts and assigned a score of 0 to 10, with 10 being the highest partition.

Population details by census block group are publicly available data from the US Census.

The highest Sensitive Age Distribution is shown in red.




# **C. Total Population**

This indicator values areas by the number of people per census block groups. A spatial output map is created showing the total populations in Arizona. The entire distribution is divided into 11 parts and assigned a score of 0 to 10, with 10 being the highest partition.

Higher populations per block group are assigned higher scores since it is assumed that it is more desirable to have a monitor representing the greatest number of people. This indicator has disadvantages in that census blocks generally have the same number of individuals, therefore each one may not differ drastically from another. This would then not correctly show areas of high concentrations of individuals. Population density (population divided by area) was also considered to be used for this indicator, as it gives a better representation of the urban areas but produces inaccuracies and over represented densities in the rural areas. Total population was chosen over population density because it gives a better representation of the urban areas of Arizona. Another disadvantage is that census block groups can include both an urban population and surrounding non-populated areas. This results in a block that seems to show a large number of people over a big area, where the actual population is concentrated in one spot. The resultant total population map (Figure 9) shows an accurate representation of populations in all of Arizona.

Population details by census block are publicly available data from the US Census.

The highest total population is shown in red.

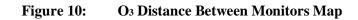


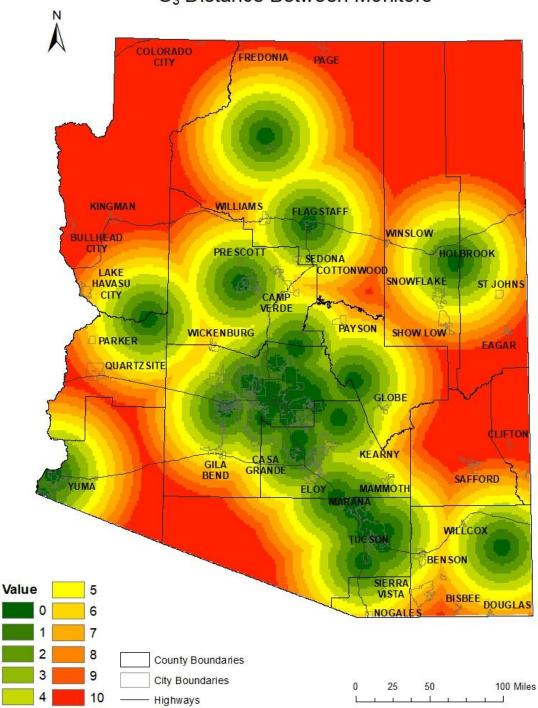
# **D. Distance Between Monitors**

This indicator values areas based on the how far existing monitoring sites are from other existing monitoring sites. This is achieved by calculating the straight-line distance from an existing monitoring site. In application, this indicator creates concentric rings around each monitoring site at pre-defined distances. The scored value increases the farther away from existing monitoring sites to show that it is more desirable to place a monitor farther from another monitor. Overlapping concentric rings use the shortest distance value to adjust for nearby sites. The locations of all state, local, and tribal monitors in Arizona are used.

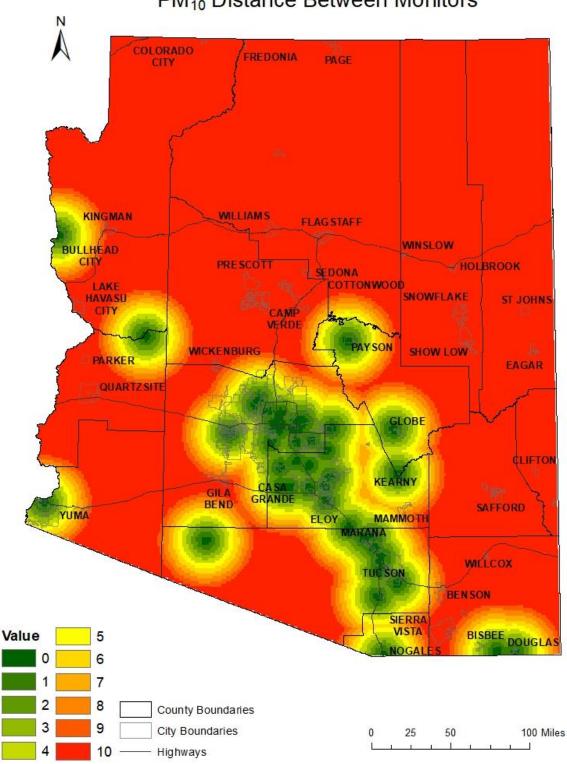
The assumption is that it is more desirable to have a new monitoring site farther away from an existing site to represent a different population, cover an underrepresented area, and/or measure a unique air parcel. Concentric ring sizes are defined by pollutant in Table 33 and are taken from the Section I (D): Correlation Between Monitors (Page 23) data set. By using the correlation values, the maximum distance of correlation was determined. Monitors that do not correlate with each other are farther in distance. This distance of correlation (influence) is the maximum distance set between monitors, with 10 concentric rings leading up to that maximum. Each pollutant's distance of influence is dependent on its reactivity and longevity in the atmosphere.

This indicator has disadvantages in that it does not take into account pollutant sources, meteorological factors, or topography in Arizona.

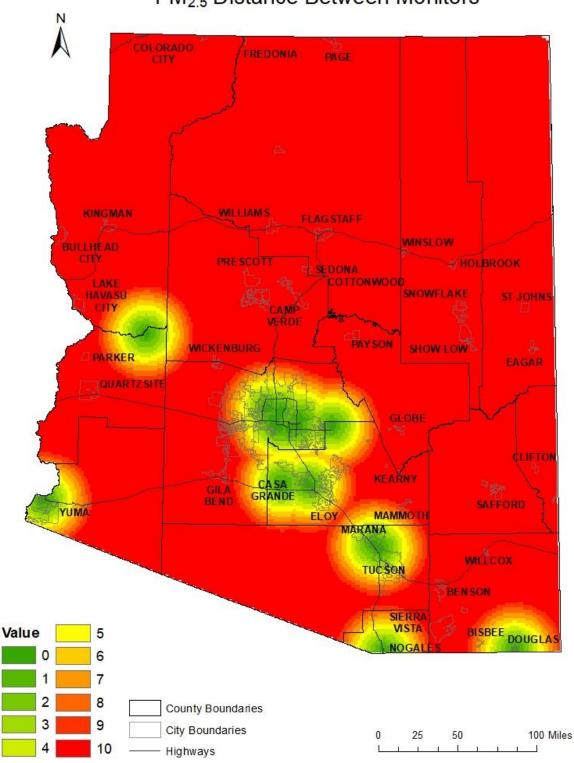

The entire distribution of distances is divided into 11 parts and assigned a score of 0 to 10, with 10 being the highest partition. This highest partition includes any area beyond the maximum concentric ring to extend the coverage to all of Arizona.


Monitor locations were taken from EPA's AQS web application database. The AMP500 Extract Site/Monitor Data report was run for all monitors in Arizona, including state, local, and tribal monitors. Only monitors that were in operation during the 2014 to 2018 time period were used.

| Pollutant  | Concentric Ring Size        |
|------------|-----------------------------|
| <b>O</b> 3 | 6 mile rings up to 60 miles |
| PM10       | 3 mile rings up to 30 miles |
| PM2.5      | 3 mile rings up to 30 miles |


#### Table 33:Distance Between Monitors Concentric Ring Sizes

The areas farthest away from monitors are shown in red.






# O<sub>3</sub> Distance Between Monitors



# PM<sub>10</sub> Distance Between Monitors

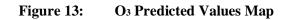


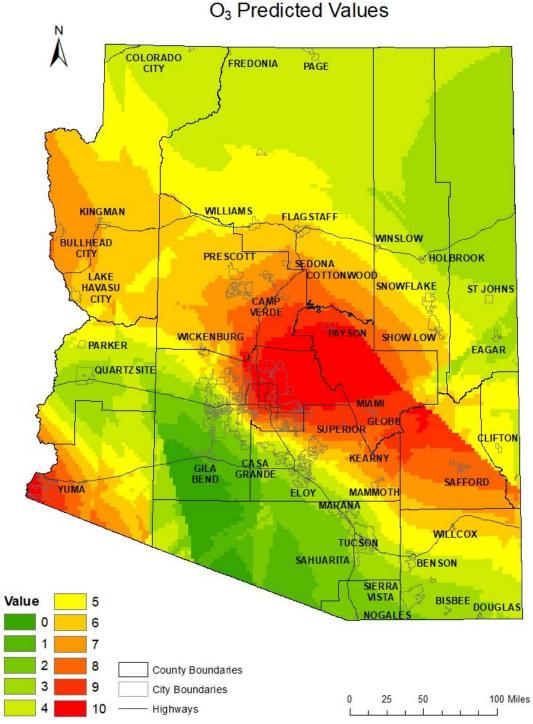
PM<sub>2.5</sub> Distance Between Monitors

# **E. Predicted Values**

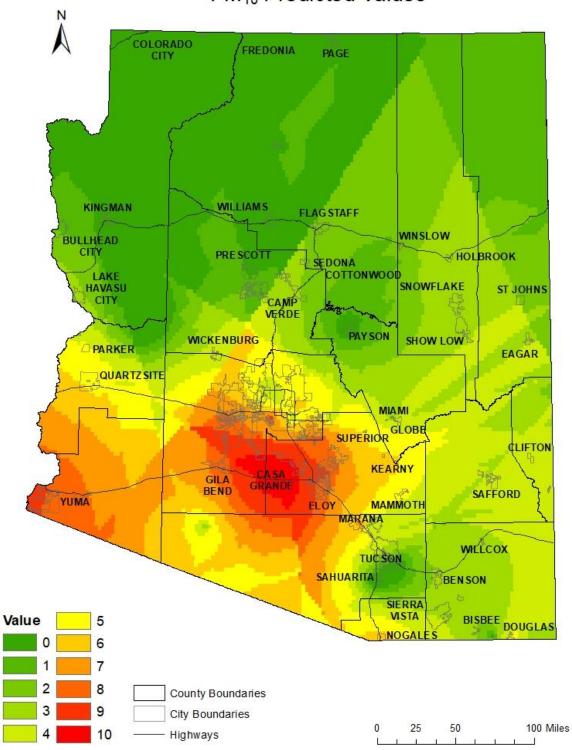
This indicator is a prediction model that uses a Kriging interpolation tool in ArcGIS to show predicted pollutant values. To make its prediction, the Kriging interpolation is applied to 2014 - 2018 average design values for O<sub>3</sub>, PM<sub>10</sub>, and PM<sub>2.5</sub>. However, it does not take into account topographic, demographic, or meteorological factors in its prediction. In general, this indicator shows areas of higher and lower predicted average design values (concentrations) on a gradient similar to a topographic map. The indicator scores areas higher that have greater predicted concentrations.

It is assumed that areas with the highest predicted average design values are most important to monitoring in Arizona. This indicator has a disadvantage in that the predicted values have greater error in areas that are farther away from monitoring sites. This error should thus be taken into account when interpreting this indicator. It is important to include a predicted value model in this analysis to estimate concentration levels around Arizona and therefore the Kriging interpolation ArcGIS tool was used to create this unique data set.

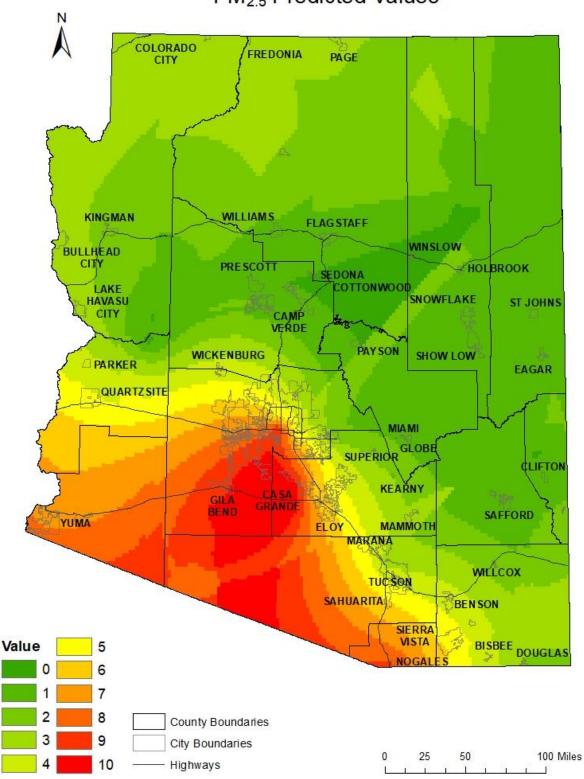

The entire distribution of values is divided in 11 parts and assigned a score of 0 to 10, with 10 being the highest partition and highest predicted value.


Data were taken from the EPA's AQS web application database. The AMP480 Design Value Report was run for all monitors in Arizona, including state, local, and tribal monitors. Only monitors that were in operation during the 2014 to 2018 time period were used. Additional instruments outside of Arizona were used to lower the amount of error in the prediction models. The instruments outside of Arizona that were used in the analysis can be found in Table 34.

| SITE NAME                                  | Site ID     | State      | <b>O</b> 3 | <b>PM</b> 10 | <b>PM</b> 2.5 |
|--------------------------------------------|-------------|------------|------------|--------------|---------------|
| NA Cedar city                              | 49-021-0005 | Utah       | Х          |              | Х             |
| NA St. George                              | 49-053-0007 | Utah       | Х          |              | Х             |
| Hawthorne Elementary School                | 49-035-3006 | Utah       | Х          | X            |               |
| Escalante National Monument                | 49-017-0006 | Utah       | Х          |              |               |
| Mesa Verde NP - Resource Management Area   | 80-083-0101 | Colorado   | Х          |              |               |
| 6ZK Chaparral                              | 35-013-0020 | New Mexico | Х          | X            |               |
| 6ZM Desert View                            | 35-013-0021 | New Mexico | Х          |              | Х             |
| 6CM Anthony                                | 35-013-0016 | New Mexico |            |              | Х             |
| 6Q Las Cruces in New Mexico                | 35-013-0025 | New Mexico |            |              | Х             |
| South Valley                               | 35-001-0029 | New Mexico | Х          |              |               |
| Foothills                                  | 35-001-0023 | New Mexico | Х          | X            |               |
| Chaco Culture NHP - Radio Repeater         | 35-045-0020 | New Mexico | Х          |              |               |
| El Paso Chamizal C41                       | 48-141-0044 | Texas      | Х          |              | Х             |
| Ivanhoe                                    | 48-141-0029 | Texas      | Х          |              |               |
| Jean                                       | 32-003-1019 | Nevada     | Х          | X            | Х             |
| Green Valley                               | 32-003-0298 | Nevada     | Х          | X            | Х             |
| Calexico-Ethel Street                      | 60-025-0005 | California | Х          | Х            | Х             |
| Joshua Tree NP - Cottonwood Visitor Center | 60-065-0010 | California | Х          |              | Х             |
| Blythe-445 W Murphy Street                 | 60-065-9003 | California | Х          |              |               |
| Brawley-220 Main Street                    | 60-025-0007 | California |            | X            | Х             |
| San Luis Rio Colorado Well 10              | 80-026-8012 | Mexico     | Х          |              |               |
| Random Mexico Point                        | N/A         | Mexico     | Х          | X            | Х             |


| Table 34: | Sites | Outside | of | Arizona |
|-----------|-------|---------|----|---------|
|-----------|-------|---------|----|---------|

The highest predicted values are shown in red.






O3 Predicted Values



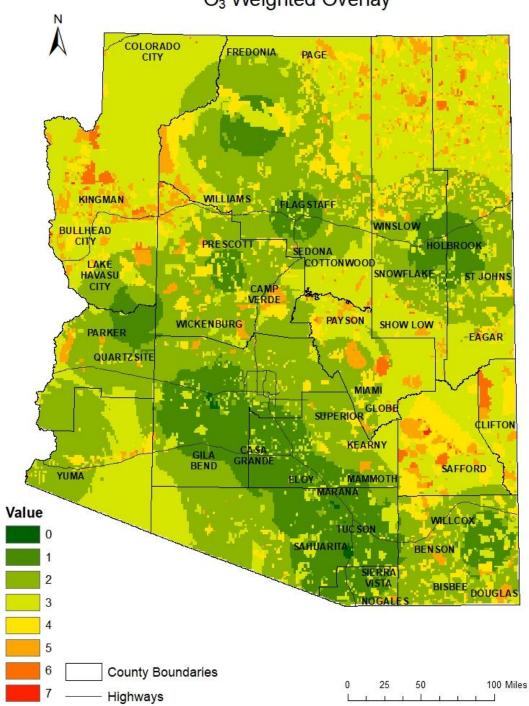
PM<sub>10</sub> Predicted Values



PM<sub>2.5</sub> Predicted Values

### **F.** Final Weighted Overlay

The five indicators in Section II (A - E) are combined together to form a single pollutant map that shows the final results of the Spatial Raster Analysis. The final maps are called weighted overlay maps and are produced to identify areas in Arizona that are of the highest importance to ambient air monitoring. These final maps will be used for suggestions to possible relocations, removals, or additional monitors. See Section III: Final Conclusions and Recommendations on Page 52 for the final conclusions and recommendations of the Spatial Raster Analysis.


Before the creation of the final overlay maps, the indicators were weighted according to their value to air monitoring in Arizona. Weights were derived from two consensus meetings with ADEQ's Air Quality Division staff and a survey given to others in Arizona's air monitoring community. The consensus meetings and survey were conducted by asking each individual to rate the importance of each indicator listed in Section II: Spatial Raster Analysis on Page 32. During the meetings, there was discussion to voice opinions related to assigned values. In total, 30 members of ADEO's Air Quality Division staff attended the meetings and one survey response was collected from Arizona's air monitoring community. That information was then applied to each ranking value in order to determine the final monitor rankings. It is not assumed that each indicator carries the same significance to the public welfare, regulatory actions, and to ambient air monitoring in Arizona. One indicator might be of greater significance than another, therefore the indicators needed to be ranked. Results from the meetings and survey were weighted to come up with a final value that was then adjusted to a 0 to 1 scale listed in Table 35. They were adjusted to 0 to 1 because the weighted overlay tool in ArcGIS requires the total weight to be 1.0. All of the areas on the indicator maps were multiplied by the survey results to apply the weighting.

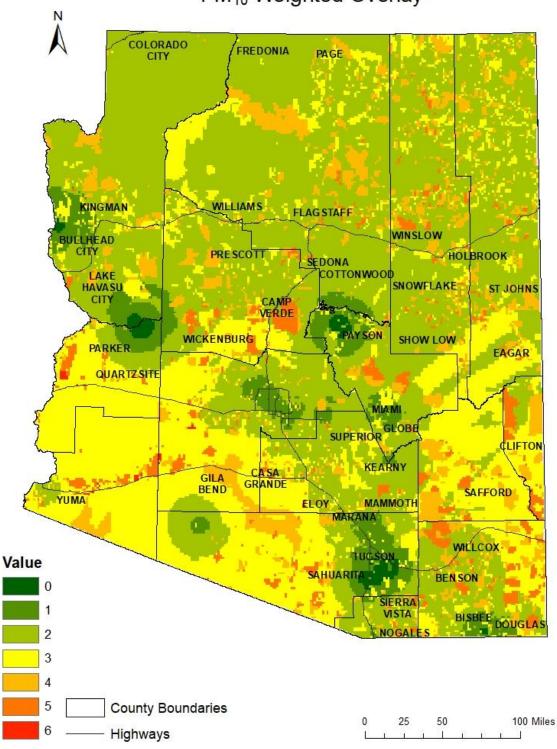
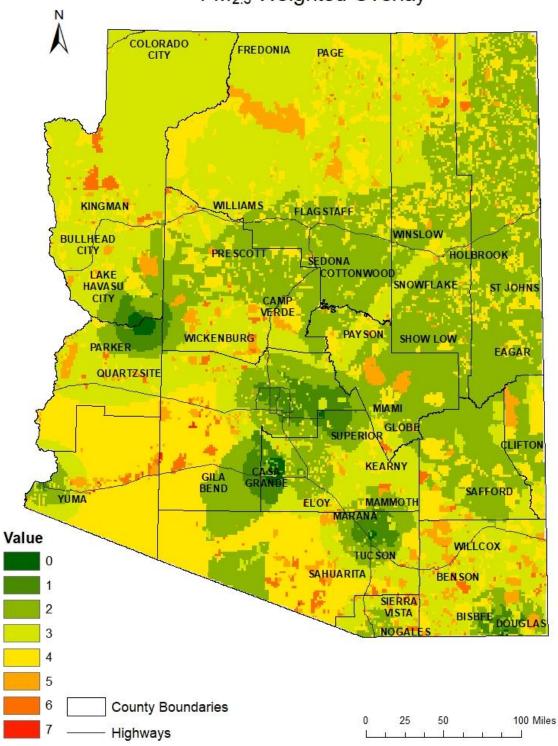

| Tuble 35. Spa                   | iai Kastel | marysi       | 5 Repare      |
|---------------------------------|------------|--------------|---------------|
| Indicator                       | <b>O</b> 3 | <b>PM</b> 10 | <b>PM</b> 2.5 |
| Mortality and<br>Morbidity Rate | 0.22       | 0.24         | 0.22          |
| Sensitive Age<br>Distribution   | 0.22       | 0.24         | 0.22          |
| <b>Total Population</b>         | 0.17       | 0.11         | 0.17          |
| Distance Between<br>Monitors    | 0.17       | 0.24         | 0.17          |
| Predicted Values                | 0.22       | 0.17         | 0.22          |

Table 35: **Spatial Raster Analysis Results** 


The areas that are most important to new monitoring are shown in red.







PM<sub>10</sub> Weighted Overlay



PM<sub>2.5</sub> Weighted Overlay

# Section III: Final Conclusions and Recommendations

The final conclusion and recommendations were made by ADEQ's Air Quality management from both the Ranking Analysis and the Spatial Raster Analysis. These recommendations are only made from this 5-Year Network Assessment and are intended to improve the quality and adequacy of ADEQ's air monitoring network. These conclusions and recommendations are made for the next five years and plans to modify the air monitoring network will be made in the 2021 Annual Network Plan.

In 2015, the Environmental Protection Agency (EPA) revised the Photochemical Assessment Monitoring Stations (PAMS) requirements in 40 CFR Part 58 Appendix D. It requires state monitoring agencies with moderate and above 8-hour ozone (O<sub>3</sub>) nonattainment areas to develop and implement an Enhanced Monitoring Plan (EMP) detailing enhanced O<sub>3</sub> and O<sub>3</sub> precursor monitoring activities. The Phoenix-Mesa 8-hour O<sub>3</sub> Nonattainment Area is classified as moderate for the 2008 O<sub>3</sub> Standard and therefore is required to submit an EMP. At a minimum, the EMP shall be reassessed and approved as part of the 5-year network assessments required under 40 CFR 58.10(d). The EMP includes monitoring activities deemed important to understanding O<sub>3</sub> formation in the Phoenix-Mesa 8-hour O<sub>3</sub> Nonattainment Areas. ADEQ submitted their initial EMP in October 2019 to fulfill this requirement, in which ADEQ committed to form a working group with stakeholders to identify any monitoring gaps and develop a plan for any additional monitoring for the following five years.

The following broad knowledge gap categories were identified by the working group as priorities to better understand behavior in the Phoenix area:

- ground-level O3 and O3 precursor measurements
- vertical O<sub>3</sub> and meteorology.

Closing these two knowledge gaps would serve to:

- improve our ability to assess current and future control strategies mitigating O<sub>3</sub> and O<sub>3</sub> precursor emissions,
- aid verification and building of air quality modelling efforts, and
- provide data necessary for increased air quality forecasting accuracy purposes that give the health sensitive community warning of imminent unhealthy air quality episodes and trigger voluntary action by the broader public domain to reduce emissions.

#### **General Conclusions from the Ranking Analysis**

Two sites stand out as particularly significant for ADEQ's networks based on the Monitor Ranking Analysis. The Yuma Supersite monitor is consistently ranked the highest across all pollutant networks as important to air monitoring and JLG Supersite is ranked above most other sites. Specific attention to their operation should be in place so important ambient air data at these sites are not lost. Technology and supporting equipment upgrades should be made to these sites first as modernizing and upgrading improved data security, quality, and quantity. Data from Yuma Supersite are particularity important to support regulatory actions for this area and for border air quality research. The JLG Supersite is specifically important to the trends analysis and air quality research for the Phoenix area.

#### SO<sub>2</sub>

#### a. Ranking analysis

Currently, all monitors are required in the area and, as such, no recommendations are made at this time.

#### O3, PM10, and PM2.5

#### a. Ranking Analysis

Currently all O<sub>3</sub> monitors are required and no recommendations are made based on the Ranking Analysis. All of ADEQ's O<sub>3</sub> monitors are considered important to O<sub>3</sub> monitoring. Future statistical analysis will need to be done to investigate where Flagstaff Middle School and Prescott Pioneer Park sites stand in terms of meeting 85 percent of the O<sub>3</sub> National Ambient Air Quality Standards (NAAQS) to determine if these monitors are in attainment of the O<sub>3</sub> NAAQS for the last five years. Additionally, ADEQ will conduct statistical analysis to see if there less than 10 percent probability of exceeding 80 percent of the NAAQS during the next three years.

Currently all PM<sub>10</sub> and PM<sub>2.5</sub> monitors are required and there are no recommendations for the twelve PM<sub>10</sub> and seven PM<sub>2.5</sub> monitors. However, ADEQ will investigate if the Nogales Post Office PM<sub>2.5</sub> (POC 1 Filter) is still required to fulfill collocation requirements. The removal of this instrument will not cause data loss since it is a collocated monitor and only runs 1-in-6 days. ADEQ will conduct a cost-benefit analysis to determine if the POC 1 Filter should be removed.

#### b. Spatial Raster Analysis

It was not determined that any O<sub>3</sub>, PM<sub>10</sub>, or PM<sub>2.5</sub> monitors should be closed based on this analysis due to being over representative.

ADEQ plans to use this analysis to help identify areas of interest (orange and red areas on the maps) for episodic monitoring. This information will aid in developing special projects to promote voluntary public measures to decrease local O<sub>3</sub> precursors, PM<sub>10</sub>, and PM<sub>2.5</sub>.

Currently, there is an E-BAM Network of six (Flagstaff Middle School, Payson Well Site, Prescott Pioneer Park, Sedona Fire Station AQD, Show Low, and Verde Ranger Station) semi-permanent monitors that were not included in this analysis. Additionally, a PM<sub>10</sub> special purpose monitor (SPM) at Quartzsite and a PM<sub>2.5</sub> SPM at Bullhead City were not included in this analysis. The E-BAM Network is non-regulatory and is used for public health and information purposes. ADEQ has additional E-BAM monitors available to use for placement during wildfire or other weather events.

# Appendix A – Definitions and Abbreviations

| ADEQ            | Arizona Department of Environmental Quality  |
|-----------------|----------------------------------------------|
| ArcMap          | GIS Analysis Software                        |
| AQS             | Air Quality System (EPA database)            |
| AZDHS           | Arizona Department of Health Services        |
| BAM             | Beta Attenuation Monitor                     |
| CFR             | Code of Federal Regulations                  |
| СО              | Carbon Monoxide                              |
| COPD            | Chronic Obstructive Pulmonary Disease        |
| E-BAM           | Environment Proof - Beta Attenuation Monitor |
| EPA             | Environmental Protection Agency              |
| GIS             | Geographic Information System                |
| MSA             | Metropolitan Statistical Area                |
| µg/m3           | Micrograms per Cubic Meter                   |
| NAAQS           | National Ambient Air Quality Standard        |
| NO <sub>2</sub> | Nitrogen Dioxide                             |
| <b>O</b> 3      | Ozone                                        |
| PAMS            | Photochemical Assessment Monitoring Station  |
| Pb              | Lead                                         |
| PM              | Particulate Matter                           |
| <b>PM</b> 10    | Particulate Matter $\leq 10$ microns         |
| PM2.5           | Particulate Matter $\leq 2.5$ microns        |
| POC             | Parameter Occurrence Code                    |
| ppb             | Parts Per Billion                            |
| ppm             | Parts Per Million                            |
| SO <sub>2</sub> | Sulfur Dioxide                               |
| SPM             | Special Purpose Monitor                      |
| SR              | State Route                                  |

# Appendix B – References

Air Quality Annuals Reports. (n.d). Retrieved May 18, 2020, from azdeq.gov/air-quality-annual-reports

Glossary. (September 19, 2019). Retrieved May 18, 2020, from census.gov/programs-surveys/geography/about/glossary.html

NetAssess2020v1.1 Ambient Air Monitoring Network Assessment Tools. (n.d.). Retrieved May 18, 2020, from sti-r-shiny.shinyapps.io/EPA\_Network\_Assessment

U.S. Census Bureau, ESRI ArcGIS Map Service, demographics9.arcgis.com/arcgis/rest/services/USA\_Demographics\_and\_Boundaries\_2019/MapServer, USA\_ Demographics\_and\_Boundaries\_2019

Network Design Criteria for Ambient Air Quality Monitoring, 40 C.F.R. Part 58 App D (2020)

Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring, 40 C.F.R. Part 58 App E (2020)

System modification, <u>40 C.F.R. Part 58.14</u> (2020)



Publication Number: OFR-20-03